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Reconstructing
interaction models



Reconstruction algorithms:
The curse of “percent correct”

     Stat    Co     GM     Biochem.  
Small data requirements ✖✔ ✔ ✖✔ ✖

Robustness to fluct. ✔ ✔ ✖✔ ✖

Computational complexity ✖ ✔ ✖ ✖✔

Conditional interactions ✔ ✖✔ ✔ ✖✔

Reparam inv., non-param. ✖✔ ✖✔ ✖✔ ✔

Irreducibility ✔ ✖ ✔    ✖



Influenciomics (steady state)
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Two separate
influenciomics problems
 What is a (statistical, biological) interaction?

 What does an arrow mean?
 Higher order dependencies
 Statistical vs. biological?

 Realistic algorithms to uncover them
 Controlled approximations
 Biologically sound approximations
 Performance guarantees
 Complexity, Robustness, Data requirements…



Defining influence:
Variances and Correlations

!(x, x2 ) = 0

! f (x),g(y)( ) " !(x, y)

One-to-one transformations of microarray expression
data change even signs of the correlations.!

linear

not invariant

!
2
(x) normal



Entropy (unique measure of
randomness, in bits)

S[X] = ! px log px
x=1

K

" = ! log px

0 # S[X] # logK

N(x0 ,!
2 )!!"!!S[X] =
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2
log(2#e! 2 )

(number of “bins”)



Defining influence:
Mutual Information

I[X;Y ] = log
pxy

px py

!!!!!!!!!!!!= S[X]+ S[Y ]! S[X,Y ]

0 " I[X;Y ] "min(S[X],S[Y ])

N[(x0 , y0 ),!]!!"!!I[X;Y ] = #
1

2
log(1# $

xy

2 )



Why MI as influence
measure?
 Captures all dependencies (zero iff joint

probabilities factorize)
 Reparameterization invariant
 Unique metric-independent measure of

“how related”

(Nemenman and Tishby, in prep.)

Influence (I>0) is interaction.
For 2 variables:



Kullback-Leibler divergence

DKL[P ||Q] = px log
px

qxx

!

0 " DKL

How easy it is to mistake P for Q?
(KS test, etc.)



MI as MaxEnt
Find least constrained (highest entropy, no
interaction) approximation q to       , s.t.p
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I[X;Y ] = D
KL
[P ||Q]> 0! interaction



By analogy:
Example of irreducibility

A

B C

I > 0I > 0

I > 0

PABC =
PABPAC

PA
=
1

Z
fAB fBC

MaxEnt approximation without BC:

Q
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=
1

Z
exp(!"

AB
!"

AC
) !!!!D

KL
[P

ABC
||Q

ABC
] = 0

No irreducible interaction!
For AB:  D
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Higher order influences

(Nemenman and Tishby, in prep.)

I
XYZ

= log
p
xyz

p
x
p
y
p
z

(Axiomatically) Amount of all influeneces (in
bits) among variables.

But these are not irreducible.



Higher order irreducible
dependencies

Node

Irreducible
interaction

How much dependency is
there in a set of nodes that
is not present in any other

subset?
(Schneidman et al. 2003, Nemenman 2004)
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MaxEnt approximations
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MaxEnt approximations
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MaxEnt approximations

1

2

3

4

5

6

P
12456



MaxEnt approximations
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MaxEnt approximations
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MaxEnt approximations

!I356 = DKL
[ !Q ||Q]

!I
356

> 0" Irreducible interaction present



MaxEnt factorization of PDFs

 

P(x1,…xM ) =

!!!= exp ! " i (xi )
i

# ! " ij (xi , x j )
ij

# ! " ijk (xi , x j , xk )
ijk

# !!
$

%
&

'

(
)

• N-particle potentials
• Spin models -- inverse problem (for discrete variables)
• Random lattices
• Message passing (and if MP works -- ask me later)
• Markov Networks



Two separate
influenciomics problems
 What is an interaction?

