
Invited Review

Correcting for the Sampling Bias Problem in Spike Train Information Measures

Stefano Panzeri, Riccardo Senatore, Marcelo A. Montemurro, and Rasmus S. Petersen
University of Manchester, Faculty of Life Sciences, Manchester, United Kingdom

Submitted 18 May 2007; accepted in final form 21 July 2007

Panzeri S, Senatore R, Montemurro MA, Petersen RS. Correcting
for the sampling bias problem in spike train information measures. J
Neurophysiol 98: 1064–1072, 2007. First published July 5, 2007;
doi:10.1152/jn.00559.2007. Information Theory enables the quantifi-
cation of how much information a neuronal response carries about
external stimuli and is hence a natural analytic framework for study-
ing neural coding. The main difficulty in its practical application to
spike train analysis is that estimates of neuronal information from
experimental data are prone to a systematic error (called “bias”). This
bias is an inevitable consequence of the limited number of stimulus-
response samples that it is possible to record in a real experiment. In
this paper, we first explain the origin and the implications of the bias
problem in spike train analysis. We then review and evaluate some
recent general-purpose methods to correct for sampling bias: the
Panzeri-Treves, Quadratic Extrapolation, Best Universal Bound,
Nemenman-Shafee-Bialek procedures, and a recently proposed shuf-
fling bias reduction procedure. Finally, we make practical recommen-
dations for the accurate computation of information from spike trains.
Our main recommendation is to estimate information using the shuf-
fling bias reduction procedure in combination with one of the other
four general purpose bias reduction procedures mentioned in the
preceding text. This provides information estimates with acceptable
variance and which are unbiased even when the number of trials per
stimulus is as small as the number of possible discrete neuronal
responses.

I N T R O D U C T I O N

Almost all sensory messages are encoded as temporal pat-
terns of action potentials (spikes), often distributed over pop-
ulations of neurons. A fundamental problem in neuroscience is
to understand the nature of this neural population code. Ideally,
as argued by Rieke et al. (1996), we would like a dictionary
that, given some snapshot of spiking activity, tells us what
sensory signal has occurred. As a first step, we need to know
what kind of neural code we are dealing with (Optican and
Richmond 1987). For example, is the precise timing of each
spike important, or is it just the number of spikes that matters?
As a second step, we need to know what specific stimulus
features are being encoded. For example: do spike counts
encode the amplitude or the frequency of a sinusoidal stimulus
(Arabzadeh et al. 2004)? A widely used approach to neural
coding is to treat the brain as a communication channel and to
use information theory to quantify and compare the informa-
tion about stimuli available in different candidate codes. In
recent years, this approach has led to significant new insight in
our understanding of sensory encoding (Averbeck et al. 2006;
Borst and Theunissen 1999; Hertz and Panzeri 2002; Rieke et
al. 1996).

However, estimating accurately the information that spike
trains convey about external stimuli is fraught with a major
practical difficulty: information theoretic measures suffer from
a significant systematic error (or “bias”) due to the limited
amount of stimulus-response data that can realistically be
collected in an experimental session. Over the last few years,
several advanced methods have been proposed to correct for
the bias problem. In this report, we explain the origin of the
bias, and review recent bias correction methods. Finally, we
present guidelines to help choose an appropriate procedure for
computing information and to help understand the conditions
under which it will produce accurate results.

Information carried by neural responses

The aim of information theoretic analysis is to get insight
into neural coding. For example, we might want to know
whether a particular neuron conveys information by millisec-
ond precision spike timing or simply by the total number of
emitted spikes (the “spike count”). We assume that, if precise
spike timing is important, a timing code will convey more
“information” than a spike-count code. If, on the other hand,
precise spike timing is not important, a timing code will
convey no more information that a count code. To carry out
such an analysis, the first step is to “choose” the neural code.
This in practice means to choose a way to quantify the neuronal
response that reflects our assumption of what is most salient in
it. For example, if we think that only spike counts (not the
precise temporal pattern of spikes) are important, we choose a
spike-count code: we define a poststimulus response interval
and count the number of spikes it contains on each repetition
(“trial”) of a stimulus. The second step is to compute how
much information can be extracted from the chosen response
quantification. This allows the assessment of how good is the
candidate neural code. Whatever the neural system of interest,
the problem of information quantification can be characterized
in the following way.

Consider an experiment in which the animal is presented
with a stimulus s selected with probability P(s) from a stimulus
set S consisting of S elements, and the consequent response
(either of a single neuron or an ensemble of neurons) is
recorded and quantified in a certain poststimulus time window.
In most cases, the neural response is quantified as a discrete,
multi-dimensional array r � {r1, . . . , rL} of dimension L. For
example, to quantify the spike count response of a population
of L cells, ri would be the number of spikes emitted by cell i on
a given trial in the response window. Alternatively, to quantify
the spike timing response of a single neuron, the response
window is divided into L bins of width �t, so that ri is the
number of spikes fired in the ith time bin (Strong et al. 1998).
Here �t is the assumed time precision of the code and can be
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varied parametrically to characterize the temporal precision of
the neural code. We denote by R the set of possible values
taken by the response array.

