Predictive information: From definition to applications to biological systems

Ilya Nemenman

(KITP, UCSB)

physics/0007070
physics/0103076
q-bio/0402029
Outline

- A curious observation.
- Quantifying predictability.
- Predictability and optimization in sensory information processing.
- Learning and predictive information.
- Testing models used by animals.
- Bonus material.
Entropy of words in a spin chain

\[W_0 = 0 0 0 0 \]
\[W_1 = 0 0 0 \]
\[W_2 = 0 0 1 \]
\[\ldots \]
\[W_{15} = 1 1 1 \]
Entropy of words in a spin chain

\[S(N) = - \sum_{k=0}^{2^N-1} P_N(W_k) \log_2 P_N(W_k) \]
Entropy of words in a spin chain

\[S(N) = - \sum_{k=0}^{2^N-1} P_N(W_k) \log_2 P_N(W_k) \]

For this chain, \(P(W_0) = P(W_1) = P(W_3) = P(W_7) = P(W_{12}) = P(W_{14}) = 2, \)
\(P(W_8) = P(W_9) = 1, \) and all other frequencies (probabilities) are zero. Thus, \(S(4) \approx 2.95 \) bits.
Entropy of 3 generated chains

- $J_{ij} = \delta_{i,j+1}$

- $J_{ij} = J_0 \delta_{i,j+1}$, J_0 is taken at random from $\mathcal{N}(0, 1)$ every 400000 spins

- J_{ij} is taken at random from $\mathcal{N}(0, \frac{1}{i-j})$ every 400000 spins

1 $\cdot 10^9$ spins total.
Entropy of 3 generated chains

- $J_{ij} = \delta_{i,j+1}$
- $J_{ij} = J_0 \delta_{i,j+1}$, J_0 is taken at random from $\mathcal{N}(0, 1)$ every 400000 spins
- J_{ij} is taken at random from $\mathcal{N}(0, \frac{1}{i-j})$ every 400000 spins

1 \cdot 10^9$ spins total.

Entropy is extensive!
It shows no distinction between the cases.
Subextensive component of the entropy

... shows a qualitative distinction between the cases!
Subextensive component of the entropy

... shows a qualitative distinction between the cases!

Other examples:
- **const** periodic sequences, chaotic sequences (finite correlation length)
- **log** systems at phase transitions, or at the onset of chaos (divergent correlation length)
- **power** natural texts, DNA sequences, (possibly) some exotic transitions, (many divergent correlation lengths)
Subextensive component of the entropy

... shows a qualitative distinction between the cases!

Other examples:

- \textbf{const} periodic sequences, chaotic sequences (finite correlation length)
- \textbf{log} systems at phase transitions, or at the onset of chaos (divergent correlation length)
- \textbf{power} natural texts, DNA sequences, (possibly) some exotic transitions, (many divergent correlation lengths)

- Entropy density or channel capacity do not distinguish these cases.
- Theory of phase transitions may not distinguish between the last two cases.
- Complexity of underlying dynamics intuitively increases from \textbf{const} to \textbf{power}.

\[S_1 = \text{const}_1 + \text{const}_2 N^{0.5} \]
\[S_1 = \text{const}_1 + \frac{1}{2} \log N \]
\[S_1 = \text{const} \]
Objectives

- unified description of complexity and learning
- make distinction between useful and unusable data
- do this using physical quantities
- understand models used by organisms to represent the world
- understand biological designs by means of optimization principles
Solution – predictability

- we learn (estimate parameters, extrapolate, classify, ...) to generalize and predict from training examples; estimation of parameters is only an intermediate step
Solution – predictability

- we learn (estimate parameters, extrapolate, classify, ...) to *generalize* and *predict* from training examples; estimation of parameters is only an intermediate step
- nonpredictive features in any signal are useless since we observe *now* and react in the *future*
Solution – predictability

- we learn (estimate parameters, extrapolate, classify, ...) to generalize and predict from training examples; estimation of parameters is only an intermediate step
- nonpredictive features in any signal are useless since we observe now and react in the future
- high predictability sources (more details to predict, not easier predictions) are generated by more complex sources (in particular, regular and random sources have low complexity)
Solution – predictability

