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Bayesian model selection
(MacKay 1992, Balasubramanian 1996)
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Model family A Model family B

QA(x|α) QB(x|β)

dimα = KA dimβ = KB

PA(α), Pr(A) PB(β), Pr(B)

P(x)
i.i.d.
−→ X = {x1 · · ·xN}

A or B?
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Solution: Maximize

P(A|X) =
P(X|A)Pr(A)

P(X)

=
Pr(A)

∫

dαP(α)P(X|α)

P(X|A)Pr(A) + P(X|B)Pr(B)

Large N expansion is almost always valid

logP(A|X)→
∑

i

logQA(xi|αML)
︸ ︷︷ ︸

goodness of fit

−
KA

2
logN

︸ ︷︷ ︸

+ . . .

generalization error
fluctuations, complexity

weak dependence on priors
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Bayesian inference penalizes for complexity

(large K).

Fight between the goodness of fit and the

complexity selects an optimal model family.

This is a Bayesian analogue of the MDL prin-

ciple.

Does this generalize to
infinite–dimensional models?
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Bayesian learning for K → ∞
(Bialek, Callan, Strong 1996)

Finite Infinite

α φ(x) = − log `0Q(x)

P(α) P[Q] ∝ exp [ − `2η−1

2

∫

dx(∂η
xφ)2

︸ ︷︷ ︸

smoothness penalty

]

{A, KA} {`, η(?)} – index continuum of families

Pr(A) Pr(`, η(?))

Fix ` and η:

P [Q|X] =
P(X|Q)P[Q]

P(X)

〈Q〉 =

∫

[dQ]P[Q] Q(x)
∏N

i=1 Q(xi)
∫

[dQ]P [Q]
∏N

i=1 Q(xi)

=
〈Q(x)Q(x1) · · ·Q(xN)〉0

〈Q(x1) · · ·Q(xN)〉0
︸ ︷︷ ︸

Correlation function in a QFT

defined by P[Q]
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Correlation functions:

C. F. ≡
∫

[dQ]P[Q]
N∏

i=1

Q(xi)

=

∫

[dφ]
1

`N
0

e−S[φ] δ

[
∫

dx
1

`0
e−φ − 1

]

S[φ]
︸ ︷︷ ︸

action

=
`

2

∫

dx(∂η
xφ)2

︸ ︷︷ ︸

kinetic term

+
∑

i

φ(xi)

︸ ︷︷ ︸

random potential
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Large N approximation for η = 1

ML (classical, saddle point) solution dominates

`∂2
xφcl(x) + N

`0
e−φcl(x) =

∑

j δ(x − xj)

changes on scale

δx ∼
√

`/NP (x)
�����������
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converges to
− log `0P (x)

C. F. ≈ (1/`0)
Ne−Seff[φcl(x)]

Seff[φcl] =
`

2

∫

dx(∂φcl)
2

︸ ︷︷ ︸

prior, smoothness

+
∑

φcl(xi)
︸ ︷︷ ︸

goodness of fit

+
1

2

√

N

``0

∫

dxe−φcl(x)/2

︸ ︷︷ ︸

fluctuations, complexity, error

How do we measure performance?
For x ∈ [0, L) the universal learning curve is

Λ(N) → 〈DKL(P ||Qcl)〉
0
{xi}

∼

√

L

`N

For a different η:

Λ(N) ∼

(
L

`

)1/2η

N1/2η−1
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Learning curves for fixed `, η = 1

Learner’s assumptions P`,η=1[Q]

Actual target distribution P ′
`a,ηa

[Q]

η = ηa, ` = `a learning typical cases, P = P ′

η = ηa, ` 6= `a marginal outliers of P
η > ηa extremely rough outliers
η < ηa extremely smooth outliers

0
log N

Λ

best asymptotics

actual and

typical:

actualbest possible

asymptotics (slope = -1/2)

(slope = -1/2)

(slope < -1/2)

too rough

too smooth

actual

(nonlinear)

best possible

asymptotics

(slope > -1/2)

No overfits!
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Smoothness scale selection
Allow a prior over `, but keep η = 1

C. F. → 〈C. F.〉` =
∫

d` Pr(`) e−Seff[φcl(φ,`)]

Seff[φcl] = smoothing + data
︸ ︷︷ ︸

grows with `

+ fluctuations︸ ︷︷ ︸

grows with 1/`

Some `∗ always dominates the C. F. and 〈Q〉!

What is `∗ for ηa and `a?

If η = ηa, then `∗ = `a. Otherwise:

0.5 < ηa ≤ 1.5 1.5 < ηa

data > smoothing smoothing > data

`∗ ∼ N(ηa−1)/ηa `∗ ∼ N1/3

Λ ∼ N1/2ηa−1 Λ ∼ N−2/3

best possible better, but not
performance best performance

Averaging over ` and allowing `∗ = `∗(N) deals

with qualitatively wrong smoothness ηa 6= 1!

MDL analogies.
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Bayesian smoothness (model)
selection works for nonparametric

models!
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Open questions

• constant factor or constant summand?

• what to do with ηa > 1.5?

• reparameterization invariance

• information theoretic meaningful priors

• higher dimensions

There is hope that all of this problems are re-

solvable in a single formulation.
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