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Abstract: The authors introduce a quantitative measure of the capacity of a small biological network to evolve.
The measure is applied to a stochastic description of the experimental setup of Guet et al. (Science 2002, 296,
pp. 1466), treating chemical inducers as functional inputs to biochemical networks and the expression of a
reporter gene as the functional output. The authors take an information-theoretic approach, allowing the
system to set parameters that optimise signal processing ability, thus enumerating each network’s highest-
fidelity functions. All networks studied are highly evolvable by the measure, meaning that change in function
has little dependence on change in parameters. Moreover, each network’s functions are connected by paths
in the parameter space along which information is not significantly lowered, meaning a network may
continuously change its functionality without completely losing it along the way. This property further
underscores the evolvability of the networks.
Many signals in cells are processed using a network of
interacting genes: exogenous signals affect expression of
genes coding for transcription factor proteins, which in
turn regulate the expression of other genes. Although early
works have suggested that the connectivity of such
regulatory networks dictates their function [1–3], recent
studies offer evidence that a network with fixed
connectivity can change its function simply by varying its
biochemical parameters [4–7]. The diversity of a network’s
achievable functions and the ease with which it can realise
them are central to its capacity to evolve epigenetically,
without slow and costly modifications to the genetic code,
and thus central to the evolutionary capacity of the
organism as a whole.

The evolvability of a regulatory network has been a topic
of much discussion in recent literature [7–12], but little
has been done to quantify the concept in a principled
way. Here we propose a quantitative measure of network
evolvability, and we apply it to a set of small regulatory
Syst. Biol., 2009, Vol. 3, Iss. 5, pp. 379–387
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networks, such that a principled comparison can be made
across networks. Networks are taken from the
experimental setup of Guet et al. [4] and modelled
stochastically. We find biochemical parameters that
optimise the information flow between a chemical ‘input’
signal and a particular ‘output’ gene, and we indeed find
that a single network performs different functions at
different sets of optimal parameters. We argue that a
more evolvable network will be able to access a richer
diversity of its functions with smaller changes in its
parameters, and as such we quantify evolvability using a
measure of anti-correlation between parametric and
functional change.

We find that while there are small differences among
networks’ evolvability scores, all are highly evolvable,
meaning that the magnitude of a functional change has
little dependence on the parametric change required to
produce it. Moreover, we find that transitions among a
network’s optimally informative functions can be made
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without significant loss of the input–output information
along the way. By proposing and demonstrating a
principled evolvability measure, we reveal these features
quantitatively; both features suggest a high capacity of the
studied regulatory networks to evolve.

1 Methods
First, we briefly outline the methods used to develop a
quantitative measure of evolvability; each step is discussed
in more detail in the sections that follow, and further detail
can be found in previous work [5]. The system of interest
is a small (four-gene) transcriptional regulatory network. As
in Guet et al. [4], we treat the presence or absence of
chemical inducers (small molecules that affect the efficacy
of the transcription factors) as the inputs to the network,
and the expression of a particular gene as the output. We
use a stochastic model to find expression level distributions
at a steady state, and we search for the model parameters
that maximise the mutual information between input and
output. We characterise the function that the network
performs by the order in which the output distributions
corresponding to each input state are encoded [13]; a single
network can perform different functions at different
parameter settings. We define the evolvability of the
network as the ability to perform a diverse set of functions
with only small changes in parameters, and we quantify
The Institution of Engineering and Technology 2009
evolvability accordingly using a measure of anti-correlation
between pairwise function distance and parameter distance.