- we learn (estimate parameters, extrapolate, classify, ...) to *generalize* and *predict* from training examples; estimation of parameters is only an intermediate step
- nonpredictive features in any signal are useless since we observe *now* and react in the *future*
- high predictability sources (more details to predict, not easier predictions) are generated by more complex sources (in particular, regular and random sources have low complexity)
- measuring organisms’ learning and prediction performance for signals of different complexity may reveal the underlying models
Solution – predictability

- we learn (estimate parameters, extrapolate, classify, ...) to generalize and predict from training examples; estimation of parameters is only an intermediate step
- nonpredictive features in any signal are useless since we observe now and react in the future
- high predictability sources (more details to predict, not easier predictions) are generated by more complex sources (in particular, regular and random sources have low complexity)
- measuring organisms’ learning and prediction performance for signals of different complexity may reveal the underlying models
- optimizing predictive information may be the design principle
Quantifying predictability

Information theory: non-metric, universal way to quantify learning

\[T, N \quad \rightarrow \quad 0 \quad \rightarrow \quad T', N' \quad x \]

past \quad \rightarrow \quad now \quad \rightarrow \quad future
Quantifying predictability

Information theory: non-metric, universal way to quantify learning

\[I_{\text{pred}}(T, T') = \left\langle \log_2 \left[\frac{P(x_{\text{future}}|x_{\text{past}})}{P(x_{\text{future}})} \right] \right\rangle = S(T) + S(T') - S(T + T') \]
Quantifying predictability

Information theory: non-metric, universal way to quantify learning

\[
\mathcal{I}_{\text{pred}}(T, T') = \langle \log_2 \left[\frac{P(x_{\text{future}} | x_{\text{past}})}{P(x_{\text{future}})} \right] \rangle \\
= S(T) + S(T') - S(T + T')
\]

\[
S(T) = S_0 \cdot T + S_1(T)
\]

Extensive component cancels in predictive information.

Predictability is a deviation from extensivity!
Quantifying predictability

Information theory: non-metric, universal way to quantify learning

\[
I_{\text{pred}}(T, T') = \left\langle \log_2 \left[\frac{P(x_{\text{future}}|x_{\text{past}})}{P(x_{\text{future}})} \right] \right\rangle \\
= S(T) + S(T') - S(T + T')
\]

\[
S(T) = S_0 \cdot T + S_1(T)
\]

Extensive component cancels in predictive information. Predictability is a deviation from extensivity!

\[
I_{\text{pred}}(T) \equiv I_{\text{pred}}(T, \infty) = S_1(T)
\]
Properties of $I_{\text{pred}}(T)$

- $I_{\text{pred}}(T)$ is information, so $I_{\text{pred}}(T) \geq 0$
Properties of $I_{\text{pred}}(T)$

- $I_{\text{pred}}(T)$ is information, so $I_{\text{pred}}(T) \geq 0$

- $I_{\text{pred}}(T)$ is subextensive, $\lim_{T \to \infty} \frac{I_{\text{pred}}(T)}{T} = 0$
Properties of $I_{\text{pred}}(T)$

- $I_{\text{pred}}(T)$ is information, so $I_{\text{pred}}(T) \geq 0$

- $I_{\text{pred}}(T)$ is subextensive, $\lim_{T \to \infty} \frac{I_{\text{pred}}(T)}{T} = 0$

- diminishing returns, $\lim_{T \to \infty} \frac{I_{\text{pred}}(T)}{S(T)} = 0$
Properties of $I_{\text{pred}}(T)$

- $I_{\text{pred}}(T)$ is information, so $I_{\text{pred}}(T) \geq 0$

- $I_{\text{pred}}(T)$ is subextensive, $\lim_{T \to \infty} \frac{I_{\text{pred}}(T)}{T} = 0$

