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Reconstructing
interaction models
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Reconstruction algorithms:

i The curse of “percent correct”

Stat Co GM Biochem.

Small data requirements %v X X
Robustness to fluct. 4 4 X X
Computational complexity % 4 x Xv

Conditional interactions v X v {74
Reparam inv., non-param. %v %v %v

Irreducibility v/ x v/ x

T

Influenciomics




Influenciomics (steady state)
‘I strongl>‘

I(A,C)<min|I(A,B),I(B,C)| ‘

What is | (influence)?
Influence vs. interaction?

O W >




Two separate

i influenciomics problems

= What is a (statistical, biological) interaction?
« What does an arrow mean?
« Higher order dependencies
= Statistical vs. biological?

= Realistic algorithms to uncover them
= Controlled approximations

= Biologically sound approximations
= Performance guarantees

= Complexity, Robustness, Data requirements...




Defining influence:

i Variances and Correlations

o’ (x) normal
p(x,x°)=0 linear

p(f(x), g(y)) # P(x,y) notinvariant

One-to-one transformations of microarray expression
e data change even signs of the correlations.



Entropy (unique measure of

i randomness, in bits)

K
S[X1=-) p.logp, =—(logp,)
x=1

0<S[X]< 10g[{ (number of “bins”)

1
N(x,,0°) = S[X]=—log(2mwec?)
’ 2



Defining influence:

i Mutual Information

I[X;Y]={(log it
p.D,

=S5 X+ S[Y|-S[X,Y]

0 < I[X:Y]< min(S[X].S[Y])

1 )
NI(xy, ), 2] = I[X;Y]=—510g(l—pxy)



Why MI as influence

i measure”?

= Captures all dependencies (zero iff joint
probabilities factorize)

= Reparameterization invariant

= Unique metric-independent measure of
“how related”

For 2 variables:

Influence (/>0) is interaction.

(Nemenman and Tishby, in prep.)



i Kullback-Leibler divergence

D, [PI101=Y p. log%

0<D,,

How easy it is to mistake P for Q?
(KS test, etc.)



i MI as MaxEnt

Find least constrained (highest entropy, no
interaction) approximation g to p,,, s.t.

px:qx
Py =4,

s

q, = EGXP[—% -¢,1=p.p,

I XY ]= DKL [PIIO]> () = interaction



By analogy:

i Example of irreducibility

MaxEnt approximation without BC:

1

QABC = Eexp(_qDAB B ¢AC) = DKL[PABC I QABC] =0

No irreducible interaction!

1
FOI" AB QABC :Eexp(_gDAC _¢Bc) DKL[PABC ”QABC]>O
Irreducible interaction.



i Higher order influences

D
p.D,P.

Iy, = log

(Axiomatically) Amount of all influeneces (in
bits) among variables.
But these are not irreducible.

(Nemenman and Tishby, in prep.)



Higher order irreducible

& dependencies
’ Node
’ —0—
Irreducible

interaction
How

there |
IS NO

uch dependeng
a set of nodes
sent In an
subset?

(Schneidman et al. 2003, Nemenman 2004)



i MaxEnt approximations
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i MaxEnt approximations
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i MaxEnt approximations
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i MaxEnt approximations
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i MaxEnt approximations
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i MaxEnt approximations

I§56 =Dy [Q" I Q]

I, >0=  lrreducible interaction present



i MaxEnt factorization of PDFs

P(x,,...x,,)=

—CXp —Zcﬂi(x,-)—Z(olj(xi,xj)—Eq)ljk(xi,xj,xk)—---
i ij

ijk

* N-particle potentials

« Spin models -- inverse problem (for discrete variables)
« Random lattices

« Message passing (and if MP works -- ask me later)

* Markov Networks



Two separate
influenciomics problems

= What is an interaction?
= What does an arrow mean?
= Higher order dependencies

= Realistic algorithms to uncover them
= Controlled approximations (e.g., know the order)

= Biologically sound assumptions (new knowledge from their
verification)

= Performance guarantees (focus on low false positives for
irredicibility)
= Complexity, Robustness, Data requirements...