1.1 Model

Following the experimental setup of Guet et al. [4], we study
all networks that can be built out of three genes A, B and C, in
which each gene is regulated by one other gene, and
regulation edges can be up-regulating or down-regulating.
Additionally, as in the experiment, gene C down-regulates
a ‘reporter’ gene G (e.g. GFP), whose expression we treat as
the functional output of the network. This yields a total of
24 networks, as shown on the horizontal axis of Fig. 2.
Also in analogy to the experiment, the efficacy of each
transcription factor can be inhibited by the presence of a
chemical inducer s, a small molecule that binds to the
transcription factor and lowers its affinity for its binding
site. The presence or absence of the chemical inducers
sA , sB and sC corresponding to each transcription factors A,
B and C define the functional input state of the network.
The inhibitory effect of each inducer is illustrated for an
example network in the top panel of Fig. 1a, and the eight
possible input states i, determined by the presence or
absence of the inducers, are listed in the bottom panel.

For a typical prokaryotic regulatory network inside a cell,
intrinsic noise arising from fluctuations in the small
Figure 1 Defining evolvability

a Top: a sample regulatory network (see Fig. 2 for diagrams of all 24 networks studied). A, B and C are genes whose transcription factors
regulate each other’s expression according to the given network topology, and G is a ‘reporter’ gene, such as GFP. Sharp arrows indicate up-
regulation, whereas blunt arrows indicate down-regulation (all arrows are blunt in this network). sA, sB and sC are chemical inducers that
reduce the efficacy of the corresponding transcription factors. Bottom: table showing the eight input states i that are defined by the
presence or absence of each chemical inducer in the cell (þ indicates presence and 2 indicates absence). In the model, the sA, sB and
sC are scale factors that are free parameters (greater than 1, to effect an interference with transcriptional regulation) if the inducer is
present, and are set to 1 if the inducer is absent
b Two maximally informative functions performed by the sample network at two different parameter settings. Function is characterized by
the order of the output distributions P (Gji), the probability of expressing G proteins per cell given that the system is in input state i.
Specifically, the function is quantified by the vector ~r of ranks of the P (Gji), as shown for each function in the upper right corner. For
example, in the top function, the first output distribution (i ¼ 1) is ranked 4th, the second (i ¼ 2) is ranked 7th, the third (i ¼ 3) is
ranked 1st and so on, so the rank vector is ~r ¼ (4, 7, 1, . . . )
c Plot of function distance Df (9) against parameter distance Du (8) for all pairs of maximally informative model solutions (340 solutions
were used for this network). Function distance is scaled such that the swapping of two adjacent output states from solution one to solution
two gives Df ¼ 1, and parameter distance is scaled such that the doubling of one parameter from solution one to solution two gives
Du ¼ 1. The point corresponding to the pair of functions in (b) is circled. The evolvability score for this network, calculated from these
data via (10), is E ¼ 0.482 + 0.001
IET Syst. Biol., 2009, Vol. 3, Iss. 5, pp. 379–387
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numbers of species [14, 15] is the primary factor limiting
transmission of information from a chemical input to a
genetic output [5, 13, 16, 17]. This observation has two
important consequences for modelling: (a) a realistic model
should capture not just mean protein concentrations, but
probability distributions over numbers of proteins [18, 19],
and (b) the most biologically relevant model parameters will
retain an optimal flow of information in the presence of this
noise [5, 20, 21]. Indeed, information seems to be
maximised in at least some real biological systems (see e.g.
[20]), and theoretical considerations for when information
maximisation is important are discussed in detail in [5].

The first consequence is most fully addressed by solving
the chemical master equation [22], which describes the
time evolution of the joint probability distribution for
the numbers of all molecules in the system given the
elementary reactions (which are ultimately a function of the
network topology). For our systems, the master equation is
not analytically solvable. Progress can be made either by
Monte-Carlo simulation of the master equation [23], or by
approximating the master equation, for example with the
linear-noise approximation (LNA) [5, 13, 22, 24, 25].
Since it does not rely on sampling, the LNA is much more
computationally efficient (and thus more amenable to a
search for high-fidelity model parameters), and in previous

