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Bayesian model selection
(MacKay 1992, Balasubramanian 1996)
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Large N expansion is almost always valid
K
log P(A|X)— Z log QA(a:Z|aM|_) — TA log N + ..
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Bayesian inference penalizes for complexity
(large K).

Fight between the goodness of fit and the
complexity selects an optimal model family.

This is a Bayesian analogue of the MDL prin-
ciple.

Does this generalize to
infinite—dimensional models?



Bayesian learning for K — oo
(Bialek, Callan, Strong 1996)
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Correlation function in a QFT
defined by P[Q]




Correlation functions:
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Large N approximation for n =1

ML (classical, saddle point) solution dominates
converges to changes on scale

—log €(<%‘az) ox ~ v/L/NP(x)

003 pei(z) + g_e ~9a(@) =¥, §(2 — z;)
C.F. = (1/£O)N —Seffldci(z)]
Setflpc] = /dx(3¢c|)2 + Y dalzi)

prlor, smoothness  goodness of fit

1 [N
_ _¢cl($)/2
Y| eeo/ dae

A\ . 4

fluctuations, complexity, error

How do we measure performance?
For = € [0, L) the universal learning curve is

L

AN) = (DL (PIQe) Ty ~ /7

For a different n:

ACN) ~ <%) L/2m N1/2n-1



Learning curves for fixed ¢/, n=1

Learner's assumptions Ppn=1[Q]
Actual target distribution P . [Q]

n=mna, £ =14{, learning typical cases, P =P’
n = nNa, £ 7 £, marginal outliers of P

N > Na extremely rough outliers
N < Na extremely smooth outliers
A
too rough actual
< < / (nonlinear)

best possible
asymptotics

/ (slope > -1/2)

typical:

actual and

best asymptotics
(slope =-1/2)

too smooth

T |
0 best possible actual log N
asymptotics (slope =-1/2)

(slope < -1/2)

No overfits!



Smoothness scale selection
Allow a prior over £, but keep n=1

Sefflocl]l = smoothing 4 data 4 fluctuations

growsvwith 4

grows with 1/¢

Some ¢* always dominates the C. F. and (Q)!

What is ¢* for n, and 4,7
If n = ngq, then £* = /4,. Otherwise:

0.b<n, <15 1.5 < nq
data > smoothing | smoothing > data
/* ~ N(na—l)/na 0%~ N1/3
A ~ N1/277a—1 A ~ N—2/3
best possible better, but not
performance best performance

Averaging over ¢ and allowing ¢* = ¢*(N) deals
with qualitatively wrong smoothness n, #+= 1!

MDL analogies.



Bayesian smoothness (model)
selection works for nonparametric
models!



Open questions
e constant factor or constant summand?
e what to do with g > 1.57
e reparameterization invariance
e information theoretic meaningful priors
e higher dimensions

There is hope that all of this problems are re-
solvable in a single formulation.
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