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Recently it has become possible to directly measure simultaneous collective states of many bio-
logical components, such as neural activities or antibody sequences. A striking result has been the
observation that the underlying probability distributions of the collective states of these systems
exhibit a feature known as Zipf’s law. They appear poised near a unique critical point, where the
extensive parts of the entropy and energy exactly cancel. Here we present analytical arguments and
numerical simulations showing that such behavior naturally arises in systems with an unobserved
random variable (e. g., input stimulus to a neural system) that affects the observed data. The
mechanism does not require fine tuning and may help explain the ubiquity of Zipf’s law in disparate
systems.

Great advances in high throughput experimental bi-
ology now allow the joint measurement of activities of
many basic components underlying collective behaviors
in biological systems. These include firing patterns of
many neurons responding to a movie [1–3], sequences of
proteins from individual immune cells in zebrafish [4, 5],
protein sequences more generally [6, 7], and even the si-
multaneous motion of flocking birds [8]. A remarkable
result of these data and their models using, for example,
Maximum Entropy (MaxEnt) techniques [9], has been
the observation that these large biological systems often
reside close to a critical point [10]. This is most clearly
manifest directly from the data by the following striking
behavior. If we order the states σ of a system by decreas-
ing probability, then the frequency of the states decays
as the inverse of their rank, r(σ), to some power:

P (σ) ∝ 1

r(σ)α
. (1)

The states of the system thus follow a power-law behavior
and, consequently, there is no natural scale associated
with the underlying probability distribution. It has been
argued that such behavior is a model-free signature of
criticality in the underlying system [10]. Many systems
in fact exhibit α ' 1, which is termed Zipf’s law, and on
which we will focus for the remainder of this paper.

The connection between such power-law behavior and
criticality can be made rigorous using the language of
statistical mechanics [10]. Without loss of generality, we
can define the “energy” of a state σ to be

E(σ) = − logP (σ) + const. (2)

The additive constant is arbitrary, and the temperature
is kBT = 1. We can also define the “entropy”, S(E),
using the density of states, ρ(E) =

∑
σ δ(E − E(σ)), as

S(E) = log ρ(E). (3)

Both the energy E and the entropy S(E) contain exten-
sive terms that scale with the system size, N . An elegant
argument [10] converts Eq. (1) with α = 1 into the state-
ment that, for a large system, N → ∞, the energy and
entropy are exactly equal to leading order in N . Thus in
the thermodynamic limit, the probability distribution is
indeed poised near an infinite order critical point where
all derivatives beyond the first of the entropy with respect
to energy vanish to leading order in N .

The observation of Zipf’s law in myriad distributions
inferred from biological data has contributed to a re-
vival of the idea that biological systems may be poised
near a phase transition [10–15]. And yet most existing
mechanisms to generate Zipf’s law can produce a vari-
ety of power-law exponents α (see [16, 17] and reference
therein), have semi-stringent conditions [18], or require
fine-tuning to a critical point, highlighting the crucial
need to understand how Zipf’s law can arise in data-
driven models.

Here we present a mechanism that gives rise to Zipf’s
law and does not require fine-tuning. The observation
motivating this new mechanism is that the correlations
measured in biological data sets have multiple origins.
Some of these are intrinsic to the system, while the oth-
ers reflect extrinsic, unobserved sources of variation. For
example, the distributions of activities recorded from net-
works of neurons in the retina reflect both the intrinsic
structure of the network as well as the stimuli the neu-
rons receive, e. g., movies of natural scenes. Similarly,
firing patterns of a single neuron are controlled by re-
fractory constraints, but also by time-varying external
stimuli. Likewise, in the immune system, the pathogen
environment is an external source of variation that in-
fluences the observed antibody combinations. We will
show that the presence of such unobserved, hidden ran-
dom variables naturally leads to Zipf’s law. Unlike other
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mechanisms [16, 18], our approach requires a large pa-
rameter (i. e., the system size, or the number of obser-
vations, N), with power-law behavior emerging only in
the thermodynamic limit. On the other hand, our mecha-
nism does not require fine-tuning or any special statistics
of the hidden variables [19]. In other words, Zipf’s law is
a fairly general feature that emerges when marginalizing
over relevant hidden variables.

