Genome-wide discovery of modulators of transcriptional interactions in human B lymphocytes

Ilya Nemenman
(JCSB/Columbia → CCS-3/LANL & SFI)

Kai Wang, Nilanjana Banerjee,

Adam Margolin, Andrea Califano
(JCSB/Columbia)

Reconstructing cellular interactions

Reconstruction algorithms: The curse of "percent correct"

	Stat	Co	GM	Biochem.
Small data requirements	* ⁄	•	×~	×
Robustness to fluct.	~	V	×v	*
Computational complexity	×	/	×	**
Conditional interactions	V	**	/	* /
Reparam inv., non-param.	*/	* ⁄	*·	~
Irreducibility	V	×	~	×
Computational complexity Conditional interactions Reparam inv., non-param.	× v ×v	× × ×	* * */	*/ */ /

ARACNE (Data Processing Inequality, DPI)

Reparm. inv.; small sample; low complexity.

Performance?

<u>Theorem 1.</u> If MIs can be estimated with no errors, then ARACNE reconstructs the underlying interaction network exactly, provided this network is a tree and has only pairwise interactions.

<u>Theorem 2.</u> The Chow-Liu maximum mutual information tree is a subnetwork of the network reconstructed by ARACNE.

<u>Theorem 3.</u> Some sparseness/loopiness assumptions -- no false positives (no false negatives under stronger conditions).

4

Synthetic networks

B-cell dataset

- ~400 arrays
- No dynamics
- ~250 naturally occurring, ~150 perturbed
- ~25 phenotypes (normal, tumors, experimental perturbations)
- Expression range due to differential expression in different phenotypes

c-MYC subnetwork

- Protooncogene,
- 12% background binding,
- one of top 5% hubs
- significant MI with 2000 genes

Total interactions: 56

Pre-known: 22

New Ch-IP validated: 11/12

Problem:

- Much of regulation in higher eukaryotes is posttranscriptional (e.g., splicing), and post-translational (e.g., phosphorylation, complex formation).
- Many mRNA (e.g., p53) constitutively expressed.

Can these be observed from mRNA expressions only?

Solution:

Phenotypic and population variability (even in constitutively expressed genes) induces higher order dependencies between TFs, targets, and modulators.

Numerical case study: Transistor modulation

 ΔI_{coTF}

0.37

Enforcing irreducibility: ARACNE on a TF-hub

LEGEND:

Modulators are not irreducible.

Any suggestions?

Algorithm flowchart

- Focus on a hub (c-MYC).
- Select modulators with σ> microarray noise (Tu et al., 2002) -- many signaling genes, constitutively expressed genes.
- Find modulators whose expression inflicts significant conditional MI changes for an ARACNE target in at least one conditional topology.
- No guarantee of modulator irreducibility.
- Guarantee of target irreducibility (after multiple hypothesis correction).

$$\Delta I(g_{TF}, g_t \mid g_m) =$$

$$= \left| I(g_{TF}, g_t \mid g_m^+) - I(g_{TF}, g_t \mid g_m^-) \right| > 0$$

-

c-MYC modulators

- 1117 candidate modulators
- 100 modulators, 130 targets, 205 interactions
- GO enrichment of the modulator set: kinases, acyltransferases, TFs (all p<5%)
- Modulators in known MYC regulation pathways (e.g., BCR)
- TFs: 15/100, p=1e-6.
- 4/5 TF modulators (e.g., E2F5) with TRANSFAC signatures have binding sites in modulated targets promoter regions.
- Modulators with many (>=4) targets are not-specific (proteolisis, upstream signaling components, receptor signaling molecules).
- Modulators with few (1-2) effected targets are mostly co-TFs, interaction-specific.
- ~1/3 modulators are literature-validated.
- Biochemical validation of predictions in progress.

Example: TF co-factor modulator

BCR pathway: Reducibility

- predicted modulators
- not in the candidate list
- TF's not predicted
- Protein complex
- Targets