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Why?  
(paraphrasing Richard Hamming)

1. What are the important problems in your field? 

2. What important problems are you working on? 

3. Why are the answers to (1) and (2) different?
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3. Why are the answers to (1) and (2) different?

So: 

    What are the important problems in theoretical biophysics?
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Of exactitude in science
...In that Empire, the craft of  Cartography attained such Perfection that 
the Map of  a Single province covered the space of  an entire City, and the 
Map of  the Empire itself  an entire Province. In the course of  Time, these 
Extensive maps were found somehow wanting, and so the College of  
Cartographers evolved a Map of  the Empire that was of  the same Scale as 
the Empire and that coincided with it point for point. Less attentive to the 
Study of  Cartography, succeeding Generations came to judge a map of  
such Magnitude cumbersome, and, not without Irreverence, they 
abandoned it to the Rigours of  sun and Rain. In the western Deserts, 
tattered Fragments of  the Map are still to be found, Sheltering an 
occasional Beast or beggar; in the whole Nation, no other relic is left of  the 
Discipline of  Geography.  

From Travels of  Praiseworthy Men (1658) by J. A. Suarez Miranda (a fictional reference).  
 By Jorge Luis Borges and Adolfo Bioy Casares.  

English translation quoted from J. L. Borges, A Universal History of  Infamy,  
Penguin Books, London, 1975.
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At a recent meeting...
• A common opinion: “The final theory of biological systems will be a 

large multiscale computational model. We need more and more 
experimental data to specify details of these models.” 
 
 

• There’s something wrong with this statement. 
– The “final” theory? 
– Do we need the theory of  

“everything” in any biological  
(or physical) system? 

• The best material model of a cat is  
another, or preferably the same, cat.  
(Philosophy of Science, Wiener and Rosenblueth, 1945)
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Physics analogy

• What is the final, complete theory of the chair you are sitting in? 
– How does it fall from the second floor? 
– How does the cloth seat age and tear? 
– How much weight would the chair hold before it breaks? 
– How does it conduct electricity? 
– How much food can I cook when I burn it? 
– … 

• There’s no such thing as “the full theory of the chair”.  
– We build models tailored to answer specific questions.  
– The complete theory that answers every question would need to include 

quarks, superstrings… 
– Each modeling level needs its own effective degrees of freedom 

– “Don’t model bulldozers with quarks.” (Goldenfeld and Kadanoff, 1999) 

• Models must loose details. Otherwise, just use the same cat…
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So...

• Are there phenomenological, coarse-grained, and yet 
functionally accurate representations of (some) biological 
dynamics, or are we forever doomed to every detail 
mattering? 
– And, of course, these models would not answer every question, but specific 

questions on coarse scales. 
– E.g., not What is a position of this particular atom in the cell? But What is the whole 

system doing? 
– (Parenthetically): Without such coarse-grained descriptions, if everything is 

equally important, modern biology ceases to be a Western science.
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What do I mean by this?

• Western tradition: 
– There are laws (of nature, of god, whatever). A rock is a rock 

everywhere. It falls the same in Pisa and in Atlanta. 
– There’re causes and there are effects. 
– There is “useless information” (Oscar Wilde). 
– But this belief requires closing one’s eyes to minor discrepancies 

– Two balls dropped from the Leaning Tower didn’t actually land simultaneously. 
– “If we had the STM in the 1920s, there wouldn’t be the Debye theory of solids.” 

(H. Levine) 

• Non-western tradition, e.g., buddhism 
– Pratityasamutpada: dependent origination: “Pratitya samutpada is sometimes 

called the teaching of cause and effect, but that can be misleading, because we 
usually think of cause and effect as separate entities, with cause always 
preceding effect, and one cause leading to one effect. According to the teaching 
of Interdependent Co-Arising, cause and effect co-arise (samutpada) and 
everything is a result of multiple causes and conditions... “ — Thich Nhat Hanh
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Where would new laws come from?
• More is different! (PW Anderson) 

– The law of large numbers produces universalities if the right questions are asked 
(e.g., about large-scale quantities). 