Having quantified the response, the next step is to charac-
terize the relationship between stimulus and response and
assign a number (the information) that quantifies how well
different responses discriminate between different stimuli. The
more the response of a neuron varies across stimuli, the greater
is its ability to transmit information (de Ruyter van Steveninck
et al. 1997). The first step in measuring information is thus to
measure the response variability. The most general way to do
so is through the concept of entropy (Shannon 1948). The
response variability (across all possible stimuli and trials) is
quantified by the response entropy

H(R) � ��
r

P(r) log2 P(r) (1)

where P(r) is the probability of observing response r across all
trials to any stimulus. However, neurons are typically “noisy”
in the sense that their responses to repetitions of an identical
stimulus differ from trial to trial. H(R) reflects both variation
of responses to different stimuli and variation due to trial-to-
trial noise. Thus H(R) is not a pure measure of the stimulus
information actually transmitted by the neuron. We can quan-
tify the variability specifically due to noise, by measuring the
entropy at fixed stimulus (that is, conditional on s)

H(R�S) � ��
r
�

s
P(s)P(r�s) log2 P(r�s) (2)

H(R�S) is known as the noise entropy. P(r�s) is the probability
of observing response r given presentation of stimulus s. The
noisier is a neuron, the greater is H(R�S). The information that
the neuronal response transmits about the stimulus is the
difference between the response entropy and the noise entropy.
This is known as the mutual information I(S;R) between
stimuli and responses (in the following abbreviated to “infor-
mation”)

I(S;R) � H(R) � H(R�S) ��
r,s

P(s)P(r�s) log2

P(r�s)

P(r)
(3)

I(S;R) quantifies how much of the information capacity pro-
vided by stimulus-evoked differences in neural activity is
robust to noise. An alternative but equivalent interpretation of
I(S;R) is that it quantifies the reduction of uncertainty about
the stimulus that can be gained from observation of a single
trial of the neural response (Borst and Theunissen 1999; Rieke
et al. 1996). When base-two logarithms are used (as in Eqs.
1–3), I(S;R) is expressed in units of bits: 1 bit of information
means that, on average, observation of the neuronal response
on one trial reduces the observer’s stimulus uncertainty by a
factor of two. I(S;R) is zero only when the stimulus-response
relationship is completely random.

Calculation of information requires accurate estimation of
the stimulus-response probabilities P(r), P(r�s), and P(s) and
thereby H(R) and H(R�S). The problem is that these probabil-
ities are not known but have to be measured experimentally
from the available neurophysiological data. This is the key
practical issue for the accurate application of Information
Theory to the study of neural codes.

Bias of the plug-in information estimator: what is it and
where does it come from?

If we had an infinite amount of data, we could measure the
true stimulus-response probabilities precisely. However, any
real experiment only yields a finite number of trials from which
these probabilities must be estimated. The estimated probabil-
ities are subject to statistical error and necessarily fluctuate
around their true values (Fig. 1). The significance of these finite
sampling fluctuations is that they lead to both systematic error
(bias) and statistical error (variance) in estimates of entropies
and information. These errors, particularly the bias, constitute
a significant practical problem. If not corrected, bias can lead
to serious misinterpretations of neural coding data. Fortunately,
a number of useful techniques have recently been developed
for addressing the issue—how to do so is the main topic of this
review.

The most direct way to compute information and entropies is
to estimate the response probabilities as the experimental
histogram of the frequency of each response across the avail-
able trials and then plug these empirical probability estimates
into Eqs. 1–3. We refer to this as the “plug-in” method. In the
following, Ns denotes the number of trials recorded in response

FIG. 1. The effect of limited sampling. A: simulation of an uninformative
neuron, responding on each trial with a uniform distribution of spike counts
ranging from 1 to 10, regardless of which of 2 stimuli was presented. Examples
of empirical response probability histograms (gray solid line) sampled from 20
and 100 trials per stimulus (top and bottom rows, respectively) are shown in the
left and middle columns (responses to stimuli 1 and 2, respectively). The black
horizontal line is the true response distribution. Right: distribution (over 5,000
simulations) of the plug-in information values obtained with 20 (top) and 100
(bottom) trials per stimulus respectively. As the number of trials increases,
both the information bias and the SD decrease. The dashed vertical line in the
right columns indicates the true value of the information carried by the
simulated neuron. B: simulation of an informative neuron, firing (with uniform
probability) 1–6 spikes to stimulus 1 and 5–10 spikes to stimulus 2. Results are
plotted as in A.
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to stimulus s and N the total number of trials across all stimuli.
Note that N � �sNs. To build intuition on the implications of
the plug-in estimation of probabilities, consider a hypothetical
neuron that, on each trial, fires 1–10 spikes with equal proba-
bility regardless of which of two stimuli was presented. In this
case, the true conditional probability P(r�s) is 0.1 (Fig. 1A,
black horizontal line in the left and middle panels) for all
stimulus-response combinations, which means that P(r) is also
0.1; consequently, Eq. 3 tells us that the mutual information is
precisely zero. Figure 1A (top left and middle panels) shows
the probabilities estimated from a simulated experiment where
Ns was 20. Due to limited sampling, the estimated probabilities
(gray line) differed markedly from 0.1 and from one another. In
particular, because stimulus 2 happened to evoke more spikes
than stimulus 1, it might naively appear that the neuron was
selective for stimulus 2. This was reflected in a nonzero value
of the plug-in information estimate (0.2 bits). The result varied
from experiment to experiment (right): the information distri-
bution was centered at the 0.202 bits—it was not centered at
the true value of 0 bits. This shows that the plug-in information
estimate was biased. In general, sampling bias is defined as the
difference between the expected value of the information
computed from the probability distributions estimated with N
trials (here 0.202 bits), and its value computed from the true
probability distributions (here 0 bits). The bias is a systematic
error that cannot be eliminated just by averaging over repeated
experiments under similar conditions or on similar neurons.