- diminishing returns, $\lim_{T \to \infty} \frac{I_{\text{pred}}(T)}{S(T)} = 0$

- prediction and postdiction are symmetric
Properties of $I_{\text{pred}}(T)$

- $I_{\text{pred}}(T)$ is information, so $I_{\text{pred}}(T) \geq 0$

- $I_{\text{pred}}(T)$ is subextensive, $\lim_{T \to \infty} \frac{I_{\text{pred}}(T)}{T} = 0$

- diminishing returns, $\lim_{T \to \infty} \frac{I_{\text{pred}}(T)}{S(T)} = 0$

- prediction and postdiction are symmetric

- it relates to and generalizes many relevant quantities
 - learning: universal learning curves
 - complexity: complexity measures
 - coding: model coding length
How can I_{pred} behave?

$$\lim_{N \to \infty} I_{\text{pred}} = \text{const}$$

no long-range structure

- simply predictable (periodic, constant, etc.) processes
- fully stochastic (Markov) processes
How can I_{pred} behave?

$$\lim_{N \to \infty} I_{\text{pred}} = \text{const}$$
no long-range structure
- simply predictable (periodic, constant, etc.) processes
- fully stochastic (Markov) processes

$$\lim_{N \to \infty} I_{\text{pred}} = \text{const} \times \log_2 N$$
precise learning of a fixed set of parameters
- learning finite-parameter densities
- well known as $I(N, \text{parameters}) = I_{\text{pred}}(N)$
- physical system at criticality
- (possibly) nonextensive statistics systems
How can I_{pred} behave?

\[\lim_{N \to \infty} I_{\text{pred}} = \text{const} \]
no long-range structure
- simply predictable (periodic, constant, etc.) processes
- fully stochastic (Markov) processes

\[\lim_{N \to \infty} I_{\text{pred}} = \text{const} \times \log_2 N \]
precise learning of a fixed set of parameters
- learning finite-parameter densities
- well known as $I(N, \text{parameters}) = I_{\text{pred}}(N)$
- physical system at criticality
- (possibly) nonextensive statistics systems

\[\lim_{N \to \infty} I_{\text{pred}} = \text{const} \times N^\xi \]
learning more features as N grows
- learning continuous densities
- language
- some critical phenomena (wetting transitions)
- not well studied
I_{pred} optimization in biology

$S_\phi(\omega) \propto \omega^{-\alpha}$

input, ϕ \hspace{1cm} “bug” \hspace{1cm} output, ν
\(I_{\text{pred}} \) optimization in biology

\[S_\phi(\omega) \propto \omega^{-\alpha} \]

\[\tau \frac{dv}{dt} = -v + g\phi(t) + g\eta(t), \quad \langle \eta(t)\eta(0) \rangle = 1/I_0 \delta(t) \]
Ilya Nemenman, IBM – Functional Genomics and System Biology Seminar, March 4, 2004

I_{pred} \textbf{optimization in biology}

\[S_\phi(\omega) \propto \omega^{-\alpha} \]

\[\tau \frac{dv}{dt} = -v + g\phi(t) + g\eta(t), \quad \langle \eta(t)\eta(0) \rangle = 1/I_0 \delta(t) \]

\[\mathcal{I}([\phi], [v]) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T/2}^{T/2} \frac{d\omega}{2\pi} \log \left(1 + \frac{S_\phi(\omega)}{1/I_0} \right) \]

Maximization w.r.t. τ is meaningless.
Predictive information maximization
Predictive information maximization

\[I([v_{\text{past}}], [\phi_{\text{future}}]) \] – too difficult
Predictive information maximization

\[I([v_{\text{past}}], [\phi_{\text{future}}]) \rightleftharpoons \text{too difficult} \]

\[I(v_0, \phi_0) = \log \frac{\langle \phi^2 \rangle}{\langle \phi^2 \rangle - \frac{g^2 \langle \phi_f^2 \rangle^2}{\langle v^2 \rangle}} \]
Predictive information maximization

\[I([v_{\text{past}}], [\phi_{\text{future}}]) - \text{too difficult} \]

\[I(v_0, \phi_0) = \log \frac{\langle \phi^2 \rangle}{\langle \phi^2 \rangle - \frac{g^2\langle \phi_f^2 \rangle^2}{\langle v^2 \rangle}} \]