 What does an arrow mean?
 Higher order dependencies

 Realistic algorithms to uncover them
 Controlled approximations (e.g., know the order)
 Biologically sound assumptions (new knowledge from their

verification)
 Performance guarantees (focus on low false positives for

irredicibility)
 Complexity, Robustness, Data requirements…



Interaction network
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(Basso et al. 2005, Margolin et al. 2005)



Disregard high orders
(undersampling)
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Is second order all we ever need? Cf. Schneidman et al. 2005



Locally tree-like approximation
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Locally tree-like approximation
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Locally tree-like:
signals decorrelate fast
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I
34
! !I

34

Conjecture: Message passing works = locally tree-like



ARACNE: remove the
weakest link in every triplet

More care needed for loops of size 3

I (A,C) !min I (A,B), I (B,C)[ ]

Techniques for MI estimation needed!



No false positives
Where 2-way -- it’s 2-way

Theorem 1. If MIs can be estimated with no errors, then ARACNE
reconstructs the underlying interaction network exactly, provided this
network is a tree and has only pairwise interactions.

Theorem 3. Locally tree-like -- no false positives (no false negatives 
under stronger conditions).

Theorem 2. The Chow-Liu maximum mutual information tree is a 
subnetwork of the network reconstructed by ARACNE.



Estimating I: smoothing
(e.g., Gaussian Kernels)

I



Estimating I: stability of ranks

Smoothing strength

Also:
 NSB
 copula



Aside: Bethe approximation,
Message passing (MP)

P({xi}) =
P(xi , x j )!
P(xi )

q"1

!
Exact for trees

MP (belief propagation, transf. matrix) works for trees and
sometimes for loopy networks. But when exactly?

P(x
i
) = ?



Conjecture
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34
! "I

34
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= # !1

Locally tree like assumption is what makes MP work!



Biological soundness
 Higher order interactions project to

lower orders
 Fast decorrelation, sparseness:

I(gene,copy)>> I(gene,second best)
 Small loops often transient



Why is IT not common in
statistics?
Maximum likelihood estimation: 

S
ML
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n
i

N
log

n
i
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!

(N - sample size)(K - # of bins)
i =   1     2     3     4     5     6 



Why is IT not common in
statistics?

S
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n
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log
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bias!"
2
S

N
!!!!!(variance)

1/2
!

1

N

Fluctuations underestimate entropies and
overestimate mutual informations.

(Need smoothing.)

log K



Correct smoothing possible

S ! logN

(often not enough)

For estimation of entropy at                    see:
Grassberger 1989, 2003, Antos and Kontoyiannins 2002, Wyner and
Foster 2003, Batu et al. 2002, Paninski 2003, Panzeri and Treves
1996, Strong et al. 1998

K / N ! 1

Incorrect smoothing = over- or underestimation.

Developed for problems ranging from
mathematical finance to computational biology.

i =   1     2     3     4     5     6 



What if S>logN ?
But there is hope (Ma, 1981):

For uniform K-bin distribution the first coincidence occurs
for

 

N
c
! K = 2S

S !!2!logN
c

Can make estimates for square-root-fewer samples!
Can this be extended to nonuniform cases?

• Assumptions needed (won’t work always)
• Estimate entropies without estimating distributions.

Time of first coincidence



What is unknown?
Binomial distribution:

S = ! p log p !

!!!!(1! p)log(1! p)

p     1-p uniform (no assumptions)

p S



What is unknown?

Selection of wrong “unknown”
biases the estimation.

(Even worse for large K.)

! =
S
est
" S

true

#S
est

t



One possible uniformization
strategy for S (NSB)

 Posterior variance scales as
 Little bias, except in some known cases.
 Counts coincidences and works in Ma regime

(if works).
 Is guaranteed correct for large N.
 Allows infinite # of bins.

1 / N

(Nemenman et al. 2002, Nemenman 2003)



Synthetic networks
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Synthetic networks (N=1000):
Biological vs. Statistical Interactions

Graceful decay for smaller N
Half of all loops kept.



