How to win friends and influence people with PCA

Goals:

Qualitative introduction to PCA
Spike sorting

Behavioral analysis

Resource:
http://www.snl.salk.edu/~shlens/pca.pdf

Sam Sober
samuel.j.sober@emory.edu




We want a quantitative criterion for deciding whether a recording
1s single- or multiunit.

Single unit:




We want a quantitative criterion for deciding whether a recording
1s single- or multiunit.

An ad-hoc method:

Starts with Principal

Components Analysis
(PCA)

Single unit:




A math-free intro to PCA:

(Based on http://www.keck.ucsf.edu/~sam/PCA_tutorial_Shlens.pdf)

Measurements aren’t always in the “right” coordinates:

-Axes don’t correspond to anything meaningful
-System 1s 1-D, data are 2-D.
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We want a new coordinate system:
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We want a new coordinate system:

For example:
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PCA: Change coordinate system so that axes reflect important™* directions of variability

>> Var

noise

*assumption: important directions are ones with greatest variability: Var

signal
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PCA: Change coordinate system so that axes reflect important™* directions of variability

>> Var

noise

*assumption: important directions are ones with greatest variability: Var

signal

1. Place origin at mean of all data
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PCA: Change coordinate system so that axes reflect important™* directions of variability

1. Place origin at mean of all data

2. Find direction with biggest variance — 1% principal component
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PCA: Change coordinate system so that axes reflect important™* directions of variability

1. Place origin at mean of all data
2. Find direction with biggest variance — 1% principal component

3. Find orthogonal direction with next biggest variance — 2" principal component
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PCA: Change coordinate system so that axes reflect important™* directions of variability

1. Place origin at mean of all data
Find direction with biggest variance — 1% principal component

Find orthogonal direction with next biggest variance — 2™ principal component

el

Keep going through » dimensions to get n principal components
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1. Place origin at mean of all data
2. Find direction with biggest variance — 1% principal component

3. Find orthogonal direction with next biggest variance — 2" principal component
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1. Place origin at mean of all data
2. Find direction with biggest variance — 1% principal component

3. Find orthogonal direction with next biggest variance — 2" principal component
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1. Place origin at mean of all data
2. Find direction with biggest variance — 1% principal component

3. Find orthogonal direction with next biggest variance — 2" principal component
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1.
2.
3.
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Place origin at mean of all data

Data in Principal Component space
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Find direction with biggest variance — 1% principal component

Find orthogonal direction with next biggest variance — 2™ principal component

This a 2-D view of 3-D, data,
looking at the 2 most
“important” (variable) directions.



1. Place origin at mean of all data

2. Find direction with biggest variance — 1% principal component

3. Find orthogonal direction with next biggest variance — 2" principal component

20 -
101 151

- 104

O 8 5 :‘. L

O o=

10k

- 5 =
20|

' ' ' D1 D40
D1 D2 D3
15 PC2 Data in Principal Component space
10 g . .
S A i This a 2-D view of 3-D, data,

29 @ i .
- 5 of, . looking at the 2 most

0 = . . . . .

S “important” (variable) directions.
5
10
10 0 10

Component1




1. Place origin at mean of all data
2. Find direction with biggest variance — 1% principal component

3. Find orthogonal direction with next biggest variance — 2" principal component
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1. Place origin at mean of all data
2. Find direction with biggest variance — 1% principal component

3. Find orthogonal direction with next biggest variance — 2" principal component
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How can we quantify 1solation?
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How can we quantify 1solation?

1. Cluster with kmeans.m
- Set cluster number manually.
- Clustering based on distance from center
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How can we quantify 1solation?

1. Cluster with kmeans.m
- Set cluster number manually.
- Clustering based on distance from center
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How can we quantify 1solation?

1. Cluster with kmeans.m
- Set cluster number manually.
- Clustering based on distance from center
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How can we quantify 1solation?

1. Cluster with kmeans.m
- Set cluster number manually.
- Clustering based on distance from center
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How can we quantify isolation?

1. Cluster with kmeans.m
- Set cluster number manually.
- Clustering based on distance from center
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U

How can we quantify 1solation?

. Cluster with kmeans.m
Set cluster number manually.
Clustering based on distance from center

Describe clusters as 2D gaussians
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How can we quantify isolation?

. Cluster with kmeans.m
Set cluster number manually.
Clustering based on distance from center

Describe clusters as 2D gaussians

Simulate distributions to estimate error rate

Of 2000 simulated points: D1 D40
2 errors (0.1%) between cluster 1 & others

2 errors (0.1%) between cluster 2 & others
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Summary of Sam’s Ad-hoc Unit Classifier (S.A.U.C.Y.)

