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Outline

• A curious observation.

• Our objectives.

• Why and how to use information theory?

• A note on ensembles.

• Predictive information for different processes.

• Unique complexity measure through predictive

information.

• Possible applications.
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Entropy of words in a spin chain
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S(N) = −
2N−1∑
k=0

PN(Wk) log2 PN(Wk)

For this chain,

P (W0) = P (W1) = P (W3) = P (W7) = P (W12) = P (W14) = 2,

P (W8) = P (W9) = 1, and all other frequencies (probabilities) are

zero. Thus, S(4) ≈ 2.95 bits.
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Entropy of 3 generated chains

• Jij = δi,j+1

• Jij = J0 δi,j+1, J0 is taken

at random from N (0, 1) every

400000 spins

• Jij is taken at random from

N (0, 1
i−j) every 400000 spins

1 · 109 spins total.
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1 · 109 spins total.
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Entropy is extensive!

It shows no distinction between the cases.
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Subextensive component of the entropy
. . . shows a qualitative distinction between the cases!
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Other examples:
const periodic sequences, chaotic

sequences (finite correlation length)

log systems at phase transitions, or at

the onset of chaos (divergent correlation

length)

power natural texts, DNA sequences,

(possibly) some exotic transitions, (many

divergent correlation lengths)

• Entropy density or channel capacity do not distinguish these cases.

• Theory of phase transitions may not distinguish between the last

two cases.

• Complexity of underlying dynamics intuitively increases from

const to power.
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Objectives

learning unified description of learning (metric and algorithm

independent)

usability making distinction between useful and

unusable data (noise vs. signal)

complexity universal definition of dynamics’ complexity

(more rules describing dynamics ⇔ higher complexity)

relations connection between the two (more rules ⇔ more difficult

to learn)
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Solution – predictability

learning we learn (estimate parameters, extrapolate, classify, . . . ) to generalize

and predict from training examples; estimation of parameters is

only an intermediate step

usability nonpredictive features in any signal are useless since we

observe now and react in the future

complexity high predictability sources (more details to predict, not easier

predictions) are generated by more complex sources (in particular,

regular and random sources have low complexity)

relations more features to describe (complexity) ⇔ more data

needed for reliable predictions (learning)
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Quantifying predictability
Information theory: non-metric, universal way to quantify learning
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Quantifying predictability
Information theory: non-metric, universal way to quantify learning

-s
nowpast future

xT,N T ′, N ′0

Ipred(T, T ′) =

〈
log2

[
P (xfuture|xpast)

P (xfuture)

]〉
= S(T ) + S(T ′)− S(T + T ′)

S(T ) = S0 · T + S1(T )

Extensive component cancels in predictive information.

Predictability is a deviation from extensivity!

Ipred(T ) ≡ Ipred(T,∞) = S1(T )
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Properties of Ipred(T )

• Ipred(T ) is information, so Ipred(T ) ≥ 0

• Ipred(T ) is subextensive, limT→∞
Ipred(T )

T = 0

• diminishing returns, limT→∞
Ipred(T )

S(T ) = 0

• prediction and postdiction are symmetric

• it relates to and generalizes many relevant
quantities

• learning: universal learning curves

• complexity: complexity measures

• coding: coding length
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Grassberger vs. Kolmogorov

Average or typical vs. particular cases

• nothing to learn (predict, encode, describe) for only one string

• atypical data is possible

Complexity (learning properties) is an ensemble

(averaged) quantity, even if the ensemble is only implicit.

Example: all pictures can be random, but we do not perceive them this way.
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P (A|X) =
P (X|A)Pr(A)

P (X)
=

Pr(A)
∫

dαPA(α)QA(X|α)
P (X|A)Pr(A) + P (X|B)Pr(B)

Large N expansion around maximum likelihood value is almost

always valid

logP (A|X)→
∑
i

logQA(X|αML)︸ ︷︷ ︸− 1

2
log det

∂2 logQA(X|αML)

∂αa∂αb︸ ︷︷ ︸+ . . .
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QA(x1 . . . xN |α), PA(α), Pr(A) QB(x1 . . . xN |β), PB(β), Pr(B)

is X = {x1 . . . xN} from A or B?