To correct for the bias, we need to understand its properties.
The first of these is its dependence on the number of trials. The
greater the number of trials, the smaller the fluctuations in the
estimated probabilities, and consequently the smaller the bias.
For example, with Ns � 100 (Fig. 1A, bottom), the bias was
0.033 bits.

However, what makes it difficult to evaluate the bias is that
it is not a fixed quantity the magnitude of which only depends
on the number of trials: even at fixed number of trials, the bias
can be very different for different neurons. This is illustrated in
Fig. 1B. A second hypothetical neuron fired 1–6 spikes for
stimulus 1 and 5–10 spikes for stimulus 2. The stimulus-
response probabilities are now stimulus-modulated, and the
neuron conveyed 0.666 bits of information (true value). With
Ns � 20, the distribution of empirical information values was
centered at 0.703 bits (Fig. 1B, top right), giving a bias of
0.036 bits. Thus although the number of trials per stimulus was
identical to that of the neuron of Fig. 1A, the bias was much less.

The bias of the information comes from the bias of the two
entropies (response entropy and noise entropy) that constitute
it (Miller 1955). To go deeper into the nature of the sampling
bias, it turns out to be useful to study the bias of the entropies
directly. We illustrate this by computing both entropies on a set
of simulated spike trains the statistical properties of which
were based on real spike trains (responses of neurons in rat
somatosensory cortex to 13 different sinusoidal stimuli, differ-
ing in vibration energy) (Arabzadeh et al. 2004). We simulated
two types of responses (“single cell” and “population,” respec-
tively). In the single-cell case, we simulated the response of a
single neuron over a 0- to 40-ms poststimulus time window and
digitized the spike train into L � 8 bins of size �t � 5 ms (0
or 1 spikes in each bin). In the second case, we simulated a
population of L � 8 neurons simultaneously responding to a
stimulus in a 10- to 15-ms poststimulus window (each neuron

firing 0 or 1 spikes in the window). In both cases, the neural
response was a “binary” array consisting of L � 8 elements,
and the simulated responses matched the lower-order statistics
(firing rates and pair-wise auto- or cross-correlations between
spikes) of the experimentally recorded neural responses (see
APPENDIX for full details).

We performed a series of simulations, systematically vary-
ing the number of trials. Figure 2 shows the entropy estimates
resulting from the plug-in method, both for the single-cell
simulated responses (left) and population responses (right). In
both cases, the estimates of H(R) and H(R�S) increased with
the number of trials. That is, in contrast to its effect on
information estimates, finite sampling makes plug-in entropy
estimates biased downward. This is the case for any stimulus-
response probability distribution (Paninski 2003). Intuitively,
the reason is that entropy is a measure of variability. The less
the number of trials, the less likely we are to fully sample the
full range of possible responses. Thus finite sampling makes
neuronal responses seem less variable than they really are.
Consequently, entropy estimates are lower than their true
values, and the effect of finite sampling on entropies is a
downward bias. H(R) is far less biased than H(R�S) because
the former depends on P(r), which, being computed from data
collected across all stimuli, is better sampled than P(r�s).

From Eq. 3, the bias of the information is the difference
between the bias of H(R) and that of H(R�S). Because the latter
is greater (and negative), the net result is that I(S;R) is
typically strongly biased upward (Fig. 3, A and B). Intuitively,
this is because finite sampling can introduce spurious stimulus-
dependent differences in the response probabilities, which
make the stimuli seem more discriminable than they actually
are (Fig. 1) and hence the neuron more informative than it
really is.

Log2(trials/stim)

FIG. 2. Sampling properties of plug-in estimation of entropies. The plug-in
estimators of entropies and information are plotted as a function of the
available number of trials per stimulus. We plot the mean � SD over 50
simulations) of the plug-in estimators of H(R), H(R�S), Hind(R�S), and
Hsh(R�S). A: results obtained using realistically simulated single-cortical-cell
spike trains (discretized into L � 8 time bins each containing 0 or 1 spikes; see
text). B: results obtained with realistically simulated cortical population re-
sponses (L � 8 correlated cells each emitting 0 or 1 spike). In both cases, the
responses were to 13 different simulated stimuli.
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To understand the sampling behavior of information and
entropy better, it is useful to find analytical approximations to
the bias. This can be done in the so-called “asymptotic sam-
pling regime.” Roughly speaking this is when the number of
trials is “large.” More rigorously, the asymptotic sampling
regime is defined as N being large enough that every possible
response occurs many times: that is, Ns P(r�s) �� 1 for each
stimulus-response pair s,r such that P(r�s) � 0. In this regime,
the bias of the entropies and information can be expanded in
inverse powers of 1/N and analytical approximations obtained
(Miller 1955; Panzeri and Treves 1996). The leading terms in
the biases are, respectively

BIAS[H(R)] �
�1

2N ln (2)
[R� �1]

BIAS[H(R�S)] �
�1

2N ln (2) �s
�R� s�1]

BIAS[I(S;R)] �
1

2N ln (2) ��s
[R� s�1] � [R� �1]� (4)

where R� s denotes the number of relevant responses for the
stimulus conditional response probability distribution P(r�s)
(i.e., the number of different responses r with nonzero proba-
bility of being observed when stimulus s is presented) and R�

denotes the number of relevant responses for P(r) (i.e., the
number of different responses r with nonzero probability of
being observed across all stimuli). In practice, R� is usually
going to be equal to the number of elements constituting the
response space R (if a response never happens across all
stimuli, it can be removed from the sum over r in Eqs. 1–3 and
thus removed from the response set R). However, R� s may be
different from R� . For example, take the neuron simulated in
Fig. 1B, when stimulus 1 evokes a low-firing response with
high probability and high-firing response with zero probability,
and stimulus 2 elicits the opposite type of response. In this
case, we have R� s � 6 for both stimuli and R� � 10.

