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Why?

(paraphrasing Richard Hamming)
1. What are the important problems in your field?
1. What are the important problems in your field?

2. What important problems are you working on?
3. Why are the answers to (1) and (2) different?

So:

What are the important problems in theoretical biophysics?
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Of exactitude in science

...In that Empire, the craft of Cartography attained such Perfection that
the Map of a Single province covered the space of an entire City, and the
Map of the Empire 1tseltf an entire Province. In the course of Time, these
Extensive maps were found somehow wanting, and so the College of
Cartographers evolved a Map of the Empire that was of the same Scale as
the Empire and that coincided with it point for point. Less attentive to the
Study of Cartography, succeeding Generations came to judge a map of
such Magnitude cumbersome, and, not without Irreverence, they
abandoned it to the Rigours of sun and Rain. In the western Deserts,
tattered Fragments of the Map are still to be found, Sheltering an
occasional Beast or beggar; in the whole Nation, no other relic 1s left of the
Discipline of Geography.

From Travels of Praiseworthy Men (1638) by J. A. Suarez Miranda (a fictional reference).

By Jorge Luis Borges and Adolfo Bioy Casares.

English translation quoted from J. L. Borges, A Universal History of Infamy,
Penguin Books, London, 1975.
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At a recent meeting...

o A common opinion: “The final theory of biological systems will be a
large multiscale computational model. We need more and more
experimental data to specify details of these models.”

fd OPENWOIM

A simulation platform to build digital in silico living systems — starting with a c. elegans worm virtual organism simulation

e There’s something wrong with this statement.
— The “final” theory?

— Do we need the theory of
“everything” in any biological
(or physical) system?

e The best material model of a cat is

another, or preferably the same, cat.
(Philosophy of Science, Wiener and Rosenblueth, 1945)

UNIVERSITY
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Physics analogy

 What is the final, complete theory of the chair you are sitting in”?
— How does it fall from the second floor?
— How does the cloth seat age and tear?
— How much weight would the chair hold before it breaks?
— How does it conduct electricity?
— How much food can | cook when | burn it?

e There’s no such thing as “the full theory of the chair”.

— We build models tailored to answer specific questions.

— The complete theory that answers every question would need to include
quarks, superstrings...

— Each modeling level needs its own effective degrees of freedom
—“Don’t model bulldozers with quarks.” (Goldenfeld and Kadanoff, 1999)

* Models must loose details. Otherwise, just use the same cat...
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So...

* Are there phenomenological, coarse-grained, and yet
functionally accurate representations of (some) biological
dynamics, or are we forever doomed to every detail
mattering?

— And, of course, these models would not answer every question, but specific
guestions on coarse scales.
— E.g., not What is a position of this particular atom in the cell? But What is the whole
system doing?
— (Parenthetically): Without such coarse-grained descriptions, if everything is
equally important, modern biology ceases to be a Western science.
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What do | mean by this?

e \Western tradition:

— There are laws (of nature, of god, whatever). A rock is a rock
everywhere. It falls the same in Pisa and in Atlanta.

— There’re causes and there are effects.
— There is “useless information” (Oscar Wilde).

— But this belief requires closing one’s eyes to minor discrepancies

— Two balls dropped from the Leaning Tower didn’t actually land simultaneously.

— “If we had the STM in the 1920s, there wouldn'’t be the Debye theory of solids.”
(H. Levine)

* Non-western tradition, e.g., buddhism

— Pratityasamutpada: dependent origination: “Pratitya samutpada is sometimes
called the teaching of cause and effect, but that can be misleading, because we
usually think of cause and effect as separate entities, with cause always
preceding effect, and one cause leading to one effect. According to the teaching
of Interdependent Co-Arising, cause and effect co-arise (samutpada) and
everything is a result of multiple causes and conditions... “ — Thich Nhat Hanh
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Where would new laws come from?

* More is different! (PW Anderson)
— The law of large numbers produces universalities if the right questions are asked
(e.g., about /arge-scale quantities).

* Important to use the right level of description.
— Coarse-graining: Each modeling level needs its own effective degrees of freedom.

— “Don’t model bulldozers with quarks.” (Goldenfeld and Kadanoff, 1999)

e This is already common in your every-day life, not just physics
— Which level of description is better for driving to a local school?
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A side note: This has worked before!

Hodgkin-Huxley
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e A good theory! (and only roughly correct)
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Cellular networks: complex beasts
Large N is baked in

A culture’s icons are a window onto its
soul. Few would disagree that, in the
culture of molecular biology that
dominated much of the life sciences for o e
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And yet, for typical inputs,
their dynamics are rather simple

o Cheong et al., 2011 Golstein et al., 2004
_ o) ~ NF-kB dynamics TCR dynamics
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e A handful of parameters (time scales, amplitudes) describe responses of
networks to most experimentally accessible perturbations.

e Relation of phenomenological to mechanistic parameters often unclear.

e Do we need complex networks to describe simple dynamics?
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The field (and we) has worked on this for a while

e Bottom-up methods, reducing a known microscopic,

mechanistic network.