Figure 2 Evolvability scores for all networks

Left: All 24 regulatory networks studied are shown along the
horizontal axis, ranked by evolvability score E (sharp arrows
denote up-regulation, and blunt arrows denote down-
regulation). E values are calculated via (10), with error bars
showing the sampling error, calculated as described in the text.
Right: Two null distributions generated according to the null
hypothesis that the function distance is independent of the
parameter distance. The solid line is the distribution of E scores
calculated from solution sets in which the locations in
parameter space were held fixed, and the function assignments
were randomly permuted. The dotted line is the distribution of
E scores calculated from solution sets in which the locations in
parameter space were held fixed, and the function assignments
were drawn randomly from the set of possible functions for the
given network. Both distributions are averages over the
individual distributions for each network, as there was no
correlation between the means or variances of the individual
distributions and the networks’ E scores
T Syst. Biol., 2009, Vol. 3, Iss. 5, pp. 379–387
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work [5] we found the distributions obtained via the LNA
were practically indistinguishable from those obtained via
stochastic simulation for copy numbers above 10–20.

In the LNA, the reaction rates in the master equation are
linearised, and the steady-state solution is a multivariate
Gaussian distribution [5, 13, 22]. The individual species’
marginal distributions are thus described at the level of
Gaussian fluctuations, with means given by the steady-state
solution to the deterministic dynamical system describing
mean protein numbers. In this context, mean expression has
been modelled with remarkable success by combining
transcription and translation into one step [26–28], and
accordingly, for each of our networks, we use the following
dynamical system in which species are directly coupled to
one another

dXj

dt
¼ aj(Xpj

=spj
)� RjXj (1)

where the Xj [ {A, B, C , G} are the expression levels (in units
of proteins per cell) of the four genes, the Rj are degradation
rates, and the aj are production rates which depend on
the expression level Xpj

and a scale factor spj
of the parent

pj of gene j (where the parent–children connectivity is
determined by the network topology). The scale factors,
spj

[ {sA , sB, sC} � 1, incorporate the inhibitory effect of
each chemical inducer (when present) by reducing the
effective transcription factor concentration; when an inducer
is absent, its scale factor is set to 1. Regulation is modelled
using Hill functions

aj(x) ¼

a0 þ aj

xn

xn þ (Kj)
n up-regulating

a0 þ aj

(Kj)
n

xn þ (Kj)
n down-regulating

8>>><
>>>:

(2)

where a0 (kept the same for all genes) is the basal production
rate, a0 þ aj is the maximal production rate, Kj is the
binding constant or the protein number at which production
is half-maximal and n is the cooperativity, which we set to 2.
Since a cooperativity of one is not common in bacterial gene
regulation (of which our system is a model), in order to limit
the number of optimised parameters we fix n to 2. Fixing
the cooperativity at other constant values greater than two
has marginal effects compared to n ¼ 2; for further
discussion see [5]. Note from (1) and (2) that increasing the
scale factor can be equivalently interpreted as increasing the
effective binding constant or lowering the binding affinity.
Steady states of (1) are found by solving (using MATLAB’s
roots) the polynomial equations that result from setting
the left-hand side to zero, and keeping only those solutions
for which the Jacobian matrix J of (1) has eigenvalues whose
real parts are all negative.

The variances of the marginal distributions are the
diagonal entries in the covariance matrix J, which under
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the LNA satisfies a Lyapunov equation

JJþJ J T
þD ¼ 0 (3)

where D is a diagonal matrix with, for the system in (1), the jth
entry equal to aj(Xpj

=spj
)þ RjXj . Equation (3) is solved using

a standard Lyapunov solver (MATLAB’s lyap). Since the
steady-state distributions are Gaussian under the LNA,
the solution is fully specified by the means and the variances.
The distributions of particular functional importance are
P(Gji), the probability of expressing G reporter proteins per
cell given that the chemical inducers are in state i.