A simple model — In order to understand how a hid-
den variable can give rise to Zipf’s law and concomitant
criticality, we start by examining a simple case of N con-
ditionally independent binary spins σi = ±1. The spins
are influenced by a hidden variable β drawn from a proba-
bility distribution q(β), which is smooth and independent
of N . In particular, we consider the case

P (σ|β) =

N∏
i=1

P (σi|β) =

N∏
i=1

eβσi

2 coshβ
. (4)

We consider a scenario where the parameter β changes
rapidly compared to the duration of the experiment, so
that the probability of the measured data, σ, is averaged
over β:

P (σ) = P (m) =
1

2N

∫
dβ q(β)eN(βm−log cosh β) (5)

≡ 1

2N

∫
dβ q(β)e−NH(m,β), (6)

where we have defined the average magnetization m =∑
i σi/N , and the last equation defines H(m,β). Note

that the distribution P (σ) does not factorize unlike
P (σ|β). That is, the conditionally independent spins
are not marginally independent. Indeed, as in [20], a
sequence of spins carries information about the underly-
ing β and hence about other spins (e. g., a prevalence
of positive spins suggests β > 0, and thus subsequent
spins will also likely be positive). We note that the sim-
ple model in Eq. (6) is intimately related to the MaxEnt
model constructed in [3] to match the distribution of the
number of simultaneously firing retinal ganglion cells.

In the limit N � 1, we can approximate the integral
in Eq. (6) by Laplace’s method (saddle-point approxima-
tion) to get

P (σ) ≈ 2−Nq(β∗)eN(β∗m−log cosh β∗), tanhβ∗ = m. (7)

Here β∗ is the maximum-likelihood estimate of β given
the data, σ. In deriving Eq. (7) we assumed that the
distribution q(β) has support at β∗ and is sufficiently
smooth, e.g. does not depend on N , so that the saddle-
point over β is determined by H, and not by the prior. In
other words, we require the Fisher information F(β∗) ≡
−N ∂2H

∂β2

∣∣∣
β∗

= N(1−m2) � 1, and for the location and

curvature of the saddle point to not be significantly mod-
ulated by q(β). These conditions are violated at m = ±1,

0 5 10 15 20 25 30 350

5

10

15

20

25

30

Energy

En
tro

py

 

 
1/10
1
100

FIG. 1: Entropy, S(m), vs energy, E(m), for N = 100 identi-
cal and conditionally independent spins. Zipf’s law (E = S)
emerges as the standard deviation, s ∈ {0.1, 1, 100}, of the
Gaussian distribution characterizing the hidden variable β is
increased. Notice that there is a nearly perfect Zipf’s law for
2 orders of magnitude in s. The mean of q(β) is set to zero,
and thus there is a two-fold degeneracy between states with
magnetization m and −m.

and there is a semi-infinite range of β that could have
contributed to such states. For all nonzero values of F ,
the saddle-point will eventually dominate over q(β) as
N →∞. However, the convergence is not uniform.

Substituting Eq. (7) into Eq. (2) and using the iden-

tities tanh−1m = 1
2 log

(
1+m
1−m

)
and cosh [tanh−1m] =

(1 − m2)−1/2, we obtain the energy to leading order in
N :

E(m) ≈ −N
[(

1+m
2

)
log
(
1+m
2

)
+
(
1−m
2

)
log
(
1−m
2

)]
≡ NH(m). (8)

Here we neglected subdominant terms that come from
both the prior q(β∗) and the fluctuations about the sad-
dle point. It is worth noting that this energy considered
as a function of the σi, rather than m, includes interac-
tions of all orders, not just pairwise spin couplings.

We can also calculate the entropy S(m) associated with
the magnetization m. For a system of N binary spins,
each state with magnetization m has K = N

(
1+m
2

)
up

spins, and there are
(
N
K

)
such states. Using Stirling’s ap-

proximation, one finds that the entropy takes the familiar
form S(m) = log

(
N
K

)
≈ NH(m). Of course, this is the

same as the energy, Eq. (8), for the system with a hidden
variable β, to leading order in N .

The analytic equivalence between energy and entropy
only applies when N → ∞. To verify our result for a
finite N , we numerically calculate E(m) from Eq. (6)
with q(β) chosen from a variety of distribution fami-
lies (e. g., Gaussian, exponential, uniform). For brevity,
we only show plots for Gaussian distributions, but the
others gave similar results. Figure 1 plots the entropy,
S(m) = log

(
N
K

)
, vs the energy, E(m), for N = 100 con-
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ditionally independent spins, where q(β) has mean 0 and
varying standard deviation s ∈ {0.1, 1, 100}. For small
s, the hidden variable β is always close to zero, there
is no averaging, and all states are nearly equally (im)-
probable. As s increases, entropy becomes equal to en-
ergy over many decades of energies modulo an arbitrary
additive constant. This holds true for two orders of mag-
nitude of the standard deviation s, confirming that our
mechanism does not require fine tuning.