Solution – matching filter: \(\tau = I_0^{-1/\alpha} \).
Specific examples: problem setup

\[Q(\vec{x}|\alpha) \]
p. d. f. for \(\vec{x} \) parameterized by unknown parameters \(\alpha \)
\[\text{dim} \, \alpha = K \]
dimensionality of \(\alpha \), may be infinite
\[P(\alpha) \]
prior distribution of parameters
\[\vec{x}_1 \cdots \vec{x}_N \]
random samples from the distribution
Specific examples: problem setup

\(Q(\vec{x}|\alpha) \) p. d. f. for \(\vec{x} \) parameterized by unknown parameters \(\alpha \)

\[\text{dim } \alpha = K \] dimensionality of \(\alpha \), may be infinite

\(\mathcal{P}(\alpha) \) prior distribution of parameters

\(\vec{x}_1 \cdots \vec{x}_N \) random samples from the distribution

\[
P(\vec{x}_1, \vec{x}_2, \cdots, \vec{x}_N | \alpha) = \prod_{i=1}^{N} Q(\vec{x}_i | \alpha)
\]

\[
P(\vec{x}_1, \vec{x}_2, \cdots, \vec{x}_N) = \int d^K \alpha \mathcal{P}(\alpha) \prod_{i=1}^{N} Q(\vec{x}_i | \alpha)
\]

\[
S(\vec{x}_1, \vec{x}_2, \cdots, \vec{x}_N) \equiv S(N)
\]

\[
= -\int d\vec{x}_1 \cdots d\vec{x}_N P(\{\vec{x}_i\}) \log_2 P(\{\vec{x}_i\})
\]
Separating the terms

\[S_0 = \int d^K \alpha \mathcal{P}(\alpha) \left[-\int d\vec{x} \frac{Q(\vec{x}|\alpha)}{Q(\vec{x}|\alpha)} \log_2 Q(\vec{x}|\alpha) \right] \]

\[S_1(N) = -\int d^K \bar{\alpha} d^N \vec{x}_i \mathcal{P}(\bar{\alpha}) \prod Q(\vec{x}_i|\bar{\alpha}) \log_2 \int d^K \alpha \mathcal{P}(\alpha) e^{-N \mathcal{E}_N} \]
Separating the terms

\[S_0 = \int d^K \alpha P(\alpha) \left[- \int d\vec{x} Q(\vec{x} | \alpha) \log_2 Q(\vec{x} | \alpha) \right] \]

\[S_1(N) = - \int d^K \bar{\alpha} d^N \vec{x}_i P(\bar{\alpha}) \prod Q(\vec{x}_i | \bar{\alpha}) \log_2 \int d^K \alpha P(\alpha) e^{-N \mathcal{E}_N} \]

\[\mathcal{E}_N \equiv \frac{1}{N} \sum_i \log \left[\frac{Q(\vec{x}_i | \bar{\alpha})}{Q(\vec{x}_i | \alpha)} \right] \longrightarrow \int d\vec{x} Q(\vec{x} | \bar{\alpha}) \log \frac{Q(\vec{x} | \bar{\alpha})}{Q(\vec{x} | \alpha)} \]

Annealed approximation (almost) always works.
Density of states

\[Z(\bar{\alpha}; N) = \int d\epsilon \rho(\epsilon; \bar{\alpha}) \exp[-N\epsilon] \]

\[\rho(\epsilon; \bar{\alpha}) = \int d^K \alpha \mathcal{P}(\alpha) \delta[\epsilon - D_{KL}(\bar{\alpha} \parallel \alpha)] \]
Density of states

\[Z(\bar{\alpha}; N) = \int d\epsilon \rho(\epsilon; \bar{\alpha}) \exp[-N\epsilon] \]

\[\rho(\epsilon; \bar{\alpha}) = \int d^K \alpha \mathcal{P}(\alpha) \delta[\epsilon - D_{\text{KL}}(\bar{\alpha}||\alpha)] \]

