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Design principles
 Not how, but what and why. Understanding.
 More than one data set per principle.
 Prediction not postdiction.
 Falsifiable.
 Possibly spanning many scales, systems -

universality.
 Mathematizable.
 Constraints.
 Not everything is optimal - look where

optimality matters… Behavior?



Life is…

The
environment

Estimating (lossy
encoding) the past

Predicting the
future (RDT)

Biologically
optimal
action

Physics of observation,
Limited resources

Statistics of environment,
Limited time, Relations

to complexity of the task
(Bialek, Nemenman,

Tishby, 2001)

Limited resources



Efficient estimation as a
biological design principle
 Berg and Purcell (1977). Chemosensing

precision and reliability is limited by physical
noise sources.

 Since then: single photon responses,
transcription, chemotaxis run length, motion
estimation,… - all are at physical limits to
sensing.

 The second arrow? (estimation of and
reaction to a dynamical environment).



In time learning/prediction:
necessary for active response

Berg&Purcell
Efficient estimation
of noisy stationary

signal

Chemosensing
behavior

Optimal
estimation of

dynamical signals

Signal transduction,
regulation, systems
response, cognition?Statistics of

environment



Lac and PTS:
Do we understand?

 Very slow positive
feedback (cap), ~1hr

 Slow positive feedback
(lac I), ~10min

 Medium-fast positive
feedback (PEP), ~10s

 Fast negative PEP
feedback, ~100ms

 Very fast low pass filter
(receptor), ~10ms

PEP - phosphoenolpyruvate Why?



Statistics of environment?
 Long scale statistics of lactose food

appearance - cap averaging over hours sets
the mean operating point.

 Lactose appears with time scales of minutes
and disappear in tens of minutes - PEP
activation and lac shut-off.

 Chemotaxis(?)/bad mixing leads to higher
concentrations on scales of seconds - PEP
feedback.



Statistics of environment?
 Negative PEP feedback at PEP saturation

stabilizes energy production.
 Low path filtering at receptors removes

statistical noise.

(with Wall, Bettencourt, Hlavacek)

Maybe (near) optimal for this environment?



Mathematics of prediction:
A limited form of prediction

 Estimation of dynamical signal “right now”
(t=0) from observations of its past (t<0).

 Need to know time statistics of the signal.



Mathematics of prediction:
A limited form of prediction
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A note on optimal information
transmission

P(s, r)! I[P] = log
P(s, r)

P(s)P(r)

(Laughlin, 1981)

s

P(s)
r

s

P(s)
r

Matching mean and variance maximizes
information transmission.



Turtle cone background light
intensity adaptation

Bckgr, log I Adap, log I

dark -4.4

-4.4 -3.8

-3.2 -3

-2.1 -2.3

-1 -1.3

(Normann & Perlman, 1979)

I
a
! I

0

0.73

P(I ) ! exp "
1

2# 2
log

I

I0

$
%&

'
()

2*

+
,
,

-

.
/
/

Bad!



Response time adaptation

(Baylor & Hodgkin, 1974)
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Probably not a coincidence:
Adapting to integrated flux.
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What should τ be?

! + Rh" Rh
*
" unknown

Rh
*
! PDE

*

PDE
*
! GC

Cone: 3 low pass
filters (at least):




 

! R
d"R

dt
= #"R + gR $(t) +%$ (t)( ), $ = log

I

I0
, %$ (t)%$ (0) = 1 / I0" (t)

! P
d"P

dt
= #"P + gP "R +%R (t)( ), …

!

phosphodiesterase

(Detweiler et al., 2000)

Linear due to Ca feedback!



Solution
(for signal-limited precision)

Note that this is not same as
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which is the channel capacity.



Solution
(for signal-limited precision)

I0 ! I["(t = 0);v(t = 0)] = log
" 2
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Can also maximize total predictive information:



Finding τ
Maximize I0 w.r.t τ

For:
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Best possible matched filter
(limited by biochemical mechanisms)

Also predicted by variance balance argument. 



A problem

 1/k2-ε spatial spectrum
 ~10 phoreceptors/fixation

drift
 1/ω2−ε temporal spectrum
 Should have

(Ruderman & Bialek, 1994) Wrong! But…
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Structural constraint
Rh* is the signal (for the adapting rest of the
circuit), its temporal response is uncontrollable
(and badly known - Rieke & Baylor, 1998)

Given this signal, the rest of the biochemistry
should adapt in agreement with experiment
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Rat matching experiments
 Poisson deposition

of rewards
 Rewards do not

accumulate
 Possibly variable

rate
 Changeover delay
 Rat matches

No Yes

(with Gallistel)



Rat matching experiments
 Poisson deposition

of rewards
 Rewards do not

accumulate
 Possibly variable

rate
 Changeover delay
 Rat matches

(Gallistel et al 2001)



But: Time scales are history
dependent. Can we explain?

(also note imperfect matching)

 ! = 30…100 +min  ! = 1…2min



Optimal estimation:
Bayes theorem

P[!(t) | data] =
P data |!(t)( )P[!(t)]
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Sampling
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A better solution (WKB):
Learning a Poisson variable

Bialek, Callan, &
Strong, 1996,
Nemenman and Bialek,
2002
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Time scales
Correlation time:

For stable period                 :

For variable schedule                   :

For monkeys (Sugrue et al, 2004)                           :

! " l / r
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l ! 1800 s, r ! 1 /10s
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Importantly, estimate starts to
change immediately in both cases
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l ! 300 / r, r, " ! 15 samples



Self-consistent estimation of l

Averaging over          leads to correct estimation of
the smoothness scale for fixed     (Nemenman and
Bialek, 2002).

Can do the same for dynamic   .

P[l]

l

l



Phenomenology:
Abrupt changes

 Only after a few
changes have
been experienced

 Common during
fast changes
epochs

Sometimes
“unwarranted”



Phenomenology:
Abrupt changes

 Only after a few
changes have
been experienced

 Common during
fast changes
epochs

 (Metastable states)?



Phenomenology:
Reversal to status quo ante



Caused by memory
 Overestimation of

rate immediately
leads to higher
rate and persists

 Power spectrum of
reward histories

 Two regimes
clearly seen

 Peak at 0 - long
range correlations



Abruptness, two time scales,
and non-Gaussianity

Critical periods?



Non-Gaussianity of rate
distribution



Modeling reversals: long
range correlations

Bialek & Zee, 1990 - Best
estimate of φ is
approximated by

!(t) = F(t
i
" t)

t
i
<t

#

Optimal F(t) for a Gaussian process with C~t-2 for a
range near t=0 and t=18hrs (normalized within the

window).



Long-tailed filters
explain reversal
 At the end of the session, rate estimates are

effected mostly by the last (post-change)
observation

 After a long delay, pre-change and post-
change observations are almost equally
weighed, but there are much more of the
former.

 Wouldn’t work for exponential filters as used
by Sugrue et al, 2004.

 Experiments to measure C(t) are now done.



Why matching?
 Matching is almost optimal for maximizing

reward.
 Matching is almost optimal for tracking rate

changes.
 Can it be that the bit value of a reward is

higher than its food value? (Rats are
curious!)

 Preliminary report: matching for
accumulating rewards. Planning experiments
to test matching to neutral stimuli.



Take home message:
 Optimal estimation of dynamic world seems

to explain phenomenology from molecular
scales, to cognitive psychology scales.

 Preliminary experimental comparisons.
 Better experiments are being done / are

sought.
 For molecular networks, relation of

phenomenology to structure waits to be
analyzed.