Although valid only in the asymptotic regime, Eq. 4 sheds
valuable light on the key factors that control the bias. First, Eq.

4 shows that the bias of H(R�S) is approximately S times bigger
than that of H(R). This means that, in the presence of many
stimuli, the bias of I(S;R) is similar to that of H(R�S). How-
ever, I(S;R) is a difference of entropies, and its typical values
are much smaller than those of H(R�S). This implies that spike
train analysis methods must be validated on the performance of
information and not only on entropies, because, in many cases,
the bias may be proportionally negligible for entropies but not
the information (see Figs. 2 and 3 for an illustration). Second,
Eq. 4 shows that the bias is small when the ratio Ns/R� is big,
i.e., more trials per stimulus than possible responses. This is
because, assuming that the number of trials per stimulus is
approximately constant and R� is approximately equal to R� , the
bias of H(R�S) is approximately –R� /[2Nsln(2)]. Thus Ns/R� is
the crucial parameter for the sampling problem. For example,
in the simulations of Fig. 2, with R� � 28, the bias of I(S;R)
became negligible for Ns � 213 (i.e., Ns/R� � 32). Second, Eq. 4
shows that, even if Ns is constant, the bias increases with the
number of responses R� . This has important implications for
comparing neural codes. For example, a response consisting of
a given number of spikes can arise from many different
possible temporal patterns of spikes. Thus R� is typically much
greater for a spike timing code than for a spike count code, and
it follows from Eq. 4 that the information conveyed by a spike
count code is more biased than that measured for the same
neurons through a spike timing code. If bias is not eliminated,
there is therefore a danger of concluding that spike timing is
important even when it is not.

A further important feature of Eq. 4 is that, although the bias
is not the same for all probability distributions, in the asymp-
totic sampling regime, it depends on some remarkably simple
details of the response distribution (the number of trials and the
number of relevant responses). Thus Eq. 4 makes it is possible
to derive simple rules of thumb for estimating the bias mag-
nitude and compare the relative bias in different situations. For
example, Eq. 4 can predict very effectively the two very
different bias properties of the two simulated neurons in Fig. 1.

FIG. 3. Comparison of the performance of different bias
correction methods. The information estimates I(S;R) and
Ish(S;R) are plotted as a function of the available number of
trials per stimulus. A and B: mean � SD (over 50 simulations)
of I(S;R). C and D: mean � SD (over 50 simulations) of
Ish(S;R). Various methods were used to correct for the bias:
plug-in estimation (i.e., no bias correction), PT, QE, BUB, and
NSB (see text). A and C and B and D report results using
realistically simulated single-cell and population cortical spike
trains, respectively (see main text).
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Both neurons in Fig. 1 have R� � 10. However, R� � 10 for the
neuron in Fig. 1A and R� s � 6 for the neuron in Fig. 1B. As a
consequence, Eq. 4 predicts that the bias of the neuron in Fig.
1A is 	9/[2Nsln(2)] bits and the bias of the neuron in Fig. 1B
is 	1/[2Nsln(2)] bits (i.e., 9 times smaller). As detailed in the
next section, the simplicity of Eq. 4 can also be exploited to
correct effectively for the bias (Panzeri and Treves 1996).

Comparing procedures to correct for the bias

The plug-in estimate of information I(S;R) tends to require
large numbers of trials (Ns larger than R� by at least a factor of
32 in Fig. 3A) to become unbiased and is therefore of limited
experimental utility. Over the last 10 years, several bias-
correction procedures have been developed to reduce the num-
ber of trials necessary. In the following, we review and com-
pare four bias correction procedures that are applicable to any
spike train (whatever its statistics) and to any discrete quanti-
fication of the neural response. These methods, which are
among those most widely used in the literature, were selected
in this review because they are in our experience the most
effective ones, and because they have the property that they are
guaranteed to converge to the true value of information (or
entropy) of a given quantification of the neuronal response as
the number of trials N goes to infinity. We compare their
performance, study the conditions in which they are accurate
and consider their relative advantages.

PANZERI-TREVES (PT) BAYESIAN ESTIMATION OF THE NUMBER OF

RELEVANT RESPONSES. Equation 4 provides a simple asymp-
totic expression that can be used to estimate the bias, provided
that one can evaluate the number of relevant responses R� s.
However, estimating R� s is not straightforward. The simplest
approach is to approximate R� s by the number of responses that
are observed at least once—the “naı̈ve” count. This leads to the
so-called Miller-Madow bias estimate (Miller 1955). The naı̈ve
count is a lower bound on the actual number of relevant
responses because some relevant responses are likely to have
been missed due to lack of data. Thus [taking into account that
higher-order terms in 1/N of the information bias are all
positive (Treves and Panzeri 1995)], the Miller-Madow esti-
mate is usually an underestimate of the bias. To alleviate this
problem, Panzeri and Treves (1996) have developed a Bayes-
ian procedure to estimate the number of relevant bins. This
estimate can be inserted into Eq. 4 to compute the bias and then
subtract it from the plug-in information value: we refer to this
procedure as PT bias correction. Figure 3, A and B, shows that
PT bias correction substantially improves the estimates of
I(S;R), which, in this simulation became accurate when Ns �
210 trials per stimulus were available (that is, when Ns/R� � 4,
compared with Ns/R� �32 for pure plug-in). The advantages of
the PT correction are that it performs well and is straightfor-
ward to implement (1 Matlab routine that is available at
http://stefano.panzeri.googlepages.com/informationbiascorrec-
tions). The disadvantage of PT correction is that, by design, it
cannot work in the undersampled regime (Ns/R� 
 1).