PPPPPPPPq
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P (A|X) =
P (X|A)Pr(A)

P (X)
=

Pr(A)
∫

dαPA(α)QA(X|α)
P (X|A)Pr(A) + P (X|B)Pr(B)

Large N expansion around maximum likelihood value is almost

always valid

logP (A|X)→
∑
i

logQA(X|αML)︸ ︷︷ ︸
goodness of fit

−
1

2
log det

∂2 logQA(X|αML)

∂αa∂αb︸ ︷︷ ︸+ . . .

generalization error, fluctuations, complexity
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How can Ipred behave?

limN→∞ Ipred = const no long-range structure

• simply predictable (periodic, constant, etc.) processes

• fully stochastic (Markov) processes

limN→∞ Ipred = const× log2 N precise learning of a fixed

set of parameters

• learning finite-parameter densities

• well known as I(N,parameters) = Ipred(N)

limN→∞ Ipred = const×N ξ learning more features as N

grows

• learning continuous densities

• not well studied
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Specific examples: problem setup

Q(~x|α) p. d. f. for ~x parameterized by unknown parameters α

dim α = K dimensionality of α, may be infinite

P(α) prior distribution of parameters

~x1 · · · ~xN random samples from the distribution

P (~x1, ~x2, · · · , ~xN|α) =
∏N

i=1 Q(~xi|α)

P (~x1, ~x2, · · · , ~xN) =
∫

dKαP(α)
∏N

i=1 Q(~xi|α)

S(~x1, ~x2, · · · , ~xN) ≡ S(N)

= −
∫

d~x1 · · · d~xN P ({~xi}) log2 P ({~xi})
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Separating the extensive term
S(N) = −

∫
d
K

ᾱP(ᾱ)
{
d
N
~x
∏N

j=1Q(~xj|ᾱ) log2

∫
dKαP(α)

∏N
i=1Q(~xi|α)

}
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∫
d
K

ᾱP(ᾱ)
{
d
N
~x
∏N

j=1Q(~xj|ᾱ) log2

∫
dKαP(α)

∏N
i=1Q(~xi|α)

}
= −

∫
d
K

ᾱP(ᾱ)
{
d
N
~x
∏N

j=1Q(~xj|ᾱ)

× log2

N∏
j=1

Q(~xj|ᾱ)

∫
d
K
αP(α)

exp[−NEN (α,ᾱ;{~xi})]︷ ︸︸ ︷
N∏

i=1

[
Q(~xi|α)

Q(~xi|ᾱ)

]}
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Separating the extensive term
S(N) = −

∫
d
K

ᾱP(ᾱ)
{
d
N
~x
∏N

j=1Q(~xj|ᾱ) log2

∫
dKαP(α)

∏N
i=1Q(~xi|α)

}
= −

∫
d
K

ᾱP(ᾱ)
{
d
N
~x
∏N

j=1Q(~xj|ᾱ)

× log2

N∏
j=1

Q(~xj|ᾱ)

∫
d
K
αP(α)

exp[−NEN (α,ᾱ;{~xi})]︷ ︸︸ ︷
N∏

i=1

[
Q(~xi|α)

Q(~xi|ᾱ)

]}

This separates S(N) into the extensive and the subextensive terms

S0 =
∫

dKαP(α)
[
−

∫
d~xQ(~x|α) log2 Q(~x|α)

]
,

S1(N) = −
∫

dKᾱ dN ~xiP(ᾱ) log2

[∫
dKαP (α)e−NEN

]
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Annealed approximation
Under some (known) conditions we may have

ψ(α, ᾱ; {xi}) ≡ EN(α, ᾱ; {~xi})︸ ︷︷ ︸ − DKL(ᾱ||α)︸ ︷︷ ︸
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Annealed approximation
Under some (known) conditions we may have