1. Set threshold to get waveforms

2. Run PCA
3. Use kmeans to cluster based on PC1+2
4. Find mean+var of clusters
5. Simulate 2D gaussians to estimate error rate.
1 2 3, 4 5

Component 2

. :."”:;".:' . ol
...-' L ? .u

Component 1



# waveforms 6625, only plotting 50 of each cluste
400

VTA data (Ritu)
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VTA data (Ritu)

# waveforms 6625, only plotting 50 of each cluste
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Applying PCA to behavioral analysis: example from birdsong

10370 - The Journal of Neurosdence, October 8, 2008 - 28(41):10370-10379

Behavioral/Systems/Cognitive

Central Contributions to Acoustic Variation in Birdsong

Samuel J. Sober,* Melville J. Wohlgemuth,* and Michael S. Brainard
Department of Physiology, W. M. Keck Center for Integrative Neuroscience, San Francisco, California 94143-0444



The question: how 1s acoustic variation encoded by RA?
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Record a bunch of neurons...
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Look for correlations between activity and acoustic features...
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...and find a bunch of them.

—
Q
S

(b
30 5 | LN

1]

S

—
(2)

S

20 : :

10

% cases with
significant correlations
Cumulative fraction

Proportion of total cases

Pitch Amplitude Entropy

Why choose pitch, amplitude, and entropy?
- Refined over learning

- Functional anatomy of syrinx/respiratory system



The reviewer weighs in:

1. The three acoustic properties chosen for the analyses are insufficient for capturing the
complexity of syllables. It is, thus, unclear whether the magnitude of the effect of RA response

variation on syllable variation is quantified accurately.

To capture the complexity of songs, it is possible to break down the waveforms of a motif's
syllables into a compact linear combination of (linearly) independent - complex - components
(consider ICA, PCA, or wavelet analysis). The trial-to-trial variation of the syllables (or motifs)
can be represented as variations along the specified basis set. These variations can be
correlated with RA response variation.

The benefit of this method is twofold; (A) improvement of the accuracy and simplification of the
paper's conclusions, (B) proper testing of the complex patterns for the contribution of neural
response variation to the song variation in different syllables.



Our approach:

Use PCA as a (relatively) assumption-free tool to identify important dimensions of acoustic
variation.

Describe song variation along these dimensions (princpal components) rather than as measured
values of pitch, amplitude, or entropy.

Correlate RA activity with PCA-based measures of behavior.

Analyzing acoustic variation with PCA:

PCs are:

- Centered on mean

- Describe deviations from mean

- PC1 describes deviations along
most-variable dimensions



Our approach:

Use PCA as a (relatively) assumption-free tool to identify important dimensions of acoustic
variation.

Describe song variation along these dimensions (princpal components) rather than as measured
values of pitch, amplitude, or entropy.

Correlate RA activity with PCA-based measures of behavior.

Analyzing acoustic variation with PCA:
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- Centered on mean

- Describe deviations from mean

- PC1 describes deviations along
most-variable dimensions



PCA results:
“A few important dimensions of variation in each syllable”
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What do these components look like?



Log power
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Log power
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Synthetic amplitude component” = Best-fit scalar offset
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Frequency (kHz)

Frequency (kHz)

PCA results:
“A few important dimensions of variation in each syllable”
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Define “important” dimensions as PC,,,: each syllable has 1-3
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Our response to the reviewer:

Fraction of PC,,“congruent”

Pitch

Amplitude

(cosine similarity>0.8) (a)

None

Most important
dimensions (PC,y,)
are congruent with
pitch, amplitude, or
entropy.
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Our response to the reviewer:

Fraction of PC,,“congruent”
(cosine similarity>0.8)
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Amplitude

None
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Cumulative fraction

0.2
% variance explained by PC
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Most important
dimensions (PC,y,)
are congruent with
pitch, amplitude, or
entropy.

Dimensions that are
congruent with pitch,
amplitude, or entropy
are more important
than other
dimensions.
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So:
PCA is a great tool for dimensionality reduction
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Warning: PCA rests on some key assumptions

1. Assumes high SNR (larger variance = important dimension)
2. PCs are orthogonal

A .:.' ..:. LY B
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o/ '39 : Other techniques:
0o ICA, non-negative matrix
K ~_ [factorization, wavelet

analysis

FIG. 6 Example of when PCA fails (red lines). (a) Tracking a per-
son on a ferris wheel (black dots). All dynamics can be described
by the phase of the wheel 6, a non-linear combination of the naive
basis. (b) In this example data set, non-Gaussian distributed data and
non-orthogonal axes causes PCA to fail. The axes with the largest
variance do not correspond to the appropriate answer.