\[\int d\epsilon \rho(\epsilon; \bar{\alpha}) = \int d^K \alpha \mathcal{P}(\alpha) = 1 \quad \text{annealing works!} \]
Density of states

\[
Z(\bar{\alpha}; N) = \int d\epsilon \, \rho(\epsilon; \bar{\alpha}) \exp[-N\epsilon]
\]

\[
\rho(\epsilon; \bar{\alpha}) = \int d^K \alpha \, P(\alpha) \delta[\epsilon - D_{KL}(\bar{\alpha}||\alpha)]
\]

\[
\int d\epsilon \, \rho(\epsilon; \bar{\alpha}) = \int d^K \alpha \, P(\alpha) = 1 \quad \text{annealing works!}
\]

The density \(\rho\) could be very different for different targets.

Learning is annealing at decreasing temperature.

Nonzero \(\rho \implies\) consistency in learning.
Density at $\epsilon \to 0$, I_{pred}, and learning

Occam factor, generalization error, prediction error, fluctuation determinant:

$$\mathcal{D}(\bar{\alpha}; N) \approx -\log \int d\epsilon \rho(\epsilon; \bar{\alpha})e^{-N\epsilon}$$
Density at $\epsilon \to 0$, I_{pred}, and learning

Occam factor, generalization error, prediction error, fluctuation determinant:

$$D(\bar{\alpha}; N) \approx -\log \int d\epsilon \rho(\epsilon; \bar{\alpha}) e^{-N\epsilon}$$

Predictive information:

$$I_{\text{pred}}(N) \approx \int d^K \bar{\alpha} \mathcal{P}(\bar{\alpha}) D(\bar{\alpha}, N)$$
Density at $\epsilon \to 0$, I_{pred}, and learning

Occam factor, generalization error, prediction error, fluctuation determinant:

$$D(\bar{\alpha}; N) \approx -\log \int d\epsilon \rho(\epsilon; \bar{\alpha})e^{-N\epsilon}$$

Predictive information:

$$I_{\text{pred}}(N) \approx \int d^K \bar{\alpha} \mathcal{P}(\bar{\alpha}) D(\bar{\alpha}, N)$$

Universal learning curves:

$$\Lambda(\bar{\alpha}; N) \equiv D_{\text{KL}}(\bar{\alpha}||\alpha_{\text{est}}) \approx \frac{dD(\bar{\alpha}; N)}{dN}$$

$$\Lambda(N) \equiv \int d\bar{\alpha} \mathcal{P}(\bar{\alpha}) \Lambda(\bar{\alpha}; N) \approx \frac{dI_{\text{pred}}}{dN}$$
Finite number of states and finite I_{pred}

$$\rho(\epsilon; a_1) = \sum_{i=1}^{M} P_i \delta(d_i - \epsilon)$$
Finite number of states and finite I_{pred}

$$\rho(\epsilon; a_1) = \sum_{i=1}^{M} P_i \delta(d_i - \epsilon)$$

$$\mathcal{D}(a_1; N) = C_1 - C_2 \exp[-NC_3]$$

$$\Lambda(a_1; N) \approx C_2 C_3 \exp[-NC_3]$$

I_{pred} saturates as $N \to \infty$
Power–law density function

$$\rho(\epsilon \to 0; \bar{\alpha}) \approx A(\bar{\alpha})\epsilon^{(d-2)/2}$$
Power–law density function

\[\rho(\epsilon \to 0; \bar{\alpha}) \approx A(\bar{\alpha})\epsilon^{(d-2)/2} \]

Example: *sound* finite parameter models, \(\dim \alpha = d\).