— with Sinitsyn et al., 2006-2010; with Munsky, Bel et al.,2009-2013; with
Merchan, 2016.

— Schwab and Mehta 2015

— Large number of publications in chemical physics (Petzold et al.)

— Problem: need to know and start with the microscopic model.

e Can we instead build phenomenological models top-
down, from data directly, and without reconstructing a
mechanistic network as an intermediate step?

— Purpose: predict responses to exogenous signals.
— Purpose: drive all of us, theorists, out of work?

UNIVERSITY
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First steps...

e Assume that dynamics of cellular networks is given by local
ordinary differential equations.

e Do not fit curves; fit dynamics.

* Neglect stochasticity, and spatial structure for now

dd% — fl(ﬂfl,ﬂjg, . ,ZEn)
déln—; — fn(xlax27 K 7£Bn)

e Can we automatically fit these functions f; from data?
— How do we enumerate the set of all possible multivariate functions?
— How do we search through this list?
— How do we not overfit?
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Prior (and posterior) art

e The full search approach for an exact model

« Small systems dynamics — search for all possible models using S-systems formalism (Voit et al,
Theor Biol Med Model 2006).

e Searching for a control model from a (small) set of a priori allowed models (Lillacci and Khammash,
PLoS CB 2010).

» Searching for a stochastic model from a (small) set of a priori allowed models (Munsky, et al., MSB
2009, Science 2013).

» Eureqa: exhaustive genetic algorithm search through all possible elementary function combinations,
with selection of new experiments to optimize discriminability among models (Lipson et al., Science
2009, Phys Biol 2011).

» SINDy: Compressed sensing approaches (Brunton et al., 2016).
* AutomatedStatistician.com: compositional tree structures for stochastic data.
* More at the 2017 MM meeting sessions on “Robot-scientist”.

e Phenomenological search (Crutchfield and McNamara, Compl Syst 1987).

* Problems (limiting the analysis to only a few variables)
» data/computing demands explode with the number of variables;
e cannot handle unobserved variables.

UNIVERSITY
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Test Model:
Yeast Glycolytic Oscillator

(A) External Glucose

i Cytosol Glucose (S,)
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lw

Exact Model

Ruoff et al., 2003

e 7 species, 28 parameters

e Complex rational dynamical
laws
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Eureqa performance:
Yeast Glycolytic Oscillator

@ — e 7 species, 28 variables
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Schmidt et al., Phys Biol 2011
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But at the same time:
Need derivatives, and...

Test Set Correlation

0.3 :‘:‘l‘ ““ fl el | 4 1 1 1 1
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— Symbolic Regression - no prior model
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Neural Network — no prior model
— Nonlinear Regression — with impaired model
00 5 10 ——— Nonlinear Regression — with overspecified model

Time (min)

e Astronomical computation times -- exhaustive search.
— Overfitting -- need astronomical sample sizes.

* Two exponential costs: selecting the best model family, fitting the best

family with the model. Schmidt et al., Phys Biol 2011
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SINDy (Brunton et al., 2016)
(But needs derivatives and correct basis)

s 2 2 5 = — — T
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Can we avoid the exhaustive search and the need
for the correct basis?

e Do not need an exhaustive search or exact fits when fitting dimensional

curves with progressively increasing complexity
A

K
Y () = Z Ajz" 4 noise
k=1

>

— Use nested, complete model families, e.g., Taylor series.

— Use Bayesian model selection to limit the complexity of the search space (the
value of maximum K).

Schwartz, Ann Stat 1978; MacKay, Neural Comp, 1992
Balasubramanian, Neural Comp1996; Nemenman, Neural Comp, 2005
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Bayesian Model selection

e For large sample size N, averages done in the Laplace (saddle
point) limit.

- = s P({x; | a)P(a
P(K|{z:}) = [ dXaP(@|{x;}) = [ dXaPUz P
= [d*dexp(—NL)

log P(K|{xz;}) = log P({z;}|am1) — % logdet NF + O(N?)

e Penalty for model complexity (the log term) “selects” the best model
family.

e Not that simple in detall, but this description is roughly accurate.

e Beautiful consistency properties for nested, complete model

families. MacKay 1992, Balasubramanian 1996,
Nemenman 2005
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Why is fitting dynamics so hard?

dx

= A }é Few params.; Many
il zor 5, e params
n % T anything
(K ) = N7 O
AT O OF = Space of
§ models
—
A7 More hidden variables
L A vt 9 = AfoaryT+ Bapby + - + Boyké
7 = Aax} T {% B
LK = Ag(n @+ Bigéi + - + Brréx

e Hidden degrees of freedom and nonlinearities breaks nestedness -- no consistency.

* Choose any (reasonable) complete path through the model space

— Good choice — good fits with few data; Bad choice — not worse than exhaustive
search.
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Two types of model families

e Both nested and complete.