The stable emergence in the thermodynamic limit,
N → ∞, with no fine-tuning, distinguishes our setup
from a classic mechanism explaining 1/f noise in solids
[18] and certain other biological systems [21]. We could
have anticipated this result: if the extensive parts of
the energy and entropy do not cancel, in thermodynamic
limit, the magnetization will be sharply peaked around
the m that minimizes the free-energy. Thus in order for
there to be a broad distribution of magnetizations within
P (σ) the extensive part of the free-energy must be iden-
tically zero. In other words, the observation of a broad
distribution of an order parameter-like quantity in data is
indicative of a Zipfian distribution. One straightforward
mechanism to produce a broad order parameter distribu-
tion for large N is to couple it to a hidden fluctuating
variable.

A generic model — We can generalize the calculation
above to show that Zipf-like criticality is a generic prop-
erty of distributions with hidden variables, and is not
a consequence of the specific model in Eq. (4). In par-
ticular, it does not require the observed variables to be
identical or even conditionally independent. To do so, we
make use of the Gärtner-Ellis theorem from Large Devi-
ations theory [22]. Consider a real random variable AN ,
parameterized by an integer N , and define the cumulant
generating function by λ(k) = limN→∞

1
N log 〈eNkAN 〉.

The theorem states that if λ(k) exists and is differen-
tiable for all k, then the probability, P (AN ∈ da), that
AN takes values in the interval [a−da, a+da] is approx-
imated by P (An ∈ da) ≈ e−NI(a)da, as N → ∞, with
the rate function I(a) = supk{ka− λ(k)}.

To apply the theorem, we assume that, as above, the
probability distribution for σ depends on an unobserved
hidden variable β drawn from a distribution q(β) so that

P (σ) =

∫
dβq(β)e−NβεN (σ)−logZ(β), (9)

where Z(β) =
∫
dσe−NβεN (σ) = 〈e−NβεN (σ)〉, and inter-

actions among the spins are encoded in εN (σ).
We can think of εN (σ) as a random variable through its

dependence on σ. However, henceforth we suppress the
explicit dependence of εN (σ) on σ. We define the inten-
sive free-energy g(β) = − limN→∞

1
N logZ(β), which is

also minus the cumulant generating function for the ran-
dom variable −εN . Once again we evaluate Eq. (9) using
the saddle-point approximation, with the same caveats as
discussed after Eq. (7). To leading order in N , one has
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FIG. 2: Main plot: Plot of log10 probability vs. log10 rank
of the most frequent 103 states for a system of N = 200 non-
identical, conditionally-independent spins (model (a)). Plots
are an average over 200 realizations of the quenched variables
hi that break the symmetry between spins, with 5×105 sam-
ples taken for each realization. Parameters: hi ∼ N (µ =
1, s = 0.3), β ∼ N (µ = 0, s = 2). Red line: least-squares fit
to patterns 100−1000, slope of −1.012. Inset: Same as above,
except for a model of N = 200 spins with quenched random
interactions Jij and biases hi (model (b)). Average over 10 re-
alizations of Jij and hi chosen from Jij ∼ N (µ = 1, s = 0.5),
hi ∼ N (µ = 1, s = 0.85), β ∼ N (µ = 0.5, s = 0.5), with
3 × 105 samples taken for each realization. Red line: least-
squares fit to patterns 100− 1000, slope of −1.011.

P (σ) ≈ q(β∗)e−NH(εN ) with H(εN ) = infβ{βεN −g(β)},
and β∗ is the arg min of this equation. On the one
hand, we see from Eq. (2) that, to the leading order in
N , the energy is equal to E(σ) = NH(εN ). On the
other hand, from the Gärtner-Ellis theorem, we know
that the density of states at a given energy is just
ρ(εN ) ≈ e−NI(−εN ) = eNH(εN ), so that the entropy from
Eq. (3) is S(εN ) = log ρ(εN ) = NH(εN ). Thus, quite
generally, in the presence of a hidden variable, and with
N → ∞, the extensive parts of the energy and entropy
are equal, and Zipf’s law emerges, apart from the config-
urations of σ where F = 0 or log q(β∗) or its derivatives
are singular. It should also be noted that if the Hamilto-
nian is such that there exists a first-order phase transition
as a function of β with other parameters held fixed, the
Gärtner-Ellis theorem does not hold, and Zipf’s law need
not be observed. Finally, this mechanism can be gener-
alized to K hidden variables, in which case σi must be
conditionally independent Potts spins (i. e. categorical)
or continuous variables. This setup can be interpreted
as inferring the values of K parameters from N observa-
tions [20], and these relations to learning theory will be
explored in the future.

