Complexity Through Nonextensivity

William Bialek1, Ilya Nemenman1, and Naftali Tishby1,2

1NEC Research Institute, 2Hebrew University

Presented at the International Workshop on
Frontiers in The Physics of Complex Systems
March 25 - 28, 2001
Dead Sea, Israel

http://arXiv.org/abs/physics/0007070
Complexities

- descriptive complexity of single strings – computer science (Kolmogorov complexity, MDL, …)
- complexity of dynamics (process) – dynamical systems theory (Lyapunov exponents, various entropies, …)
- complexity of models – learning and statistical inference (Oc-cam factors, MDL, MML, …)
- complexity (time or space) of problems – computer science

The first three are all descriptive complexities, having similar usages, pluses and minuses. One needs a generalizing definition.
Descriptive complexities

Usual problems:

<table>
<thead>
<tr>
<th>What We Want</th>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>complexity ≠ randomness</td>
<td>description length ≈ entropy = randomness</td>
</tr>
<tr>
<td>complexity of dynamics ≈ complexity of its output</td>
<td>there can be atypical strings</td>
</tr>
</tbody>
</table>

Intuition: Complexity of a random source and very regular source is low; entropy of their outputs is different. But corrections to the extensivity of the (averaged) entropy are small for both.

Solution (Grassberger 86): We should average over all possible outcomes and focus on subextensive components of entropies!
Different reasoning

Predicting the future of a sequence:

- we learn (estimate parameters, extrapolate, classify, …) to generalize and predict from training examples; estimation of parameters is only an intermediate step
- nonpredictive features in any signal are useless since we observe now and react in the future
- more features to predict is a problem of higher complexity

Footnote: there’s little to predict for both regular and random sequences.

Intuition: only predictive features of signals should be coded; only they are of interest when defining complexity.
Bringing two reasonings together

\[I_{\text{pred}}(T, T') = \langle \log_2 \left[\frac{P(x_{\text{future}} \mid x_{\text{past}})}{P(x_{\text{future}})} \right] \rangle \]

\[= S(T) + S(T') - S(T + T') \]

\[S(T) = S_0 \cdot T + S_1(T) \]

Thus extensive component cancels in predictive information.

Predictability is nonextensivity!

\[I_{\text{pred}}(T) \equiv I_{\text{pred}}(T, \infty) = S_1(T) \]
Properties of $I_{\text{pred}}(T)$

- $I_{\text{pred}}(T)$ is information, so $I_{\text{pred}}(T) \geq 0$
- $I_{\text{pred}}(T)$ is subextensive, $\lim_{T \to \infty} \frac{I_{\text{pred}}(T)}{T} = 0$
- Diminishing returns, $\lim_{T \to \infty} \frac{I_{\text{pred}}(T)}{S(T)} = 0$
- It relates to and generalizes many relevant quantities
 - Learning: universal learning curves
 - Complexity: complexity measures
 - Coding: coding length
How can I_{pred} behave?

$$\lim_{N \to \infty} I_{\text{pred}} = \text{const} \quad \text{no long-range structure}$$
- simply predictable (periodic, constant, etc.) processes
- fully stochastic (Markov) processes

$$\lim_{N \to \infty} I_{\text{pred}} = \text{const} \times \log_2 N \quad \text{precise learning of a fixed set of parameters}$$
- learning finite-parameter densities (functions)
- dynamics with divergent correlation times
- analyzed as $I(N, \text{parameters}) = I_{\text{pred}}(N)$

$$\lim_{N \to \infty} I_{\text{pred}} = \text{const} \times N^\xi \quad 0 < \xi < 1 \quad \text{learning more features as } N \text{ grows}$$
- learning nonparametric densities (functions) with smoothness constraints
- some cellular automata
- natural languages
- not well studied
Density of states

For a stochastic process described by an unknown model $\bar{\alpha}$ taken at random from $\mathcal{P}(\alpha)$ the randomness (disorder) due to \tilde{x}_i is often unimportant and behavior of S_1 is governed to the leading order only by the model family properties:

$$S_1(N) = \left\langle \log \int dD \rho(D; \bar{\alpha}) \exp[-ND] \right\rangle_{\bar{\alpha}} + O(N^0)$$

$$\rho(D; \bar{\alpha}) = \int d^K \alpha \mathcal{P}(\alpha) \delta[D - D_{KL}(\bar{\alpha}||\alpha)]$$

$$D_{KL}(\bar{\alpha}||\alpha) = \int d\bar{x} Q(\bar{x}|\bar{\alpha}) \log \frac{Q(\bar{x}|\bar{\alpha})}{Q(\bar{x}|\alpha)}$$

Then predictive properties depend on $D \to 0$ behavior of the density.
Power–law density function

The exponent is equivalent to the dimensionality in statistical systems.

\[\rho(D \to 0; \bar{\alpha}) \approx A(\bar{\alpha})D^{(d-2)/2} \Rightarrow \]

\[S_1 \approx \frac{d}{2} \log_2 N \]

- well studied case;
- happens for most finite parameter models (including Markov chains) in learning, phase transitions, dynamical systems at the onset of chaos;
- speed of approach to this asymptotics is rarely investigated.
Essential zero in the density function

As $d \to \infty$ we may imagine the following behavior

$$
\rho(D \to 0; \tilde{\alpha}) \approx A(\tilde{\alpha}) \exp \left[-\frac{B(\tilde{\alpha})}{D^\mu} \right], \quad \mu > 0 \quad \Rightarrow
$$

$$
S_1(N) \sim N^{\mu/(\mu+1)}
$$

- not well studied case;
- as $\mu \to \infty$, $S_1(N)$ grows and then vanishes to the leading order when it becomes extensive;
- observed when longer sequences allow progressively more detailed description of the underlying dynamics (natural languages, some dynamical systems, nonparametric learning, finite parameter learning models with increasing number of parameters $K \sim N^{\mu/(\mu+1)}$).
I_{pred} as a unique measure of complexity

Complexity measure must be:

- some kind of entropy (we proclaim Shannon’s postulates):
 - monotonic in N for N equally likely signals,
 - additive for statistically independent signals,
 - a weighted sum of measure at branching points if measuring a leaf on a tree;

- reparameterization, quantization invariant \Rightarrow subextensive;

- insensitive to invertible temporally local transformations (e.g., $x_k \to x_k + \xi x_{k-1}$—measuring device with inertia);

The divergent subextensive term measures complexity uniquely!
Relations to other definitions ...

... are mostly straightforward.

For Kolmogorov complexity:
 • partition all strings into equivalence classes;
 • define Kolmogorov complexity $C_E(s)$ of a sequence s with respect to the partition as a length of the shortest program that can generate a sequence from the class s belongs to;
 • equivalence = indistinguishable conditional distributions of futures;

Result: If sufficient statistics exist, then $C_E \approx I_{\text{pred}}$. Otherwise $C_E > I_{\text{pred}}$. (Relates to TMC and statistical complexity). C_E is unique up to a constant.
What’s next?

- separating predictive information from non–predictive using the ‘relevant information’ technique;
- reflection to physics — finding order parameters for phase transitions using behavior of the predictive information;
- reflection to biology — is predictive information maximization a guiding principle for animal behavior? how complex are the models we use in learning?
- reflection to dynamical systems theory — what is the predictive information and complexity of various systems? of natural languages?
- reflection to statistics — nonparametric extensions of MDL (predictive information *is* a property of the data, not of the model [N,B NIPS-2000]).