* Account for nonlinearities and hidden variables.

° BlOChem'Ca”yD';gg aQQ]abI?ﬁteractions Input
. . J - K :
recurrent j=1 k=1 - &

networks with §(y) = 1/(1 +¢e7¥)
Daniels and Beer,

arXiv 2010
Interactlons and input dependence

S'S)’Stems dx’b A a;k 51] bzk @
Savageau et al., 1976-... = A H Ly H I - Bi H T H I

Daniels and Nemenman, Nature Comm 2015; PLoS ONE 2015
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Algorithm

» Specify a particular hierarchy of model families.

e For given data:
— Choose a model family within the hierarchy.
— Fit for the best model within the family.

— Calculate the posterior likelihood of the family using modified Bayesian
criterion.

— Choose more complex family and terminate when the modified likelihood
starts to decrease.

e Algorithmic improvements to ensure that no complete re-fitting
is done when move to the next family, or increase data set size.

* Two exponential complexities: search of a model family, and
fitting a model within the family.
— This only solves the first.
— In practice works OK for both.
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Finding laws that we already know:
An automated Sir Isaac (Sirlsaac on GitHub)
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Daniels and Nemenman, Nature Comm 2015, PLoS ONE 2015
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Simple dynamics from a complex network:
Combinatorial multisite phosphorylation

 Effective models fit better than the true model for finite data

sets. Output: Total
@— on at
| phosphorylation at time t
@ — 5 Ll
| g #: * o6 o * o
Input: @ - " E .
Single on-rate -
2t
o

Time

e Rates depend on occupancy of the nearby sites, about 50 parameters
total.

e Caricature of some of the most combinatorially complex signaling models.

 Typically more parameters than data.
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Effective, reduced model of multi-site
phosphorylation

e Effective models (espe
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The yeast glycolytic oscillations:
Complex dynamics needing complex structure

» Observe only 3/7 of variables; add 10%

2.6

* Data: N samples of structure s A (A
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— Some random time later; 1
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Resu Its Daniels and Nemenman, Nature Comm 2015; PLoS ONE 2015

Conaie, e, @ ~100x fewer evaluations
for the same accuracy
compared to full search.

2.6

0.0 ——"°

* ~1000x fewer data
points than full search.
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Learning new science:
Ca++ oscillations in beta cells

o Beta cells: cells in the pancreatic
islets. Primary function: to store and
release insulin.

e |nsulin is released in pulses in
synchrony with pulsatile activity
of Ca++ spikes.

* Incorrect frequency / irregular
pulsing of Ca++ / insulin measured
In the portal vein, which connects
pancreas to liver, prevents the liver
from absorbing glucose from blood and is a precursor of type 2
diabetes.

e Protein Kinase A (PKA), cAMP, and Ca++ are a part of a
synchronized oscillatory circuit.
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Calcium-PKA oscillatory dynamics in beta cells

Mechanistic model:

Experiment 11 ODEs, 78+ parameters,
fits all cells with parameter adiustments
— Fura-2 (F350/F380) — [Ca®*], — PKA*
2.2 - — AKAR (red/green) 1.0
| 1.03 ’r M 'f M
0.8 %

S 18 - S
a8 & 06
= 1 1.01 ©
g =
£ 14 - s 04 K)
o pd
“ | 099 0.2 | \ | M

1.0 - | | | | 0 _ | |

0 600 1200 1,800 0 500 1000 1500

e Doesn't account for decreasing amplitude of oscillations.

» Different model for every cell. Ni et al, NCB, 2010
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Calcium-PKA oscillatory dynamics in beta cells:
automatic inference

Daniels, IN, Levchenko, in prep.

Cell 8

2-0k T T T T T ]

— Model
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Ca

Model
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PKA

Cell 9

Model
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! |

o~
o~

Model
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In-sample data

7 |

o~
o~

Time (min)

e 6 ODEs, <40 parameters.

e Fits every cell with <10 parameters individualized..
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Modeling C. elegans temperature nociception
escape response

among behavioral
ral states?
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Properties of the escape behavior
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Worm nociception: Data and fits
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Worm nociception: phase space
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Worm nociception: phase space

=~ e Settle the debate: Do stimuli bias
| transition probabilities among

-40

behavioral states, or do they
create new behavioral states? In
some sense, both.
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Summary

* Focus on refining phenomenological dynamics.

e Complete, nested model families of dynamics allow to use
Bayesian model selection to adapt model complexity to the
available data.

e Such phenomenological models make accurate predictions
In the undersampled regime, where true models overfit.

e Why do this?
— The duck test: If it looks like a duck, swims like a duck, and quacks
like a duck, then it probably is a duck (Nemenman, Physics Today 2015).

— Find new phenomenological laws of nature

— Repeat Hookean approach in biology: build effective models of similar systems
and look for patterns (e.g., chemotaxis in C. elegans and E. coll).
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