• Important to use the right level of description. 
– Coarse-graining: Each modeling level needs its own effective degrees of freedom. 
– “Don’t model bulldozers with quarks.” (Goldenfeld and Kadanoff, 1999) 

• This is already common in your every-day life, not just physics 
– Which level of description is better for driving to a local school?
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A side note: This has worked before!  
Hodgkin-Huxley

• A good theory! (and only roughly correct)
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Cellular networks: complex beasts 
Large N is baked in

A culture’s icons are a window onto its 
soul. Few would disagree that, in the 
culture of molecular biology that 
dominated much of the life sciences for 
the last third of the 20th century, the 
dominant icon was the double helix. In 
the present, post-modern, ‘systems 
biology’ era, however, it is, arguably, the 
hairball. 

 A.D. Lander. BMC Biology 2010, 8:40
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Margolin et al., 2006



Ilya Nemenman, Stanford q-bio Seminar, 11/2016

And yet, for typical inputs,  
their dynamics are rather simple

• A handful of parameters (time scales, amplitudes) describe responses of 
networks to most experimentally accessible perturbations. 

• Relation of phenomenological to mechanistic parameters often unclear. 

• Do we need complex networks to describe simple dynamics?
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Cheong et al., 2011 
NF-kB dynamics

Golstein et al., 2004 
TCR dynamics
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The field (and we) has worked on this for a while

• Bottom-up methods, reducing a known microscopic, 
mechanistic network. 
– with Sinitsyn et al., 2006-2010; with Munsky, Bel et al.,2009-2013; with 

Merchan, 2016. 
– Schwab and Mehta 2015 
– Large number of publications in chemical physics (Petzold et al.) 
– Problem: need to know and start with the microscopic model. 

• Can we instead build phenomenological models top-
down, from data directly, and without reconstructing a 
mechanistic network as an intermediate step? 
– Purpose: predict responses to exogenous signals. 
– Purpose: drive all of us, theorists, out of work?
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First steps…

• Can we automatically fit these functions fi  from data? 
– How do we enumerate the set of all possible multivariate functions? 
– How do we search through this list? 
– How do we not overfit?
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• Assume that dynamics of cellular networks is given by local 
ordinary differential equations. 
• Do not fit curves; fit dynamics. 

• Neglect stochasticity, and spatial structure for now
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Prior (and posterior) art
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• The full search approach for an exact model 
• Small systems dynamics — search for all possible models using S-systems formalism (Voit et al, 

Theor Biol Med Model 2006). 
• Searching for a control model from a (small) set of a priori allowed models (Lillacci and Khammash, 

PLoS CB 2010). 
• Searching for a stochastic model from a (small) set of a priori allowed models (Munsky, et al., MSB 

2009, Science 2013). 
• Eureqa: exhaustive genetic algorithm search through all possible elementary function combinations, 

with selection of new experiments to optimize discriminability among models (Lipson et al., Science 
2009, Phys Biol 2011). 

• SINDy: Compressed sensing approaches (Brunton et al., 2016). 
• AutomatedStatistician.com: compositional tree structures for stochastic data. 
• More at the 2017 MM meeting sessions on “Robot-scientist”. 

• Phenomenological search (Crutchfield and McNamara, Compl Syst 1987). 

• Problems (limiting the analysis to only a few variables) 
• data/computing demands explode with the number of variables; 
• cannot handle unobserved variables. 
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Test Model:  
Yeast Glycolytic Oscillator

• 7 species, 28 parameters 

• Complex rational dynamical 
laws

16

Ruoff et al., 2003
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Eureqa performance:  
Yeast Glycolytic Oscillator

• 7 species, 28 variables 

• Complex rational dynamical 
laws

17

Schmidt et al., Phys Biol 2011

Amazing accuracy!
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But at the same time: 
Need derivatives, and…

• Astronomical computation times -- exhaustive search. 
– Overfitting -- need astronomical sample sizes. 

• Two exponential costs: selecting the best model family, fitting the best 
family with the model.
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Schmidt et al., Phys Biol 2011
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SINDy (Brunton et al., 2016) 
(But needs derivatives and correct basis)
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Can we avoid the exhaustive search and the need 
for the correct basis?