\[D_{\text{KL}}(\bar{\alpha}||\alpha) \xrightarrow{\alpha \to \bar{\alpha}} \frac{1}{2} \sum_{\mu\nu} (\bar{\alpha}_\mu - \alpha_\mu)F_{\mu\nu}(\bar{\alpha}_\nu - \alpha_\nu) + \cdots \]

\[\rho(\epsilon; \bar{\alpha}) \xrightarrow{\epsilon \to 0} \mathcal{P}(\bar{\alpha}) \frac{2\pi^{d/2}}{\Gamma(d/2)} (\det F)^{-1/2} \epsilon^{(d-2)/2} \]

\[I_{\text{pred}} \approx S_1^{(a)} \approx \frac{d}{2} \log_2 N \]
Power–law density function

\[\rho(\epsilon \to 0; \bar{\alpha}) \approx A(\bar{\alpha})\epsilon^{(d-2)/2} \]

Example: *sound* finite parameter models, \(\text{dim} \alpha = d \).

\[D_{KL}(\bar{\alpha} || \alpha) \xrightarrow{\alpha \to \bar{\alpha}} \frac{1}{2} \sum_{\mu\nu} (\bar{\alpha}_\mu - \alpha_\mu) F_{\mu\nu} (\bar{\alpha}_\nu - \alpha_\nu) + \cdots \]

\[\rho(\epsilon; \bar{\alpha}) \xrightarrow{\epsilon \to 0} \mathcal{P}(\bar{\alpha}) \frac{2\pi^{d/2}}{\Gamma(d/2)} (\det F)^{-1/2} \epsilon^{(d-2)/2} \]

\[I_{\text{pred}} \approx S_1^{(a)} \approx \frac{d}{2} \log_2 N \]

Speed of approach to this asymptotics is rarely investigated.
Another example

Learning $Q(\vec{x}_1 \cdots \vec{x}_N|\alpha)$, a finite parameter Markov process with long range intrinsic correlations such that

$$S[\{\vec{x}_i}\mid\alpha] \equiv -\int d^N \vec{x} Q(\{\vec{x}_i\}\mid\alpha) \log_2 Q(\{\vec{x}_i\}\mid\alpha)$$

$$\rightarrow NS_0 + S^*_0; \quad S^*_0 = \frac{K'}{2} \log_2 N$$
Another example

Learning $Q(\vec{x}_1 \cdots \vec{x}_N | \alpha)$, a finite parameter Markov process with long range intrinsic correlations such that

$$S[\{\vec{x}_i\} | \alpha] \equiv - \int d^N \vec{x} Q(\{\vec{x}_i\} | \alpha) \log_2 Q(\{\vec{x}_i\} | \alpha)$$

$$\rightarrow NS_0 + S^*_0; \quad S^*_0 = \frac{K'}{2} \log_2 N$$

$$S^{(\text{a})}_1(N) \approx \frac{K + K'}{2} \log_2 N$$
Another example

Learning $Q(\vec{x}_1 \cdots \vec{x}_N | \alpha)$, a finite parameter Markov process with long range intrinsic correlations such that

$$S[\{\vec{x}_i\}|\alpha] \equiv - \int d^N \vec{x} Q(\{\vec{x}_i\}|\alpha) \log_2 Q(\{\vec{x}_i\}|\alpha)$$

$$\rightarrow NS_0 + S^*_0; \quad S^*_0 = \frac{K'}{2} \log_2 N$$

$$S^{(a)}_1(N) \approx \frac{K + K'}{2} \log_2 N$$

Predictive information does not distinguish predictability coming from unknown parameters and from intrinsic long–range correlations. This is similar to describing physical systems with correlations using order parameters.
Essential singularity in the density

\[\rho(\epsilon \to 0; \bar{\alpha}) \approx A(\bar{\alpha}) \exp \left[-\frac{B(\bar{\alpha})}{\epsilon^\mu}\right], \quad \mu > 0 \]

\[S_1^{(a)}(N) \propto N^{\mu/(\mu+1)} \]
Essential singularity in the density

\[
\rho(\epsilon \to 0; \bar{\alpha}) \approx A(\bar{\alpha}) \exp \left[-\frac{B(\bar{\alpha})}{\epsilon^\mu} \right], \quad \mu > 0
\]

\[
S_1^{(a)}(N) \propto N^{\mu/(\mu+1)}
\]