We numerically test the validity of our analytic result
for finite N in two systems more complex than Eq. (4):
(a) a collection of non-identical but conditionally inde-
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pendent spins, and (b) an Ising model with random in-
teractions and fields. The main graph of Fig. 2 shows a
Zipf plot for system (a), so that

P (σ|β) =

N∏
i=1

P (σi|β) =

N∏
i=1

e−βhiσi

2 coshβhi
, (10)

where hi are quenched, Gaussian distributed random
variables unique for each spin. In the simulations, the
hidden variable β was drawn from a Gaussian distribu-
tion, but similar results were found for other distribu-
tions. The quenched fields hi break the symmetry be-
tween spins. In agreement with our derivation, on a log-
log plot, the states generated from simulations fall on a
line with slope very close to −1 (Fig. 2), the signature of
Zipf’s law. The first few states deviate slightly from our
bulk prediction, but the overall agreement is remarkable.

To verify that conditional independence is not required
for this mechanism, we studied system (b) that general-
izes the model in Eq. (10) to include random exchange
interactions between spins:

P (σ|β) ∝ e−β( 1
N

∑
i6=j Jijσiσj+

∑
i hiσi), (11)

where the Jij and hi are quenched Gaussian distributed
interactions and fields, and β is as above. As shown in
Fig. 2 (inset), the data again fall on a line with slope
nearly equal to −1. In Eq. (11), β multiplies all terms in
the exponent. If interactions are present that don’t cou-
ple to β, the energy and entropy will differ by precisely
those terms. However, if such interactions are weak, as is
often observed in inferred MaxEnt distributions [2, 23],
Zipf’s law may still approximately hold.

To see our mechanism at work in data, consider a
neural spike train from a single blowfly motion-sensitive
neuron H1 stimulated by a time-varying motion stimu-
lus, β(t) (see [24, 25] for experimental details). We can
discretize time with a resolution of τ and interpret the
spike train as an ordered sequence of N spins, such that
σi = ±1 corresponds to the absence/presence of a spike
in a time window t ∈ [τ(i − 1), τ i). The probability of
a spike in a time window depends on β. However, neu-
ral refractoriness prevents two spikes from being close to
each other, irrespective of the stimulus, resulting in a re-
pulsion that does not couple to β. The rank-ordered plot
of spike patterns produced by the neuron is remarkably
close to the Zipf behavior (Fig. 3). We also simulated a
refractory Poisson spike train using the same values of β.
We match the mean firing rate and the refractory period
to the data, so that P (σi|β) is given by Eq. (4), with a
hard repulsive constraint between positive spins extend-
ing over the refractory period. The rank-ordered plot for
this model that manifestly includes interactions uncou-
pled from the hidden stimulus β still exhibits Zipf’s law
(Fig. 3).

Discussion — It is possible that evolution has tuned bi-
ological systems or exploited natural mechanisms of self-

0 1 2 3 4 50

1

2

3

4

5

6

log rank

lo
g 

co
un

t

FIG. 3: Rank-count plot from a motion-sensitive blowfly neu-
ron, logs base 10; discretization is τ = 1 ms, and N = 40.
Black: empirical rank-ordered counts. Blue: rank-ordered
counts from a refractory Poisson spike train with the same
input stimulus, same mean firing rate, and the same refrac-
tory period of 2 ms. Red: slope of −1 guide to the eye.

organization [11] to arrive at Zipf’s law. Alternatively,
informative data-driven models may lie close to a critical
point due to the high density of distinguishable models
there [26]. Our work suggests another possibility: Zipf’s
law can robustly emerge due to the effects of unobserved
hidden variables. While our approach is biologically mo-
tivated, it is likely to be relevant to other systems where
Zipf’s law has been observed, and it will be interesting
to unearth the dominant mechanisms in particular sys-
tems. For this, if a candidate extrinsic variable can be
identified, such as the input stimulus to a network of
neurons, its variance could be modulated experimentally
as in Fig. 1. Our mechanism would expect Zipf’s law
to appear only for a broad distribution of the extrinsic
variable, and for N � 1 observed variables.

While our mechanism does not require fine-tuning, it
nonetheless suggests that biological systems operate in
a special regime. Indeed, the system size N required
to exhibit Zipf’s law depends on the sensitivity of the
observed σ to the variations of the hidden variable. If the
system is poorly adapted to the distribution of β, e. g.
the mean of q(β) is very large or its width is too small to
cause substantial variability in σ (as in Fig. 1, s = 0.1), a
very large N will be required. In other words, a biological
system must be sufficiently adapted to the statistics of
β for Zipf’s law to be observed at modest system sizes.
Indeed, this type of adaptation is well established in both
neural and molecular systems [27–30].
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