To address the second consequence, that biologically
relevant solutions often optimise information flow in the
presence of intrinsic noise [20, 21], as in previous work [5]
we allow the system to set parameters that maximise the
mutual information I [29] between input state i and output
expression G, where

I ¼
X

i

ð
dG P(i, G) log2

P(i, G)

P(i)P(G)
(4)

¼
1

jij

Xjij
i¼1

ð
dG P(Gji) log2

jijP(Gji)Pjij
i0¼1 P(Gji0)

(5)

Here I is measured in bits, and the second step uses
P(i, G) ¼ P(Gji)P(i), P(G) ¼

P
i0 P(i0, G), and an assertion

that each input state occurs with equal likelihood (i.e.
P(i) ¼ 1/jij, where jij ¼ 8 is the number of input states) to
write I entirely in terms of the model solutions P(Gji).

Two computationally trivial ways for the system to
maximise I are (a) to use an unbounded number of reporter
proteins G to encode the signal, and (b) to set degradation
rates such that G responds on a timescale much longer than
that of the upstream genes (called a ‘stiff’ system), which
has the effect of averaging out the upstream noise. In
contrast, in cells, protein production requires energy, which
sets a limit on the number of proteins that a cell can
produce, and most protein degradation rates are
comparable. Therefore we seek model parameters ~u� that
optimise a constrained objective function

~u� ¼ arg max
~u

I � lkXjl� gkRpj
l=RG

h i
(6)

where the constants l and g are a metabolic cost and a
constraint against stiffness, respectively, the average kXjl is
taken over all genes, and the average kRpj

l is taken over
upstream genes A, B and C. Optimisation is performed
using a simplex algorithm (MATLAB’s fminsearch) in
a 15-dimensional parameter space, as

~u¼ {a0, aA , aB, aC , aG , KA , KB, KC , KG , RA , RB, RC , sA , sB, sC}

(7)
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(RG was fixed at 4 � 1024 s21 to set a biologically realistic
degradation rate scale).

Varying initial parameters yields many local optima ~u� at
which the input signal may be encoded differently in the
output distributions P (Gji). For example, two optimally
informative solutions are shown in Fig. 1b for the network
in Fig. 1a. Intuitively, maximising mutual information has
resulted in sets of distributions that are well separated, such
that knowledge of the output G would leave little
ambiguity about the original input state i. We point out,
however, that the ordering of the output distributions is
different between the two solutions, meaning that the
network is performing two different functions at two
different points in parameter space. The relationship
between diversity of such functions and exploration of
parameters is crucial to the discussion of evolvability; in the
next section we develop a quantitative measure of
evolvability in the context of this system.

1.2 Quantifying evolvability

As seen in several experimental and numerical studies [4–7],
and in data from the model described above, a single regulatory
network can perform different functions simply by varying its
biochemical parameters. Intuitively, a network should be
deemed more evolvable if it is able to access a richer diversity
of its functions with smaller changes in its parameters.
Quantification of this concept requires definitions of both
parametric and functional change.

As in Barkai et al. [30], we characterise the magnitude of
the parametric change in going from one model solution to
another by calculating fold changes in the model
parameters. Specifically, we define a parameter distance Du

between two solutions as the Euclidean distance in the logs
of the parameters

Du ¼ j log2
~u�1 � log2

~u�2j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xjkj
k¼1

log2 (u�1,k=u
�
2,k)

� �2
vuut (8)

where jkj ¼ 15 is the number of parameters. Under this
definition, equal fold changes in each parameter constitute
equal contributions to Du (for scale, the doubling of one
parameter corresponds to Du ¼ 1). We note that although
this definition is motivated by published work [30], it is
only one of a number of possible definitions of parameter
distance, and the results herein should be interpreted
within this context.