ψ(α, ᾱ; {xi}) ≡ EN(α, ᾱ; {~xi})︸ ︷︷ ︸
quenched energy

− DKL(ᾱ||α)︸ ︷︷ ︸
annealed energy
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Annealed approximation
Under some (known) conditions we may have

ψ(α, ᾱ; {xi}) ≡ EN(α, ᾱ; {~xi})︸ ︷︷ ︸
quenched energy

− DKL(ᾱ||α)︸ ︷︷ ︸
annealed energy

≡ −
1

N

N∑
i=1

ln

[
Q(~xi|α)

Q(~xi|ᾱ)

]
+

∫
d~xQ(~x|ᾱ) ln

[
Q(~x|α)

Q(~x|ᾱ)

]
→̃ 0
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Annealed approximation
Under some (known) conditions we may have

ψ(α, ᾱ; {xi}) ≡ EN(α, ᾱ; {~xi})︸ ︷︷ ︸
quenched energy

− DKL(ᾱ||α)︸ ︷︷ ︸
annealed energy

≡ −
1

N

N∑
i=1

ln

[
Q(~xi|α)

Q(~xi|ᾱ)

]
+

∫
d~xQ(~x|ᾱ) ln

[
Q(~x|α)

Q(~x|ᾱ)

]
→̃ 0

S1(N) →̃ S
(a)
1 (N)

≡ −
∫

dKᾱP(ᾱ) log2

︷ ︸︸ ︷∫
dKαP (α)e−NDKL︸ ︷︷ ︸
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Annealed approximation
Under some (known) conditions we may have

ψ(α, ᾱ; {xi}) ≡ EN(α, ᾱ; {~xi})︸ ︷︷ ︸
quenched energy

− DKL(ᾱ||α)︸ ︷︷ ︸
annealed energy

≡ −
1

N

N∑
i=1

ln

[
Q(~xi|α)

Q(~xi|ᾱ)

]
+

∫
d~xQ(~x|ᾱ) ln

[
Q(~x|α)

Q(~x|ᾱ)

]
→̃ 0

S1(N) →̃ S
(a)
1 (N)

≡ −
∫

dKᾱP(ᾱ) log2

annealed partition function, Z(ᾱ;N)︷ ︸︸ ︷∫
dKαP (α)e−NDKL︸ ︷︷ ︸

annealed free energy, F (ᾱ;N)
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Density of states
We can rewrite the partition function

Z(ᾱ;N) =
∫

dDρ(D; ᾱ) exp[−ND]
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Density of states
We can rewrite the partition function

Z(ᾱ;N) =
∫

dDρ(D; ᾱ) exp[−ND]

ρ(D; ᾱ) =
∫

dKαP(α)δ[D −DKL(ᾱ||α)]
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Density of states
We can rewrite the partition function

Z(ᾱ;N) =
∫

dDρ(D; ᾱ) exp[−ND]

ρ(D; ᾱ) =
∫

dKαP(α)δ[D −DKL(ᾱ||α)]∫
dDρ(D; ᾱ) =

∫
dKαP(α) = 1
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Density of states
We can rewrite the partition function

Z(ᾱ;N) =
∫

dDρ(D; ᾱ) exp[−ND]

ρ(D; ᾱ) =
∫

dKαP(α)δ[D −DKL(ᾱ||α)]∫
dDρ(D; ᾱ) =

∫
dKαP(α) = 1

The density ρ could be very different for different targets.
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Density of states
We can rewrite the partition function

Z(ᾱ;N) =
∫

dDρ(D; ᾱ) exp[−ND]

ρ(D; ᾱ) =
∫

dKαP(α)δ[D −DKL(ᾱ||α)]∫
dDρ(D; ᾱ) =

∫
dKαP(α) = 1

The density ρ could be very different for different targets.

Thus learning is annealing at decreasing temperature.