i Interaction network
O—
O

o—

(Basso et al. 2005, Margolin et al. 2005)




Disregard high orders

i (undersampling)

O—
o

@

o—

Is second order all we ever need? Cf. Schneidman et al. 2005



ﬁ Locally tree-like approximation
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i Locally tree-like approximation
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Locally tree-like:

i signals decorrelate fast
O—

o [ >1,

o—

Conjecture: Message passing works = locally tree-like



ARACNE: remove the

ﬁ weakest link in every ftriplet

1(A,C)<min|I(A,B),I(B,C)|

More care needed for loops of size 3

Techniques for MI estimation needed!



No false positives
Where 2-way -- it's 2-way

Theorem 1. If MIs can be estimated with no errors, then ARACNE
reconstructs the underlying interaction network exactly, provided this
network 1s a tree and has only pairwise interactions.

Theorem 2. The Chow-Liu maximum mutual information tree 1s a
subnetwork of the network reconstructed by ARACNE.

Theorem 3. Locally tree-like -- no false positives (no false negatives
under stronger conditions).




Estimating /. smoothing

i (e.g., Gaussian Kernels)
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Fractional Error
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Also:
= NSB
= copula



Aside: Bethe approximation,

i Message passing (MP)

P(x;,x.)
P{x))= H J Exact for trees

MP (belief propagation, transf. matrix) works for trees and
sometimes for loopy networks. But when exactly?



i Conjecture

Locally tree like assumption is what makes MP work!




i Biological soundness

= Higher order interactions project to
lower orders

= Fast decorrelation, sparseness:
I(gene,copy)>> [(gene,second best)

= Small loops often transient




Why is IT not common In
statistics?

Maximum likelihood estimation:

n.
p., i=1...K II I' |:> p =—’
(K - # of bins)

i 1 2 3 4 5 6 (N - sample size)

Sur =—Zﬁ’logﬁ’

' <SML>S—E<%>10g@=S

N



Why is IT not common In

i statistics?

log K \
. 2° . |
bias o< — I > (variance) * o< ——

JN

Fluctuations underestimate entropies and
overestimate mutual informations.

(Need smoothing.)



Correct smoothing possible

S<logN

(often not enough)
i= 1 2 3 4 &5 6

Incorrect smoothing = over- or underestimation.

Developed for problems ranging from
mathematical finance to computational biology.

For estimation of entropy at K/ N <1 see:
Grassberger 1989, 2003, Antos and Kontoyiannins 2002, Wyner and

Foster 2003, Batu et al. 2002, Paninski 2003, Panzeri and Treves
1996, Strong et al. 1998



i What if S>logN ?

But there is hope (Ma, 1981):

For uniform K-bin distribution the first coincidence occurs

for
N ~vK =+2°

Time of first coincidence
S~21logN, <

Can make estimates for square-root-fewer samples!
Can this be extended to nonuniform cases?

« Assumptions needed (won't work always)
» Estimate entropies without estimating distributions.



i What is unknown?

Binomial distribution:
S=—plogp—

(I-p)log(l-p)

jl Assume (Bayes)
a

uniform (no assumptions)

Sy a
p S



i What is unknown?

1.O1||?||Té='|"‘|1—|—|—7‘ g_ﬁest—sﬁue>
Selection of wrong “unknown” 95..




One possible uniformization

i strategy for S (NSB)

= Posterior variance scalesas 1/+N
= Little bias, except in some known cases.

= Counts coincidences and works in Ma regime
(if works).

= |s guaranteed correct for large N.
= Allows infinite # of bins.