QUADRATIC EXTRAPOLATION (QE). Like the PT method, this
procedure (Strong et al. 1998) assumes we are in the asymp-
totic sampling regime, so that the bias of the entropies and
information can be accurately approximated as second order
expansions in 1/N (Treves and Panzeri 1995). That is Iplug-

in(S;R) � Itrue(S;R) �a/n � b/N2, where a and b are free
parameters that depend on the stimulus-response probabilities.
Unlike the PT procedure, the parameters a and b are not given
by analytic formulae but are estimated from the data. This is
done by re-computing the information from fractions (N/2 and
N/4) of the data available and then fitting (using e.g., a
least-square-error procedure) the plug-in information values
obtained with fractions of data to the preceding quadratic
function of 1/N. This provides the best-fit estimates of the
parameters a and b and consequently the estimate of Itrue(S;R).
Figure 3, A and B, shows that the results of the QE procedure
were very similar to the PT procedure. This is because they
both make the same asymptotic sampling assumption.

BEST UNIVERSAL BOUND. Unlike PT and QE, the recently
introduced BUB procedure (Paninski 2003) does not rely on
the assumption that there are enough data to be in the asymp-
totic sampling regime. Paninski’s (2003) idea is to rewrite the
entropy estimation problem as a linear estimation problem in
the so-called “histogram order statistics” and then use results
from polynomial approximation theory to compute bounds on
the entropy estimation errors. These bounds permit the deriva-
tion of what Paninski (2003) termed “Best Universal Bounds”
(BUBs) on both bias and variance. The BUBs depend strongly
on a “degrees of freedom” parameter kmax, which gives the
method theoretical flexibility. However, finding the optimal
kmax for a given dataset may require a considerable effort and
may be a practical complication in the empirical use of this
method. A potential advantage of BUB is that it may outper-
form the asymptotic estimators described in the preceding text
in conditions when data are scarce but this bound is tight
(Paninski 2003). In particular, theoretical considerations show
that the BUB procedure is very competitive when both N and
R� are very large (Paninski 2003). However, with our simulated
data, the BUB gave a rather similar performance to PT and QE
methods even using the optimal kmax (Fig. 3, A and B). BUB
was simple to implement (1 Matlab routine available at
http://www.stat.columbia.edu/	liam/research/info_est.html).

NEMENMAN-SHAFEE-BIALEK (NSB) ENTROPY ESTIMATION METHOD.

The NSB entropy estimation method (Nemenman et al. 2002,
2004) is rooted in the Bayesian inference approach to entropy
estimation and (like BUB) does not rely on the assumption that
there are enough data to be in the asymptotic sampling regime.
The Bayesian approach makes some prior assumptions on the
response probability distributions. The NSB method uses a
novel type of prior assumption on the probabilities, which is
designed to produce an approximately uniform distribution of
the expectation of the entropy value before any stimulus-
response data are sampled (so that the entropy estimate is not
too much biased by the prior assumptions). As data become
available, the entropy estimation is updated by integrating over
the hypothetical prior probability distributions weighted by
their conditional probability given the data. The NSB proce-
dure is essentially parameter-free (like PT and QE). We found
that NSB generally gave the least biased estimate of I(S;R) in
our simulations (Fig. 3, A and B). Thus NSB has a performance
advantage. This result is consistent with simulations presented
by Montani et al. (2007). NSB was demanding to implement (it
requires a substantial amount of numerical integration and
function inversion). A code for NSB can be found at
http://nsb-entropy.sourceforge.net/.
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Compared with plug-in estimation, all four correction pro-
cedures were very useful and greatly reduced the information
bias although at the price of a moderate increase in variance
(Fig. 3, A and B). The moderate increase invariance is more
than compensated by strong decrease of bias, making the bias
correction worthwhile. The increase in variance is due to
subtracting the correction term, which has its own variability.
Rigorous studies of the trade-off between bias and variance are
reported in Paninski (2003) and Nemenman et al. (2004).

In summary, even if some of the bias correction procedures
(such as NSB or BUB) did not rely on the asymptotic sampling
regime to be valid and thus might potentially work even in
deeply undersampled conditions, in practice no bias correction
procedure was sufficient to obtain unbiased information esti-
mates in the undersampled regime (Ns � R� ). They all required
Ns � 2–4 R� to work. This is consistent with a number of
reported simulation studies (Endres and Foldiak 2005; Nelken
et al. 2005; Pola et al. 2003). Recently, however, it has been
found that further improvements in bias performance are
possible.

Role of correlations in the bias problem and the shuffling
bias reduction procedure

The fundamental problem with understanding the neural
code is that it may be high dimensional: many neurons, time
bins, etc. could contribute to the neuronal population code
making the size of the response array L potentially very large.
Importantly, the number of possible responses becomes expo-
nentially large as L grows. Thus (via Eq. 4) the bias gets
quickly out of control when considering a large response array.
For example, 10 “spike-count” neurons emitting �20 spike per
stimulus presentation generate 	2010 (	1013) possible re-
sponses.