Properties of predictive information (and learning) almost always

depend on D = 0 behavior of the density.
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Power–law density function

ρ(D → 0; ᾱ) ≈ A(ᾱ)D(d−2)/2

Ilya Nemenman, APAM/Columbia Seminar, December 12, 2002 back to start



17

Power–law density function

ρ(D → 0; ᾱ) ≈ A(ᾱ)D(d−2)/2

Example: sound finite parameter models, dim α = d.
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Power–law density function

ρ(D → 0; ᾱ) ≈ A(ᾱ)D(d−2)/2

Example: sound finite parameter models, dim α = d.

DKL(ᾱ||α) α→ᾱ−→ 1
2

∑
µν

(ᾱµ − αµ)Fµν(ᾱν − αν) + · · ·
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Power–law density function

ρ(D → 0; ᾱ) ≈ A(ᾱ)D(d−2)/2

Example: sound finite parameter models, dim α = d.

DKL(ᾱ||α) α→ᾱ−→ 1
2

∑
µν

(ᾱµ − αµ)Fµν(ᾱν − αν) + · · ·

ρ(D; ᾱ) D→0−→ P(ᾱ)
2πd/2

Γ(d/2)
(detF)−1/2

D(d−2)/2
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Power–law density function

ρ(D → 0; ᾱ) ≈ A(ᾱ)D(d−2)/2

Example: sound finite parameter models, dim α = d.

DKL(ᾱ||α) α→ᾱ−→ 1
2

∑
µν

(ᾱµ − αµ)Fµν(ᾱν − αν) + · · ·

ρ(D; ᾱ) D→0−→ P(ᾱ)
2πd/2

Γ(d/2)
(detF)−1/2

D(d−2)/2

S
(a)
1 ≈ d

2
log2 N
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Power–law density function

ρ(D → 0; ᾱ) ≈ A(ᾱ)D(d−2)/2

Example: sound finite parameter models, dim α = d.

DKL(ᾱ||α) α→ᾱ−→ 1
2

∑
µν

(ᾱµ − αµ)Fµν(ᾱν − αν) + · · ·

ρ(D; ᾱ) D→0−→ P(ᾱ)
2πd/2

Γ(d/2)
(detF)−1/2

D(d−2)/2

S
(a)
1 ≈ d

2
log2 N

Speed of approach to this asymptotics is rarely investigated.
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Another example

Learning Q(~x1 · · · ~xN|α), a finite parameter Markov process with

long range intrinsic correlations such that

S [{~xi}|α] ≡ −
∫

dN~x Q({~xi}|α) log2 Q({~xi}|α)

→ NS0 + S∗0 ; S∗0 =
K ′

2
log2 N
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Another example

Learning Q(~x1 · · · ~xN|α), a finite parameter Markov process with

long range intrinsic correlations such that

S [{~xi}|α] ≡ −
∫

dN~x Q({~xi}|α) log2 Q({~xi}|α)

→ NS0 + S∗0 ; S∗0 =
K ′

2
log2 N

S
(a)
1 (N) ≈ K + K ′

2
log2 N
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Another example

Learning Q(~x1 · · · ~xN|α), a finite parameter Markov process with

long range intrinsic correlations such that

S [{~xi}|α] ≡ −
∫

dN~x Q({~xi}|α) log2 Q({~xi}|α)

→ NS0 + S∗0 ; S∗0 =
K ′

2
log2 N

S
(a)
1 (N) ≈ K + K ′

2
log2 N

Predictive information does not distinguish predictability coming

from unknown parameters and from intrinsic long–range correlations.

This is similar to describing physical systems with correlations using order parameters.
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Essential singularity in the density
As d →∞ we may imagine the following behavior

ρ(D → 0; ᾱ) ≈ A(ᾱ) exp
[
−B(ᾱ)

Dµ

]
, µ > 0
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Essential singularity in the density
As d →∞ we may imagine the following behavior

ρ(D → 0; ᾱ) ≈ A(ᾱ) exp
[
−B(ᾱ)

Dµ

]
, µ > 0

C(ᾱ) = [B(ᾱ)]1/(µ+1)

(
1

µµ/(µ+1)
+µ1/(µ+1)

)