As in previous work [13] and in the original experiment of
Guet et al. [4], we define the function of a network
analogously to logic in electrical circuits (AND, OR, XOR
etc.), in which the function is determined by the
magnitude of the output’s response to each input state (for
example, with two inputs, AND would be defined by a
‘high’ output in response to the [þþ] state, and a ‘low’
IET Syst. Biol., 2009, Vol. 3, Iss. 5, pp. 379–387
doi: 10.1049/iet-syb.2008.0165
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output in response to the [22], [2þ] and [þ2] states).
Since, in our setup, optimising information produces well-
separated output distributions P (Gji) (see Fig. 1b), we
extend this idea beyond a simple ‘high’ or ‘low’ output
classification, and characterise function by the order of the
P (Gji). Specifically, we record a vector ~r of ranks of the
P (Gji); for example, in the top panel of Fig. 1b, the first
output distribution (i ¼ 1) is ranked 4th, the second
(i ¼ 2) is ranked 7th, the third (i ¼ 3) is ranked 1st and so
on, so the rank vector is ~r ¼ (4, 7, 1, . . . ). We then define
the function distance Df between two solutions in terms of
the vector distance between their rank vectors

Df ¼
1

2
j~r1 � ~r2j

2
¼

1

2

Xjij
i¼1

(r1,i � r2,i)
2 (9)

(for scale, the swapping of two adjacent output distributions
corresponds to Df ¼ 1). In networks in which the overall sign
of the feedback cycle is negative, there can exist parameter
values that support multiple stable fixed points. This would
correspond to one or more of the output distributions being
multimodal. Since we effectively minimise overlap of output
states by optimising information transmission, such solutions
are rare (13% occurrence in all negative-feedback networks).
When they do occur, we equally weight each fixed point in
constructing the multimodal Gaussian output, and continue
to define ~r by the ranks of the means of the output
distributions. Other function distances, including other
permutation distances between the rank vectors, and a
continuous distance measure defined by averaging the
Jensen–Shannon divergence [31] between corresponding
output distributions in the solution pair, produced similar
results, as discussed in the Results section.

It is now clear that, if a network is better able to explore its
function set with smaller changes in its parameters (i.e. is
more evolvable by our definition), then it will exhibit less
correlation between Df and Du than other networks.
Therefore we define an evolvability score E for a given
network as a measure of anti-correlation between Df and
Du, calculated for every pair of its optimal model solutions.
If two solutions from the same local information maximum
are treated as distinct, they will have the same function but
(slightly) different parameters; this will artificially lower E.
To correct for this effect, we merge (at their mean
parameter location) nearest neighbours whose functions are
the same until all nearest neighbours have different
functions. This procedure reduced networks’ solution sets
by at most �10%. Specifically, evolvability is defined as

E ¼ 1� (tþ 1)=2 (10)

where t is Kendall’s tau [32], a non-parametric measure of
correlation between all pairwise Df and Du; we rescale t

such that 0 , E , 1 and take its complement to obtain an
anti-correlation. Using a non-parametric correlation statistic
has the advantage that our evolvability measure remains
Syst. Biol., 2009, Vol. 3, Iss. 5, pp. 379–387
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invariant upon any monotonic rescaling in the definitions
of either Du or Df (even with this advantage, we again
remind the reader that (10) represents a particular choice of
correlation function, and the results herein should be
interpreted in this context). Additionally, we note that E
can be thought of as the probability that a pair of solutions
drawn at random have a larger Df than another pair given
that the first pair had a smaller Du, or as the fraction of
discordant pairs of (Du, Df ) data points. Many sources
(including MATLAB’s built-in corr) use an adjustment
to the calculation of t in the case of tied data (see e.g.
[33]). In keeping with the interpretation of our statistic as a
probability, we do not introduce an adjustment; we simply
count each tied pair as neither concordant nor discordant
(i.e. if, for example, in computing the fraction of
concordant pairs, we assigned each concordant pair a 1 and
each discordant pair a 0, a tied pair would count as 0.5).

