
1

Neural coding of a natural stimulus
ensemble: Uncovering information at
sub–millisecond resolution

Ilya Nemenman
(LANL/CCS-3)

and

William Bialek (Princeton)
Rob de Ruyter van Steveninck (Indiana)

LA-UR-06-2058

http://nsb-entropy.sourceforge.net



2

Abstract

Our knowledge of the sensory world is encoded by neurons in sequences of
discrete, identical pulses termed action potentials or spikes.  There is persistent
controversy about the extent to which the precise timing of these spikes is
relevant to the function of the brain.  We revisit this issue, using the motion-
sensitive neurons of the fly visual system as a test case.  New experimental
methods allow us to deliver more nearly natural visual stimuli, comparable to
those which flies encounter in free, acrobatic flight, and new mathematical
methods allow us to draw more reliable conclusions about the information
content of neural responses even when the set of possible responses is very
large.  We find that significant amounts of visual information are represented by
details of the spike train at millisecond and sub--millisecond precision, even
though the sensory input has a correlation time of about 60 ms; different
patterns of spike timing represent distinct motion trajectories, and the absolute
timing of spikes points to particular features of these trajectories with high
precision. Under these naturalistic conditions, the system continues to transmit
more information at higher photon flux, even though individual photoreceptors
are counting more than one million photons per second, and removes
redundancy in the stimulus to generate a more efficient neural code.
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Fly as a model
neurocomputing system

Why fly?

 Can record for long
times

 Named neurons with
known functions

 Nontrivial computation
(motion estimation)

 Vision (specifically,
motion estimation) is
behaviorally important

 Possible to generate
natural stimuli

What questions?

 Can we understand the
code?

 Which features of it are
important?
 Rate or precise timing

(how precise)?
 Synergy between spikes?

 What/how much does
the fly know?

 Is there an evidence for
optimality?
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(Lewen et al, 2001)

Recording from fly’s H1

light

record

 Poisson behavior for “boring” stimuli (rotations)
 ~2 ms resolution  important for white noise stimuli
 Could “brisk” spikes be due to ~1 ms correlations in

stimulus? What if stimulus has natural correlations?

outdoor
daylight
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Natural stimuli and responses
High repeatability - no rate coding

(Land and Collett, 1974)

Is high precision timing for natural stimuli
relevant for information transmission, or
just anecdotal?
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Characterization of coding without an
explicit decoding: Experiment design

(Strong et al.,  1998)

S[x] = ! p(x)log p(x),!!!!!!x = s,{ti}
x

"

I[s,{ti}] = p(s,{ti})log
p(s,{ti})

p(s)p({ti})s{ti }

"

 Captures all dependencies
 s - stimulus, {ti} - spike train

Problem:  undersampling
 Total of about 10-15 min of

recordings
 At most 200 repetitions
 Stimulus correlated at

60ms: only 1e4
independent samples

 Need to sample words of
duration 30-60 ms at
resolutions ~0.2 ms (binary
words of T ~100) from 100-
10000 samples only.
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Undersampling and
entropy/MI estimation
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 Fluctuations underestimate
entropies and overestimate mutual
informations.

 Universal bias correction possible
only for S << log N

 This condition violated for our data

But there is hope for S > log N (Ma, 1981)::
 For uniform K-bin distribution, the first concidence happens at

 Can make estimates for square-root-fewer samples!
 To extended to nonuniform cases need:

• Assumptions (won’t work always)
• Estimate entropies without estimating distributions
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Time of the first coincidence
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NSB estimator:
Uniformized expectations about S

S = ! p log p !

!!!!(1! p)log(1! p)

uniform (no assumptions)

p S

What is unknown?
Example: binomial distribution

! =
S
est
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true
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 Selection of wrong “unknown”
biases the estimation.

 Even worse for large K.

NSB: one possible
S-uniformization strategy

 Posterior variance scales as N-1/2

 Little bias, except in some known cases.
 Counts coincidences and works in Ma regime

(if works).
 Is guaranteed correct for large N.
 Allows infinite # of bins.
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(Nemenman et al, 2002-06) 
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Tests for synthetic refractory
Poissson and natural spike trains

Refractory Poisson, rate 0.26 spikes/ms,
refractory period 1.8 ms, T=15ms,
discretization 0.5ms, true entropy 13.57 bits.

(Nemenman et al. 2004)
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Natural spike trains
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Information rate and all that

• Information present up to
τ =0.2 ms (comparable to
exparimental noise)

• 30% more information at
τ<1ms.

• ~1 bit/spike at 150
spikes/s and low-entropy
correlated stimulus.
Design principle?
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New bits (optimized code)

• Correlation function at
half its value, but fly gets
new bits every 25 ms

• Independent info --
decorrelation

Behaviorally optimized code!
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Information about…

Signal shape Zero-crossings time

Conditional distribution (median ± 1 quartile) of velocities 
preceeding a spike pattern.
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Precision is limited
by physical noise sources

(Lewen, et al 2001)

T = 6!ms

! = 0.2!ms

1.49!vs.!1.61"106 ph/(s " rec)

I
+
# I

#
= 0.0204 ± 0.0108!bits (p<6%)