S
(a)
1 (N) ≈ 1

ln 2
〈C(ᾱ)〉ᾱNµ/(µ+1)
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Essential singularity in the density
As d →∞ we may imagine the following behavior

ρ(D → 0; ᾱ) ≈ A(ᾱ) exp
[
−B(ᾱ)

Dµ

]
, µ > 0

C(ᾱ) = [B(ᾱ)]1/(µ+1)

(
1

µµ/(µ+1)
+µ1/(µ+1)

)

S
(a)
1 (N) ≈ 1

ln 2
〈C(ᾱ)〉ᾱNµ/(µ+1)

• finite parameter model with increasing number of parameters

K ∼ Nµ/(µ+1); S1(N) ∼ Nµ/µ+1, not S1(N) ∼ Nµ/µ+1

2 log N
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Essential singularity in the density
As d →∞ we may imagine the following behavior

ρ(D → 0; ᾱ) ≈ A(ᾱ) exp
[
−B(ᾱ)

Dµ

]
, µ > 0

C(ᾱ) = [B(ᾱ)]1/(µ+1)

(
1

µµ/(µ+1)
+µ1/(µ+1)

)

S
(a)
1 (N) ≈ 1

ln 2
〈C(ᾱ)〉ᾱNµ/(µ+1)

• finite parameter model with increasing number of parameters

K ∼ Nµ/(µ+1); S1(N) ∼ Nµ/µ+1, not S1(N) ∼ Nµ/µ+1

2 log N

• as µ →∞ complexity grows and then vanishes to the leading

order when S
(a)
1 becomes extensive
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Example of the power–law Ipred

Learning a nonparameteric (infinite parameter) density

Q(x) = 1/l0e−φ(x), x ∈ [0, L], with some smoothness constraints

(Bialek, Callan, and Strong 1996).

P[φ(x)] =
1
Z

exp

[
− l

2

∫
dx

(
∂φ

∂x

)2
]

δ

[
1
l0

∫
dx e−φ(x) − 1

]
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Example of the power–law Ipred

Learning a nonparameteric (infinite parameter) density

Q(x) = 1/l0e−φ(x), x ∈ [0, L], with some smoothness constraints

(Bialek, Callan, and Strong 1996).

P[φ(x)] =
1
Z

exp

[
− l

2

∫
dx

(
∂φ

∂x

)2
]

δ

[
1
l0

∫
dx e−φ(x) − 1

]
ρ(D → 0; φ̄) = A[φ̄(x)]D−3/2 exp

(
−B[φ̄(x)]

D

)
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Example of the power–law Ipred

Learning a nonparameteric (infinite parameter) density

Q(x) = 1/l0e−φ(x), x ∈ [0, L], with some smoothness constraints

(Bialek, Callan, and Strong 1996).

P[φ(x)] =
1
Z

exp

[
− l

2

∫
dx

(
∂φ

∂x

)2
]

δ

[
1
l0

∫
dx e−φ(x) − 1

]
ρ(D → 0; φ̄) = A[φ̄(x)]D−3/2 exp

(
−B[φ̄(x)]

D

)
S

(a)
1 (N) ≈ 1

2 ln 2

√
N

(
L

l

)1/2
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Power–law density example:
continuation

• increasing number of ‘effective parameters’ (bins)

of adaptive size ∼
√

l/NQ(x)
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Power–law density example:
continuation

• increasing number of ‘effective parameters’ (bins)

of adaptive size ∼
√

l/NQ(x)

• heuristic arguments for the dimensionality ζ and

the smoothness exponent η give S1(N) ∼ N ζ/2η —

demonstrates a crossover from complexity to

randomness
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Which complexity do we want to define?

Ilya Nemenman, APAM/Columbia Seminar, December 12, 2002 back to start



22

Which complexity do we want to define?

• complexity of dynamics that generates a time series (not

computational or descriptive complexity); thus it must be

zero for totally random and for easily predictable processes

Ilya Nemenman, APAM/Columbia Seminar, December 12, 2002 back to start



22

Which complexity do we want to define?