• Do not need an exhaustive search or exact fits when fitting dimensional 
curves with progressively increasing complexity 

– Use nested, complete model families, e.g., Taylor series. 
– Use Bayesian model selection to limit the complexity of the search space (the 

value of maximum K).

20

yK(x) =

KX

k=1

Akx
k
+ noise

Schwartz, Ann Stat 1978; MacKay, Neural Comp, 1992 
 Balasubramanian, Neural Comp1996; Nemenman, Neural Comp, 2005
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Bayesian Model selection
• For large sample size N, averages done in the Laplace (saddle 

point) limit. 

• Penalty for model complexity (the log term) “selects” the best model 
family. 

• Not that simple in detail, but this description is roughly accurate. 

• Beautiful consistency properties for nested, complete model 
families. 
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MacKay 1992, Balasubramanian 1996, 
Nemenman 2005
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Why is fitting dynamics so hard?

• Hidden degrees of freedom and nonlinearities breaks nestedness -- no consistency. 

• Choose any (reasonable) complete path through the model space 
– Good choice — good fits with few data; Bad choice — not worse than exhaustive 

search.
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Two types of model families

• Both nested and complete. 

• Account for nonlinearities and hidden variables. 

• Biochemically reasonable.
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FIG. 2:

One natural choice is the s-system power-law formalism. [? ] The general form of the s-system representation
consists of J dynamical variables and K inputs, with each dynamical variable governed by an ordinary di↵erential
equation of the form [? ]

dxi

dt
= �i

0

@
J+KY

j=1

x
gij
j � �i

J+KY

j=1

x
hij

j

1

A . (4)

In a process called “recasting,” any set of di↵erential equations written in terms of elementary functions can be
rewritten in the power-law form by defining new dynamical variables in the correct way [? ]. Thus a power-law
network of su�cient size can describe any such deterministic dynamical system to arbitrary accuracy (XXX caveats?).

An advantage of the s-system representation is the existence of a natural scheme for creating a one-dimensional
hierarchy: simply adding dynamical variables xi. The most general power-law network is fully connected, such that
every “node” xi can a↵ect every other xj through gij and hij . A simple hierarchy would start with a fully-connected
network consisting of the necessary number of input and output nodes, and simply add fully-connected “hidden”
nodes [extra xi in Eq. (??)] to add complexity. Since this adds many [1 + 2(J + K + 1)] parameters at every step
(perhaps unnecessarily), we prefer to take a more fine-grained approach, adding parameters as slowly as possible (see
FIG. ?? and Methods). (XXX We expect the specific form of this hierarchy to be not all that important...)

Finally, we may use the fact that the interactions among biological components often takes the form of a sigmoidal
function to create another similar model class, defined as

dxi

dt
= �xi/⌧i +

JX

j=1

Wij ⇠(xj + ✓j) +
KX

k=1

VikIk, (5)

where the sigmoidal function ⇠(y) = 1/(1 + e�y). This class of models has also been shown to approximate any
smooth dynamics arbitrarily well with a su�cient number of dynamical variables [? ]. We use the same method as
the s-system models to create a one-dimensional nested hierarchy.
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Ilya Nemenman, Stanford q-bio Seminar, 11/2016

Algorithm

• Specify a particular hierarchy of model families. 

• For given data: 
– Choose a model family within the hierarchy. 
– Fit for the best model within the family. 
– Calculate the posterior likelihood of the family using modified Bayesian 

criterion. 
– Choose more complex family and terminate when the modified likelihood 

starts to decrease. 

• Algorithmic improvements to ensure that no complete re-fitting 
is done when move to the next family, or increase data set size. 

• Two exponential complexities: search of a model family, and 
fitting a model within the family.  
– This only solves the first. 
– In practice works OK for both. 
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Finding laws that we already know: 
An automated Sir Isaac (SirIsaac on GitHub)  

• Finds the hidden variable needed to account for the 
Newton’s laws. 