Function distance Df against parameter distance Du for all
pairs of model solutions is plotted in Fig. 1c for the example
network in Fig. 1a. The evolvability score calculated from
these data is E ¼ 0.482 which, since there is little
correlation (or anti-correlation) between Df and Du in this
case, is near the middle value E ¼ 0.5.

We obtain a fairer estimate of E and an estimate of its error
by subsampling. Specifically, using jack-knifing as in [34,
35], we compute the mean Ē and standard error dE in E
values calculated on randomly drawn subsets of a given size
n (from the full data set of size N ). We then repeat for
various n, plot Ē + dE against N/n, and fit with a line (all
plots generated were roughly linear). The value and
uncertainty of the N/n ¼ 0 intercept give an estimate of E,
extrapolated to infinite data, and a measure of sampling
error, respectively. The sampling error estimated in this way
for the data in Fig. 1c is 0.001.

2 Results
2.1 All networks studied are evolvable

Using the methods described above, between 200 and 500
optimally informative model solutions were obtained, and
an evolvability score E was calculated for each of the 24
networks shown on the horizontal axis of Fig. 2. The
constraints were set to l ¼ 0.01 or 0.005, for an average
protein count of �100–200, and g ¼ 0.001, allowing a
maximum of about three orders of magnitude between
upstream and reporter degradation rates. Solutions with
mutual information values below I ¼ 2 bits were discarded
as not transmitting high enough information (for scale, a
solution with perfectly overlapping output distributions
would have I ¼ 0 bits, and a solution with eight perfectly
non-overlapping output states would have I ¼ 3 bits).

Networks’ evolvability scores are shown in Fig. 2. All 24
networks have E values within 5% of 0.5 (recall that E is
bounded by 0 � E � 1), which means that, in all cases,
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there is little correlation between change in function and
change in parameters, suggesting that all networks studied
are evolvable. Using other function distances, including
other permutation distances between the rank vectors, and
a continuous distance measure defined by averaging the
Jensen–Shannon divergence [31] between corresponding
output distributions in the solution pair, produced similar
results: E scores very near 0.5, indicating little correlation
between functional and parametric distances.

The claim that function has little dependence on
parameters can be tested more rigorously by comparison
with a null hypothesis. The null hypothesis that function is
independent of parameters was implemented in two ways.
First, given each network’s solution set, locations of
solutions in parameter space were kept the same, but the
functions associated with each solution were randomly
permuted. Second, locations of solutions in parameter space
were again kept the same, but functions were drawn
randomly from the set of possible functions for each
network (not all 8! rankings of the output distributions are
allowed functions for a given network; as shown in previous
work [13], the topology of the network constrains the set
of possible steady-state functions). Specifically, since each
gene is regulated by one other gene, allowed functions are
‘direct’ functions: those in which the output distribution
responds to a change in inducer concentration according to
the direct path from inducer to reporter (i.e. ignoring
feedback pathways). For example, for the network in
Fig. 1a, in going from state [222] (i ¼ 1) to [2 þ2]
(i ¼ 3), sB increases; the direct path from sB to G consists
of a repression–repression–repression chain, which is net
repressive, so the output distribution must decrease (as it
does in both panels of Fig. 1b). With three inducers, there
are 48 direct functions for each network; this is the set
from which functions are randomly drawn in the second
implementation of the null hypothesis. In each case, the
function reassignment was performed many times, and the
E value was computed each time to produce a distribution
of null E scores. There was no correlation between the
means or variances of the networks’ null distributions and
their actual E scores, so the individual null distributions
were averaged across networks. Averaged null distributions
from each of the two implementations are qualitatively
similar, and both are shown in Fig. 2. All networks’ actual
E values lie well within both null distributions (the smallest
p-value is 0.023, and, with 24 networks, we expect at least
one to attain a p-value lower than 1/24 ¼ 0.04 simply by
chance). This means that none of the networks’ solution
sets significantly differ from a set in which the function
performed is independent of the setting of the parameters.