The bias problem for large L is exacerbated by the fact that,
in real neuronal recordings, the elements of the response array
are often statistically correlated. For example, nearby cortical
neurons often have correlated trial-to-trial response variability
and a significant fraction of their spikes occurs synchronously
(see e.g., Averbeck et al. 2006). Correlations may either
increase or decrease the information (Averbeck et al. 2006;
Panzeri et al. 1999) and thus cannot be neglected in the
information computation. The implication is that the sampling
of the full probability of a response array cannot be reduced to
computing the probabilities of each individual array element
(“marginal probabilities”) as would be legitimate if responses
were uncorrelated. Thus one has to deal with the full exponen-
tially large response array. However, fortunately there is a way
to keep the sampling difficulties introduced by correlations
under control as follows (Montemurro et al. 2007).

Consider the noise entropy that would be obtained if the
response in each element of the array was independent of the
others at fixed stimulus: that is P(r�s) equals Pind(r�s) � �i
P(ri�s). This noise entropy can be estimated in two ways. First,
by direct substitution of Pind(r�s) into Eq. 2. The entropy of this
“independent” distribution is called Hind(R�S)

Hind(R�S) � ��
r
�

s
P(s)Pind(r�s) log2 Pind(r�s)] (5)

Because Hind(R�S) depends only on the marginal probabilities
of the response array, it typically has very small bias (Fig. 2).

Second, correlations between response variables can be re-
moved by “shuffling” the data at fixed stimulus by constructing
pseudo response arrays obtained by combining ri values each
taken (randomly and without repetition) from different trials in
which the stimulus s was presented as follows. Take all
responses in the first element of the response array to trials for
a given stimulus and randomize their order across the Ns trials.
Repeat for the other elements, randomizing independently
across trials each time. This results in a pseudo response array
from which shuffled stimulus-response probabilities known as
Psh(r�s) can be computed. This results in the noise entropy
Hsh(R�S)

Hsh(R�S) � ��
r
�

s
P(s)Psh(r�s) log2 Psh(r�s)] (6)

Hsh(R�S) has the same value of Hind(R�S) for infinite number
of trials N, but it has a much higher bias than Hind(R�S) for
finite N. In fact, Fig. 2 shows that the bias of Hsh(R�S) is
approximately of the same of order of magnitude as the bias of
H(R�S). Intuitively, this is expected because Psh(r�s) is sampled
with the same number of trials as P(r�s) from responses with
the same dimensionality (Montemurro et al. 2007; Nirenberg et
al. 2001). This observation has led to the suggestion (Monte-
murro et al. 2007) to compute information not directly though
I(S;R) but through the following formula

Ish(S;R) � H(R) � Hind(R�S) � Hsh(R�S) � H(R�S) (7)

Ish(S;R) has the same value of I(S;R) for infinite number of
trials but has a much smaller bias for finite N due to the bias
cancellation created by the entropy terms added to the right
hand side of Eq. 7. When the biases of Hsh(R�S) and H(R�S)
approximately cancel out, the bias of Ish(S;R) is dominated by
the bias of H(R) – Hind(R�S), which is much smaller than the
bias of H(R�S) [which in turn dictates the bias of I(S;R)].

Figure 3, C and D, confirms that as a result of the bias
cancellations in Eq. 7, when considering the plug-in estimates,
there a huge bias reduction of Ish(S;R) with respect to I(S;R).
Moreover, Fig. 3, C and D, shows that the bias of the plug-in
estimate of Ish(S;R) is negative. This is a very typical finding
(Montemurro et al. 2007). The reason why the plug-in Ish(S;R)
tends to be often biased downward is that [as shown in Fig. 2,
and in more detail in Montemurro et al. (2007)] Hsh(R�S) is
usually slightly more downward biased than H(R�S). To un-
derstand why, Montemurro et al. (2007) computed the bias of
Hsh(R�S) in the “asymptotic sampling” regime. They found
that the asymptotic bias of Hsh(R�S) has the same expression as
that H(R�S) in Eq. 4, after replacing R� s with R� sh�s, the number
of bins relevant to Psh(r�s). Because Pind(r�s) � 0 implies
P(r�s) � 0 and because the shuffled responses are generated
according to Pind(r�s), then it must be that R� sh�s � R� s. There-
fore H(R�S) is usually less downward biased than Hsh(R�S).

In the previous section, the four bias correction techniques
were applied to I(S;R). However, they can also be applied to
Ish(S;R). Figure 3 illustrates that, with all four bias correction
procedures, there is a considerable bias reduction when using
Ish(S;R) rather than I(S;R) (compare Fig. 3, A to C, and B to
D). The result of using shuffling in combination with PT, QE,
or BUB is that the estimates of Ish(S;R) become unbiased even
down to 28 trials per stimulus (i.e., for Ns/R�  1). This is a
factor of four better than the best performing bias correction of
I(S;R). Shuffling in combination with NSB worked about as
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well as PT or QE in some cases (Fig. 3C) but occasionally
worked less well as in Fig. 3D. This is probably because the
shuffled and real probability distribution did not match the
prior assumptions of the NSB method equally well in all cases.