• Accounts for different classes of trajectories.
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Simple dynamics from a complex network: 
Combinatorial multisite phosphorylation

• Effective models fit better than the true model for finite data 
sets.
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A foreboding example 

•  Suppose we are 

trying to fit 

experimental 

data with a 

model… 

•  Phosphoryla$on 

on 5 sites with 

independent 

MM rates 

Input:
Single on-rate

Output: Total 
phosphorylation at time t

Time

To
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l 
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os
ph

or
yl
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n

• Rates depend on occupancy of the nearby sites, about 50 parameters 
total. 

• Caricature of some of the most combinatorially complex signaling models. 

• Typically more parameters than data. 
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Effective, reduced model of multi-site 
phosphorylation

• Effective models (especially sigmoidal) fit better than the 
true, full model for small data sets! 

• Can even extrapolate to new signal classes, and not just 
interpolate. 

• (Of course eventually the full, true model would win).
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The yeast glycolytic oscillations: 
Complex dynamics needing complex structure

• Observe only 3/7 of variables; add 10% noise. 

• Data: N samples of structure 
– Initial condition of the 3 species; 
– Some random time later; 
– The value of these 3 species at that time.
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Results

29

Daniels and Nemenman, Nature Comm 2015; PLoS ONE 2015

• ~100x fewer evaluations 
for the same accuracy 
compared to full search. 

• ~1000x fewer data 
points than full search.  

• Better accuracy than 
curve fitting. 

• Linear scaling with the 
amount of data and with 
the number of variables.
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Learning new science: 
Ca++ oscillations in beta cells

• Beta cells: cells in the pancreatic  
islets. Primary function: to store and  
release insulin. 

• Insulin is released in pulses in  
synchrony with pulsatile activity  
of Ca++ spikes. 

• Incorrect frequency / irregular  
pulsing of Ca++ / insulin measured  
in the portal vein, which connects  
pancreas to liver, prevents the liver  
from absorbing glucose from blood and is a precursor of type 2 
diabetes. 

• Protein Kinase A (PKA), cAMP, and Ca++ are a part of a 
synchronized oscillatory circuit. 

30



Ilya Nemenman, Stanford q-bio Seminar, 11/2016

Calcium-PKA oscillatory dynamics in beta cells

31

Experiment
Mechanistic model: 

11 ODEs, 78+ parameters, 
fits all cells with parameter adjustments

Ni et al, NCB, 2010

• Doesn't account for decreasing amplitude of oscillations. 

• Different model for every cell.



Ilya Nemenman, Stanford q-bio Seminar, 11/2016

Calcium-PKA oscillatory dynamics in beta cells: 
automatic inference

32

Daniels, IN, Levchenko, in prep.

• 6 ODEs, <40 parameters. 

• Fits every cell with <10 parameters individualized..



Ilya Nemenman, Stanford q-bio Seminar, 11/2016

Modeling C. elegans temperature nociception 
escape response

• Do stimuli bias transition probabilities among behavioral 
states, or do they create new behavioral states?
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Properties of the escape behavior

34

800 mA, 0.5 sec laser pulse (1440nm)

REVERSE
FORWARD
PAUSE

60mA

150mA

10mA
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Worm nociception: Data and fits

35

Leung, Mohhamadi, Ryu, IN, 2016
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Worm nociception: phase space

• Pause, forward, and backwards states identified. 

• Stability / basins of attraction of the states changed by the 
heat stimulus; forward motion attractor disappears at high 
stimulus.
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Worm nociception: phase space

• Settle the debate: Do stimuli bias 
transition probabilities among 
behavioral states, or do they 
create new behavioral states? In 
some sense, both.
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Summary

• Focus on refining phenomenological dynamics. 

• Complete, nested model families of dynamics allow to use 
Bayesian model selection to adapt model complexity to the 
available data. 

• Such phenomenological models make accurate predictions 
in the undersampled regime, where true models overfit. 

• Why do this? 
– The duck test: If it looks like a duck, swims like a duck, and quacks 

like a duck, then it probably is a duck (Nemenman, Physics Today 2015). 
– Find new phenomenological laws of nature  

– Repeat Hookean approach in biology: build effective models of similar systems 
and look for patterns (e.g., chemotaxis in C. elegans and E. coli).
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