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Signal processing by small networks:
Does topology have a function?

From Mangan et al., 2003 

A Sign-Sensitive Delay

A
B
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G

A
B

C

G

chemical input, C

genetic output, G

Multiple functions (Wall et al.)
Stochasticity?
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Signal processing by small networks:
Are some networks better than others?

Logic Gates

From Guet et al., 2002 

What if wrong 
parameters were 
explored?
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Signal processing by small networks:
How much info can be transduced?

• Cross-talk “paradox”
– Single 2-state MAPKKK (channel capacity of 1 bit)
– Multiple on/off signals (>1bit) passing through

• How?
– Compartmentalization, extra signals, timing…
– Concentration of MAPKKK is real-valued! (multi-bit)

• Only ~100 molecules to make a decision
– Noisy
– How many bits can be sent with a few molecules?
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How to measure circuit quality
without knowing its function?

Good 
Circuits

Bad Circuits

Guet example:
C={(0,0),(1,0),(0,1),(1,1)}
G={+1, -1}
Broken circuit: I(C,G)=S(G)=0

g = g(c,t)
t!"

+ noise!!!#   P(g | c)

I(C,G) = dcdg! p(c,g)log
p(c,g)

p(c)p(g)$

0 % I(C,G) % min S(C),S(G){ }
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What hides beneath?

• Circuits may not have oscillations

• Circuits may have multiple fixed points

• Fixed points may have different basins of attraction

• What defines P(c)?
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How good are circuits?

A

B

C G

A B C G

A B C G

1. For a given topology, 
exactly one promoter per gene,
each TF binds to one promoter type

…

2. For a given p(C), 

C
1

C
2

each input is binary

-
+

- -

-
+

+ +

θ
… 

3. Calculate g=g(c) for all c⊂C
dg

dt
= !Rgg + a0 +" g,c{ }( )

(actually do for 3 inputs)
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How good are circuits?

5. How does max(I) depend on constraints?
On the topology?

4. And maximize information.
!̂ = argmax

!"
biologically
realistic( )

I(C,G)

max=

Constraints on
time to and the
copy # at the
steady state.

high fidelity differentiation in development
high capacity signal transduction (lac, photoreceptor)

!̂ = argmax! I(G,C) " # N

!̂ = argmax! I(G,C) " $ %max %min

!̂ = argmax! I(G,C) " # N " $ %max %min
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Linear noise:
How good is it?

• Poisson reactions

• Master equation with
large  N

• Fokker-Planck equation

• Steady state

• Steady state P(g|c):
multivariate normals

Van Kampen, 1997
Elf and Ehrenberg, 2003
Paulsson et al., 2004
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Numerics: increasing MI

Mean outputs
in response to 
different inputs

decreasing the reporter variance to the
Poisson limit (low pass filtering upstream
noise by slow reporter); variance of the other
species may be sub-Poisson (negative
feedback) other species

reporter

optimization start
separating 

peaks

optimization end
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Specific circuits:
more than 1 bit, almost optimal

Maxima: analytics and numerics



Is topology important?

All are great!
Some are better
than others
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Positive vs. negative feedback

negative
positive
p = 0.0002

p = 0.0003

p = 0.01

NF circuits have
higher capacity and 
reach it easier

Explanation available in terms of 
decreased state variance
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Multiple functions?

Topology 2
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Robust maxima?
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Predictions
Fast response and autorepression - correlated
Rosenfeld et al. (2002) - autorepression causes fast response
Alternative: Fast response requires negative feedback (cannot average)

p=0.013
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Conclusions 1

 Small, noisy, generic biochemical networks easily achieve >1 bit of
information throughput over short times with a handful of molecules.

 The circuits come very close to transmitting the maximum
information.

 No fine tuning is required.
 While all circuits are good, negative feedback circuits are marginally

better (skipped in this talk).
 Multiple functions per circuit (more exploration is needed).
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How good is analysis?

• A multi-step transcription/translation/binding reaction
modeled as a single-step elementary one

• Is this valid?

• In general, how do we coarse-grain biochemical
reactions? (modeling each one is infeasible)

• What is the right way to simulate a biochemical network?
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Michaelis-Menten reaction:
Deterministic coarse-graining

• Adiabatic approximation
– Many enzyme turnovers for small fractional

change in [P], [S]

• How to do coarse-graining with fluctuations?

 

S
k1

k
!1

! "!!# !!! SE
k2

" #" P

d SE[ ]
dt

= k
1
S[ ] E[ ]! k

!1
+ k

2( ) SE[ ] = 0

dP

dt
=

k
1
k
2
E[ ] S[ ]

k
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Michaelis-Menten reaction (or a pore):
Stochastic coarse-graining

 

S
k1

k
!1

! "!!# !!! SE
k2

k
!2

! "!!# !!! P

Q = P T( ) ! P 0( )

(Simper version of Sinitsyn and Nemenman, 2007)

 
P Q( ) = d!Q

1" d!Q
2" … d!QT /! t P !Qi( )! Q # !Qi$( )%"

4 Poisson processes
with (almost) constant rates ki

Functional integral over all paths - can get full MGF
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Michaelis-Menten reaction:
Periodic modulation of two rates

k
1
[S]

k
!2
[P]

s
c

MGF =MGF
cl
+ dSdP!F

sc

!!

Berry curvature
As in adiabatic QM

J = Jcl + Jpump = Jcl + d
2
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Example 1: Bulk

k1 = 1.5 + Rcos!t;!!!!!!k
"2 = 1.5 + Rsin!t;!!!!!!k

"1 = k2 = 1

equilibrium, on average:!!J
cl
= 0

Pump current up to 10% for realistic enzymes
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Example 2:
Single molecule experiments

 

!
k0

q
! "!!# !!! S

k1

k"1

! "!!# !!! SE
k2# $# P Xie et al.

Bezrukov et al.
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Conclusions 2

 Can coarse-grain biochemical reactions
 Pump effect (nonzero mean noise)
 Fano factor non-unity: non-Poisson statistics