A potential short-coming of the shuffling method is that
because the information estimate includes two extra terms, its
variance might be higher. However, our simulations in Fig. 3,
C and D, illustrate that the variance of Ish(S;R) is essentially
equal to that of I(S;R). This is because fluctuations in the
values of the marginal probabilities of each element of the
response array have a major impact on the fluctuations of both
H(R�S) and Hsh(R�S) [the 2 most variable terms of Ish(R;S)]
and are reflected with the same sign in both H(R�S) and
Hsh(R�S) (Montemurro et al. 2007). Thus the statistical fluc-
tuations of these entropies largely cancel out, and the resulting
variance of Ish(S;R) remains under control. Thus using
Ish(S;R) to estimate information is an efficient and simple
way to reduce the bias without significantly increasing the
variance. The code for the calculation of information I(S;R)
and Ish(S;R) (Plug-in, PT, and QE) can be found at http://
stefano.panzeri.googlepages.com/informationbiascorrections.

Considerations on the neuronal statistics and
experimental conditions

The performance of bias corrections methods on the simu-
lated data reported in the preceding text is representative of
their performance on the type of the cortical neural data that the
simulation was designed to reproduce. However, the perfor-
mance of the bias correction method does depend on the
statistics of the neuronal data and the experimental design, and
thus it is difficult to make completely general statements on the
range of validity of each method. Despite this, using analytical
considerations as well as our own experience on simulated and
real data, we can give some rules of thumb on how the
performance of the methods may vary.

AMOUNT OF CORRELATION. The correlations in the simulated
dataset were set to reproduce typical cortical within- and
cross-cell correlations. What happens if we consider datasets
with different degrees of correlation? If we consider uncorre-
lated or weakly correlated data (such as a noninteracting
population), the computation of Ish(S;R) becomes extremely
accurate down to very small number of trials because in this
case the bias of H(R�S) and that of Hsh(R�S) cancel out
perfectly (Montemurro et al. 2007). If we increase the strength
of correlation significantly (e.g., introducing an absolute re-
fractory period or a very high degree of synchrony), then
Ish(S;R) becomes more strongly downward biased. The simu-
lations in Montemurro et al. (2007) suggest that the bias of
Ish(S;R) remains small for a wide range of typical correlations.

NUMBER OF STIMULI. As the number of stimuli S becomes
larger, for fixed number of trials per stimulus Ns, the overall
number of trials N across all stimuli gets larger, thus P(r)
becomes better sampled and the bias of H(R) decreases.
However, Ns being fixed, there is no sampling change for P(r�s)
and thus the bias of H(R�S), Hind(R�S), and Hsh(R�S) remain
approximately the same. (Due to summing over more stimuli,
their variance does reduce). Because the bias of Ish(S;R) is
dominated by that of H(R�S), the sampling behavior of
Ish(S;R) therefore changes little when increasing the number of

stimuli. However, because the bias of H(R) is one of the main
components to the bias of Ish(S;R), the latter becomes less
biased (Montemurro et al. 2007).

RELIABILITY OF NEURAL RESPONSES. The preceding simulated
data were generated to match the statistics and variability of
cortical responses to simple stimuli. As is often the case with
cortical responses to simple stimuli (Gershon et al. 1998), the
variance of the spike counts was approximately proportional to
their mean. However, in some cases, and especially at the
sensory periphery (e.g., Arabzadeh et al. 2005), the response
variance may be much less than the mean. In general, the more
reliable the neural responses, the fewer the relevant responses
to a stimulus, and consequently the less the bias. (See the
example in Fig. 1). Thus when analyzing reliable neurons, the
bias problem is typically less relevant than when analyzing
unreliable neurons.

For all these reasons, it is valuable to test information
estimation methods on simulated data with statistical properties
as similar as possible to the actual experimental data of
interest.

Other procedures for information estimation

There are other approaches that either cannot be applied to
general datasets, compute the bias of continuous (rather than
discrete) neural responses or do not always converge to the true
value of information when N becomes infinite. These methods
are a useful complement to what presented in the preceding
text and are briefly mentioned in the following text. Code for
a number of information algorithms can be found at http://
neuroanalysis.org/.

ANALYTICAL APPROXIMATION. In certain cases, it may be
possible to approximate the stimulus-response probabilities
parametrically, for example with a Gaussian distribution (Ab-
bot et al. 1996; Gershon et al. 1998). Or it may be possible to
make other assumptions that strongly restrict the complexity of
the neural response and thus allow an estimation of information
though a simplified analytical expression (e.g., the power series
expansion approach) (Panzeri et al. 1999). In such cases, the
information depends on relatively few parameters and estima-
tion is therefore simple and data robust. Such procedures can
be very valuable but are only applicable in specific situations.

RESPONSE COMPRESSION BY STIMULUS DECODING. When the
number of possible responses is high (e.g., a large neural
population), a stimulus-decoding procedure can be used to
compress the response space into the “predicted stimulus” (see
e.g., Rieke et al. 1996; Rolls et al. 1998; Victor and Purpura
1996) as follows. In each trial, a stimulus s is presented and a
stimulus sP is predicted by a decoding algorithm, and the
corresponding probability P(sP�s) (of predicting stimulus sP

when stimulus s is presented) is computed. The “decoded”
information I(S;SP) is then computed as follows

I(S; SP) � �
s,sP

P(s)P(sP�s) log
P(sP�s)

P(sP)
(8)

Information theoretic inequalities ensure that I(S;SP) � I(S;R)
(Shannon 1948). The decoding procedure may be based on a
biologically plausible algorithm or on a more abstract but
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statistically efficient procedure. If the number of stimuli is
much smaller than the number of responses, stimulus-decoding
can be an effective and simple way to reduce the space of
responses. However, the stimulus decoding algorithm may
sometimes perform poorly (for example, the decoding algo-
rithm may predict poorly when operating on a large response
array containing many uninformative elements). In such cir-
cumstances, unless there is compelling evidence for the decod-
ing algorithm’s biological plausibility, not much about the
neural code can be learned from the decoded information
estimation.