Even though all E values lie within the null distribution, only
two lie above the null mean of 0.5; the probability of two or
fewer values lying above the mean by chance is 2 � 1025. For
a network with E much larger than 0.5, the parameter and
the functional distances would be anti-correlated, and the
network function would evolve dramatically with very small
The Institution of Engineering and Technology 2009
parameter changes. Thus the vast majority of the networks
studied show a statistically significant, yet unexpectedly
small, positive correlation among the functional and the
parametric distance.

Despite the fact that the E values lie in a narrow range,
sampling errors are small (see Fig. 2), meaning that the
networks can be ranked with some confidence according to
their evolvability. We asked statistically whether this
ranking was correlated with any topological features of the
network, including the sign of the regulation of each gene,
the length and net sign of the feedback cycle, and the total
number of activators and repressors in the network, both in
and out of the cycle. Correlation was tested for features
with categorical values using a Wilcoxon rank-sum test [36,
37] (for two categories) or a Kruskal–Wallis H-test [38]
(for more than two categories), and for features with real
values using Kendall’s t [32]. No topological feature
significantly correlated with E. The lowest p-value was
0.04, and, since many correlations were tested for at once, a
Bonferoni correction [39] showed that the likelihood of
obtaining a p-value this low simply by chance was 0.33.
Thus we identified no topological aspect that significantly
imparted higher or lower evolvability to the networks.

2.2 Changing functions without a large
loss of functionality

As described in the previous section, we have found that the
networks studied organise their optimally informative
solutions in parameter space in such a way that large changes
in function do not require large changes in parameters. We
further demonstrate here that the networks can change from
one function to another in parameter space without
significant loss of the input–output information along the
way. This further underscores the evolvability of these
networks, since it shows that random steps in parameter space
not only explore the full variety of a network’s functions, but
do so without significant loss of fidelity. In the context of
electric logical circuits, such evolvability would correspond
to an ability to change a logic gate continuously from
performing one logical function to another while remaining a
largely functional gate in the interim.

For each network, mutual information I was calculated
using (5) along straight-line paths in parameter space
between all solutions pairs within a randomly chosen subset
of its optimally informative solutions. Examples of these
paths are shown in Fig. 3a, for ten solutions from the inset
network. The solutions at either end are local maxima in I,
and the paths show the loss in information capacity the
network would suffer if it were to move from one solution
to the other along a straight line in parameter space. Some
information loss is unavoidable: changing function requires
reordering the output distributions (see Fig. 1b), which
means overlapping at least two of them at a time, and with
eight distributions the shift of two distributions from fully
separated to fully overlapped incurs a minimum loss of 0.25
IET Syst. Biol., 2009, Vol. 3, Iss. 5, pp. 379–387
doi: 10.1049/iet-syb.2008.0165
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Figure 3 Changing function without losing information

a Left: Mutual information I along straight-line paths in parameter space between pairs of 10 randomly chosen optimally informative
model solutions for a particular network (inset). For each path, the starting and ending solution’s locations in parameter space are
denoted ~u1 and ~u2, respectively, on the horizontal axis. The minimum mutual information I0 along each path is marked with a triangle.
A specific function is performed at each of the ten solutions (as characterised in Methods); seven of the ten functions are unique.
Right: Distribution of I0 values built from paths between 37 randomly chosen solutions for the inset network, of which the ten
solutions used for the left plot are a subset
b Means (circles) and standard deviations (error bars) of I0 distributions like that in (a) (right), for all networks studied; 37 randomly chosen
solutions were used to build each network’s distribution. Networks are shown on the horizontal axis, in the same order as in Fig. 2, i.e.
ranked by evolvability score E
bits. Seven of the ten functions corresponding to the ten
solutions in Fig. 3a are unique; at least 91% of the plotted
paths involve a change in function.