B-cell dataset

 ~400 arrays
 No dynamics
 ~250 naturally occurring, ~150 perturbed
 ~25 phenotypes (normal, tumors, experimental

perturbations)
 Expression range due to differential expression in

different phenotypes



Complete B-cell network

Cell CycleCell Cycle

Ribosomal ComplexRibosomal Complex

~129000 interactions



c-MYC subnetwork
• Protooncogene,
• 12% background

binding,
• one of top 5% hubs
• significant MI with

2000 genes

Total interactions: 56
Pre-known: 22
New Ch-IP validated: 11/12Ch-IP

other info



Also validated in…
 Other hubs
 Various yeast data sets
 RBC metabolic network (synthetic)

 

~80% precision
20-80% recall (depending on N)



3rd order interactions
(modulated, conditional, transistor)
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Nontranscriptional modulators from expression data!



Numerical case study:
Non-transcriptional modulation



Large hubs,
global (discrete) modulators
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Large hubs,
global (discrete) modulators

 Focus on important hubs (c-MYC)
 Pre-filter candidate modulators by

dynamic range and other conditions.
 Find modulators whose expression

inflicts significant changes on
topology of the ARACNE hubs’
interactions

 No guarantee of irreducibility
 Validate in GO w.r.t. to transcription

factors and kinases among
modulators

N
+
! N

!
> 0



c-MYC modulators
 1117 candidate modulators (825 with known

molecular function in GO)
 82 (69) candidate modulators identified
 Kinases: 10/69 (backgr. 42/825), p=1e-3
 TFs: 15/69 (backgr. 56/825), p=1e-6 (validated -- see

below).
 Total: 25/69 (backgr. 98/825),  p=3e-8
 Large scale modulators: ubiquitin conjugating

enzyme, mRNA stability, DNA/chromatin
modification, etc.



Large hubs, local modulator
(MI change, transistor)
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Large hubs,
local modulators

 Focus on important hubs (c-MYC)
 Pre-filter candidate modulators by

dynamic range and other conditions.
 Find modulators whose expression

inflicts significant conditional MI
changes for an ARACNE target in at
least one conditional topology

 No guarantee of irreducibility
 Validate in GO w.r.t. to transcription

factors and kinases among
modulators
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ARACNE helps
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c-MYC modulators
 1117 candidate modulators
 100 modulators identified, modulating 205 interactions with 130 targets
 Modulators enriched in: kinases, acyltransferases, TFs (all at p<5%);

correspond to known MYC modulation pathways.
 TFs: 15, p=1e-6.
 4 out of 5 TF modulators (e.g., E2F5) with TRANSFAC signatures have

binding sites in modulated targets promoter regions.
 Modulators with largest number of effected targets are not-target-

specific (proteolisis, upstream signaling components, receptor signaling
molecules).

 Modulators with small number of effected targets are mostly co-TFs,
are interaction-specific.

 About one third of modulators are literature-validated.



Example:
TF co-factor modulator



Reducibility:
modulating pathways

LYN FYNHCK

BTK BLNK

AKT

GSK3

SY
K

Igα
Igβ

CD22 BCR

PLCγ

PKC

DAG IP3

Ca2+

ERK MAPKJNK
IKK

IκB
NFAT

NF-κB

MYC

predicted modulators

not in the candidate list

TF’s not predicted

Targets

Protein complex



Many correlated modulators

Over 70% cluster overlap

|expression| change in interactions



Currently
 Biochemical validation
 Search for irreducible modulators
 Dealing with small loops



Summary
 IT quantities good measures of dependency
 Defined irreducible interactions
 Proposed a set of simplifying assumptions and a

corresponding algorithm for second order interactions
 Bootstrapped the algorithm to identify certain third

order dependencies
 Validated algorithms in-silico
 Analyzed interaction network of c-MYC, validated in-

vivo and through literature