(Nemenman et al. 2002, Nemenman 2003)



Synthetic networks
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Synthetic networks (N=1000):
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Graceful decay for smaller N
Half of all loops kept.



i B-cell dataset

= ~400 arrays
= No dynamics
= ~250 naturally occurring, ~150 perturbed

= ~25 phenotypes (normal, tumors, experimental
perturbations)

= Expression range due to differential expression in
different phenotypes




Complete B-cell network

~129000 interactions



c-MYC subnetwork

* Protooncogene,
other info * 12% background
» binding,
.+ one of top 5% hubs

significant M| with
2000 genes
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Also validated In...

s Other hubs
= Various yeast data sets
= RBC metabolic network (synthetic)

| ~80% precision
E | 20-80% recall (depending on N)

LACE(ES)




3rd order interactions
i (modulated, conditional, transistor)

Nontranscriptional modulators from expression datal!



Numerical case study:

i Non-transcriptional modulation

Q)
0.732
0.064." ™. 0.007
Cond 1 TF Conditiona I on Kinase
@ @)
) )



Large hubs,

i global (discrete) modulators

modulator

®




Large hubs,
global (discrete) modulators

= Focus on important hubs (c-MYC)

Expression Profiles = Pre-filter candidate modulators by
| dynamic range and other conditions.
L e = = Find modulators whose expression

inflicts significant changes on
topology of the ARACNE hubs’
interactions

= No guarantee of irreducibility

wijiene = Validate in GO w.r.t. to transcription
ARACHE ARACNE ! factors and kinases among
Targets .~ o S ] modulators

L4 + —_
Statistical Significance <«— N —_ N > 0
7

Modulators




i c-MYC modulators

= 1117 candidate modulators (825 with known
molecular function in GO)

= 82 (69) candidate modulators identified
= Kinases: 10/69 (backgr. 42/825), p=1e-3

= TFs: 15/69 (backgr. 56/825), p=1e-6 (validated -- see
below).

= Total: 25/69 (backgr. 98/825), p=3e-8

= Large scale modulators: ubiquitin conjugating
enzyme, mRNA stability, DNA/chromatin
modification, etc.




Large hubs, local modulator

i (MI change, transistor)




Large hubs,
local modulators

= Focus on important hubs (c-MYC)

Expression Profiles = Pre-filter candidate modulators by
dynamic range and other conditions.
P— o ——— = Find modulators whose expression

inflicts significant conditional Ml
changes for an ARACNE target in at
least one conditional topology

m No guarantee of irreducibility
= Validate in GO w.r.t. to transcription

14 .
ARACNE AN factors and kinases among
Targets ¥ modulators
. ' Tii.i)-éene Network from L AI(gTF , gt | gm ) —
Statistical ?gmﬂcance —

Modulators = ‘I(gTF’gt |g:1)_l(gTF’gt |g;1)‘ > 0



i ARACNE helps
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c-MYC modulators

= 1117 candidate modulators

= 100 modulators identified, modulating 205 interactions with 130 targets

= Modulators enriched in: kinases, acyltransferases, TFs (all at p<5%);
correspond to known MYC modulation pathways.

= [Fs: 15, p=1e-6.

= 4 out of 5 TF modulators (e.g., E2F5) with TRANSFAC signatures have
binding sites in modulated targets promoter regions.

= Modulators with largest number of effected targets are not-target-
specific (proteolisis, upstream signaling components, receptor signaling
molecules).

= Modulators with small number of effected targets are mostly co-TFs,
are interaction-specific.

s About one third of modulators are literature-validated.



Example:

ﬁ TF co-factor modulator

oo oco___..

™M N
MYC e |
I | HSPC111

r‘ \j | MYC

Conditional Ml

E2F5° E2F5" | E2F5
b AE

SO3P2 DAIN

SA5Pa DAIN




Reducibllity:

i modulating pathways

«» predicted modulators

> not in the candidate list
=3 TF’s not predicted

& Protein complex

< Targets




i Many correlated modulators

|lexpression| change in interactions

Over 70% cluster overlap



i Currently

s Biochemical validation
s Search for irreducible modulators
= Dealing with small loops




i Summary

IT quantities good measures of dependency
Defined irreducible interactions

Proposed a set of simplifying assumptions and a
corresponding algorithm for second order interactions

Bootstrapped the algorithm to identify certain third
order dependencies

Validated algorithms in-silico

Analyzed interaction network of c-MYC, validated in-
vivo and through literature