Nonetheless, we find that the loss in information suffered
in going between optimal solutions is surprisingly minimal.
The right panel of Fig. 3a shows the distribution of
minimal mutual information values I0 along the paths for
the inset network, and Fig. 3b shows the means and the
standard deviations of I0 distributions for all networks. For
only a few networks do a significant portion of the paths
drop below 1.5 bits, and almost no paths drop below 1 bit.
In contrast, the typical information Irand in networks with
random parameters (generated uniformly in log space from
the region within which optimisations are initialised) is
negligible (the median is Irand ¼ 0.02 bits for the network
in Fig. 3a, and Irand ¼ 0.05 bits averaged over all 24
networks). We note in passing that the networks in Fig. 3b
are shown as in Fig. 2, i.e. ranked by evolvability score E,
and so Fig. 3b also demonstrates that there is no significant
correlation between I0 and E.

We emphasise that Fig. 3b represents a lower bound on
minimum mutual information encountered in transitioning
between solutions. It is by no means necessary (and is most
likely biologically unrealistic) for a functional change to
proceed via such uniform changes in biochemical
parameters. It is more likely that there exist transition paths
that are more optimal than the straight-line paths, and that
the most optimal I0 distributions are actually shifted
higher in information than those generated here (given the
large computational cost of implementing an optimal
Syst. Biol., 2009, Vol. 3, Iss. 5, pp. 379–387
i: 10.1049/iet-syb.2008.0165
path-finding algorithm in 15 dimensions when each
evaluation of the objective function involves finding the
steady state of a dynamical system and solving a Lyapunov
equation, the lower bound on minimum information
obtained from the straight-line paths between maxima
suffices to illustrate the claim that information loss is
minimal in transitions between functions). Thus it is quite
non-trivial (and it is further testament to their evolvability)
that even along direct paths between optimal solutions these
networks in most cases do not drop below 1.5 bits of
processing ability, considering that the solutions themselves
operate in the range of �2–2.8 bits. A network can be
evolving and functional at the same time.

3 Discussion
We have quantified the concept of evolvability in the context of
regulatory networks by introducing an interpretable measure,
and by probing the space of the networks’ most informative
functions. Our measure is an anti-correlation between the
amount of functional change experienced by a network and
the parametric change required to affect it, such that more
evolvable networks explore more diverse functions with
smaller variation in their biochemical parameters. We have
fully defined functional and parametric distances (as well as
the characterisation of ‘function’ itself) in the context of a
stochastic description of the experimental setup of Guet et al.
[4], and we have chosen a correlation measure that is
invariant to monotonic transformations in either definition.

We have found that all networks studied share the property
that functional change is largely independent of parametric
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change, meaning that they are highly evolvable by our
measure. This property holds for several different
definitions of function distance. This means that high-
information functions are not organised in parameter space
in such a way that similar functions are near each other;
instead nearby solutions are approximately as likely to be
similar in function as they are to be different in function.

Furthermore, we have found that all networks studied can
transition among their maximally informative functions
without significant loss of information in the process.
Along straight-line paths in parameter space between
functions (with mutual information values in the range
�2–2.8 bits), mutual information remains above �2 bits
on average and very rarely drops below 1 bit. Moreover,
these values represent a lower bound, since transition paths
need not be straight. This suggests that the networks can
evolve without losing functionality in the process, which
resonates with the idea from evolutionary biology that
evolution happens not by crossing high fitness barriers
(low-information solutions in our case), but by finding
neutral paths [40].

Ultimately, we have uncovered two important properties of
the regulatory networks described by our model: (a) high-
information solutions do not cluster by function, and (b)
transitions among solutions are possible without significant
loss of fidelity. Both of these properties underscore the high
evolvability of the networks studied. It is possible that these
properties are general characteristics of a class of systems
extending beyond small transcriptional regulatory networks,
particularly systems governed by a large number of tunable
parameters. However, we argue that these properties are
especially relevant here, as they are critical to a quantitative
description of the capacity of biological networks to evolve.
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