• complexity of dynamics that generates a time series (not

computational or descriptive complexity); thus it must be

zero for totally random and for easily predictable processes

• usable for Occam–style punishment in statistical inference
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Which complexity do we want to define?

• complexity of dynamics that generates a time series (not

computational or descriptive complexity); thus it must be

zero for totally random and for easily predictable processes
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• expressible in conventional physical terms
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Which complexity do we want to define?

• complexity of dynamics that generates a time series (not

computational or descriptive complexity); thus it must be

zero for totally random and for easily predictable processes

• usable for Occam–style punishment in statistical inference

• expressible in conventional physical terms

• must be attached to an ensemble, not a single realization
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Complexity measure
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Complexity measure

• some kind of entropy (we proclaim Shannon’s postulates:

monotonicity, continuity, additivity)
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Complexity measure

• some kind of entropy (we proclaim Shannon’s postulates:

monotonicity, continuity, additivity)

• invariant under invertible temporally local transformations

(xk → xk + ξxk−1: measuring device with inertia, article with misprints, same book in

different languages – same universality class)

log P1(x) = log P2(x) + loc. oper. ⇒ C[P1(x)] = C[P2(x)]
This may present a problem in higher dimensions.
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Complexity measure

• some kind of entropy (we proclaim Shannon’s postulates:

monotonicity, continuity, additivity)

• invariant under invertible temporally local transformations

(xk → xk + ξxk−1: measuring device with inertia, article with misprints, same book in

different languages – same universality class)

log P1(x) = log P2(x) + loc. oper. ⇒ C[P1(x)] = C[P2(x)]
This may present a problem in higher dimensions.

The divergent subextensive term measures complexity

uniquely!
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Relations to other definitions . . .

. . . are mostly straightforward.
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. . . are mostly straightforward.

For Kolmogorov complexity:
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For Kolmogorov complexity:
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Relations to other definitions . . .

. . . are mostly straightforward.

For Kolmogorov complexity:
• partition all strings into equivalence classes

• define Kolmogorov complexity CK(s) of a sequence s with

respect to the partition as a length of the shortest program

that can generate a sequence from the class s belongs to
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respect to the partition as a length of the shortest program
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Relations to other definitions . . .

. . . are mostly straightforward.

For Kolmogorov complexity:
• partition all strings into equivalence classes

• define Kolmogorov complexity CK(s) of a sequence s with

respect to the partition as a length of the shortest program

that can generate a sequence from the class s belongs to

• equivalence = indistinguishable conditional distributions of

futures

If sufficient statistics exist, then CK ≈ Ipred. Otherwise CK > Ipred.

CK is unique up to a constant.
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What’s next?
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What’s next?

extraction separating predictive information from non–predictive

using the ‘relevant information’ technique
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physics of phase transitions, connection to subextensive
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statistics extensions of MDL (predictive information is a property

of the data, not of the model)
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What’s next?

extraction separating predictive information from non–predictive

using the ‘relevant information’ technique

physics of phase transitions, connection to subextensive

statistical mechanics

statistics extensions of MDL (predictive information is a property

of the data, not of the model)

learning unification of approaches: Bayesian, SRM, MDL,

Cucker-Smale. . .
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Continuation: What’s next?
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Continuation: What’s next?

neuro- and cognitive sciences is predictive information

maximization a guiding principle for animal behavior? how

complex are the models we use in learning?
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Continuation: What’s next?

neuro- and cognitive sciences is predictive information

maximization a guiding principle for animal behavior? how

complex are the models we use in learning?

bioinformatics what is predictive information of natural symbolic

sequences? (DNA, languages, spike trains) can we use changes in

predictability for data partitioning? for model building?
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Continuation: What’s next?

neuro- and cognitive sciences is predictive information

maximization a guiding principle for animal behavior? how

complex are the models we use in learning?

bioinformatics what is predictive information of natural symbolic

sequences? (DNA, languages, spike trains) can we use changes in

predictability for data partitioning? for model building?

dynamical systems theory what is predictive information and

complexity of various systems?
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