BINLESS STRATEGIES. An interesting and ambitious challenge
is to quantify the information carried by a continuous repre-
sentation of the neural responses, such as considering the spike
times with infinite temporal precision rather than binning them
(as explained above) into a “binary” word using bins of finite
temporal precision. The approach of Victor (Victor 2002;
Victor and Purpura 1996) allows an estimation of the informa-
tion without relying on response discretization. This “binless”
approach can potentially address questions than cannot be
tackled by discretization methods (e.g.: how much information
could be extracted from spikes if we could measures their time
with infinite precision?), but it will not work well for small
number of trials (Nelken et al. 2006) unless the underlying
probability distribution are sufficiently smooth.

MODEL SELECTION TECHNIQUES. As explained in the preceding
text, what makes it difficult to sample response probabilities is
the presence of correlations between different neurons or
spikes. A way to limit the sampling problems posed by corre-
lations is to simplify the correlation structure by fitting it to a
simple, low-dimensional model. For example, autocorrelations
between spikes emitted by the same neurons could be simpli-
fied by assuming they are described by a Markov or suffix-tree
model (Kennel et al. 2005; Montemurro et al. 2007). When
considering a neuronal population, one may concentrate on
pair-wise correlations and ignore higher-order interactions be-
tween neurons (Panzeri et al. 1999; Schneidman et al. 2006).
This procedure has the potential to lead to huge advantage in
sampling properties. The potential disadvantage, analogous to
that of the analytic approximation methods, is that it can be
difficult to make sure that the selected model is sufficient to
describe the whole information content of the spike trains.
Also, the sampling advantage is only realized if the structure of
correlation is simple, which may not always be the case.

Conclusions

In conclusion, using bias correction procedures is generally
essential for obtaining accurate estimates of the information
conveyed by spike trains. In the absence of knowledge about
some specific feature of the neural response statistics that favor
one specific procedure over another, our recommendation is to
estimate information using Ish(S;R) in combination with one of
the general purpose bias correction procedures reviewed in the
preceding text. The use of Ish(S;R) makes the results largely
independent of the specific bias correction method used; it
allows the use of easy-to-implement asymptotic bias correc-
tions such as QE or PT; it provides information estimates with
acceptable variance and that are unbiased even when the
number of trials per stimulus is as small as the number of

possible discrete neuronal responses (i.e., Ns/R�  1). By
comparison, when using I(S;R), even with very good bias
correction, a factor of 4 more trials is typically required
(Ns/R� � 4). To better understand and evaluate any residual
errors, we also recommend that simple simulations of neural
responses with statistics similar to that of the actual neural data
of interest are performed.

A P P E N D I X : S I M U L A T I O N O F C O R T I C A L

S O M A T O S E N S O R Y N E U R A L R E S P O N S E S

In this APPENDIX, we describe briefly the procedure used to create
the simulated data that we used in the main text to test and validate the
information analysis methods.

We simulated two types of synthetic spike trains (single cell and
population) to 13 stimuli according to the simple processes described
in the following text. In both cases, we measured the parameters
describing the simulated process from real simultaneous recordings
obtained (Arabzadeh et al. 2004) from a population of neurons located
in the rat somatosensory cortex in response to 13 different stimuli
consisting of sinusoidal whisker vibrations with different vibration
energy (200 trials per stimulus were available). We refer to Arabzadeh
et al. (2004) for full details on the experimental procedures. The two
types of responses were generated as follows.

Single-cell responses

We generated simulated single-neuron responses as binary words
made of L � 8 binary letters of 0 and 1 s (silence/spike, respectively)
that represented the neural response over a 0- to 40-ms poststimulus
time window digitized using 5-ms-long time bins. To obtain the
simulated sequences, we assumed that the spikes were generated
according to a Markov process of order 3 (i.e., the spike in each time
bin depended on the activity in the previous 3 time bins). This Markov
model is defined in terms of the probability of emitting a spike in each
bin and the transition probabilities relating the current response in
each time bin to the responses in the previous three time bins. These
probabilities were measured, over the corresponding poststimulus
window and independently for each stimulus, from the real somato-
sensory recordings described in the preceding text (see Montemurro et
al. 2007 for more details).

Population responses

We simulated a population of L � 8 neurons simultaneously
responding to the 13 stimuli in the 10- to 15-ms poststimulus window.
This time window was chosen because it was the most informative
one in the experiments of Arabzadeh et al. (2004). First, using the real
spike trains from Arabzadeh et al. (2004), we constructed the “typi-
cal” probability of a neuron to fire one spike in the 10- to 15-ms
poststimulus window by taking the mean probability across all re-
corded neurons and across all trials for each stimulus. Second, we
assumed that all individual neurons in the simulated population had
the same mean firing probability obtained as explained in the preced-
ing text. This assumption was justified because all recorded neurons
had similar response profiles to the stimuli considered (Arabzadeh et
al. 2004). Third, using again real data, we measured the average level
of Pearson correlation coefficient in the considered poststimulus
window. This average Pearson cross-correlation value was obtained
averaging across all available simultaneously recorded pairs. Then we
used the procedure of Mikula and Niebur (2003) to generate corre-
lated spike trains that matched exactly the average mean firing
probability of a neuron and the average pair-wise Pearson cross-
correlation value. This generated a binary array with L � 8 elements
(0/1 meaning silence/spike from each of the L neuron).
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