- finite parameter model with increasing number of parameters \(K \sim N^{\mu/(\mu+1)}; \) \(S_1(N) \sim N^{\mu/\mu+1}, \) not \(S_1(N) \sim \frac{N^{\mu/\mu+1}}{2} \log N \)

- as \(\mu \to \infty \) complexity grows and then vanishes to the leading order when \(S_1^{(a)} \) becomes extensive
Example of the power–law I_{pred}

Learning a smooth nonparameteric density $Q(x) = 1/l_0e^{-\phi(x)}$, $x \in [0, L]$ (Bialek, Callan, and Strong 1996), Complete model.

$$P[\phi(x)] = \frac{1}{Z} \exp \left[-\frac{l}{2} \int dx \left(\frac{\partial \phi}{\partial x} \right)^2 \right] \delta \left[\frac{1}{l_0} \int dx \ e^{-\phi(x)} - 1 \right]$$
Example of the power–law I_{pred}

Learning a smooth nonparametric density $Q(x) = \frac{1}{l_0}e^{-\phi(x)}$, $x \in [0, L]$ (Bialek, Callan, and Strong 1996), Complete model.

$$\mathcal{P}[\phi(x)] = \frac{1}{\mathcal{Z}} \exp \left[-\frac{l}{2} \int dx \left(\frac{\partial \phi}{\partial x} \right)^2 \right] \delta \left[\frac{1}{l_0} \int dx \, e^{-\phi(x)} - 1 \right]$$

$$\rho(D \to 0; \bar{\phi}) = A[\bar{\phi}(x)]\epsilon^{-3/2} \exp \left(-\frac{B[\bar{\phi}(x)]}{\epsilon} \right)$$

$$S_1^{(a)}(N) \propto \sqrt{N} \left(\frac{L}{l} \right)^{1/2}$$
Example of the power–law I_{pred}

Learning a smooth nonparametric density $Q(x) = 1/l_0 e^{-\phi(x)}$, $x \in [0, L]$ (Bialek, Callan, and Strong 1996), Complete model.

\[
\mathcal{P}[\phi(x)] = \frac{1}{\mathcal{Z}} \exp \left[-\frac{l}{2} \int dx \left(\frac{\partial \phi}{\partial x} \right)^2 \right] \delta \left[\frac{1}{l_0} \int dx \, e^{-\phi(x)} - 1 \right]
\]

\[
\rho(D \to 0; \bar{\phi}) = A[\bar{\phi}(x)] \epsilon^{-3/2} \exp \left(-\frac{B[\bar{\phi}(x)]}{\epsilon} \right)
\]

\[
S_1^{(a)}(N) \propto \sqrt{N} \left(\frac{L}{l} \right)^{1/2}
\]

- increasing number of “effective parameters” (bins) of adaptive size $\sim \sqrt{l/NQ(x)}$
Example of the power–law I_{pred}

Learning a smooth nonparameteric density $Q(x) = 1/l_0 e^{-\phi(x)}$, $x \in [0, L]$ (Bialek, Callan, and Strong 1996), Complete model.

$$P[\phi(x)] = \frac{1}{Z} \exp \left[-\frac{l}{2} \int dx \left(\frac{\partial \phi}{\partial x} \right)^2 \right] \delta \left[\frac{1}{l_0} \int dx \, e^{-\phi(x)} - 1 \right]$$

$$\rho(D \to 0; \bar{\phi}) = A[\bar{\phi}(x)] \epsilon^{-3/2} \exp \left(-\frac{B[\bar{\phi}(x)]}{\epsilon} \right)$$

$$S_1^{(a)}(N) \propto \sqrt{N} \left(\frac{L}{l} \right)^{1/2}$$

- increasing number of “effective parameters” (bins) of adaptive size $\sim \sqrt{l/N} Q(x)$
- heuristic arguments for the dimensionality ζ and the smoothness exponent η give $S_1(N) \sim N^{\zeta/2\eta}$ — demonstrates a crossover from complexity to randomness
Nonuniform \mathcal{D}

Nested finite parameter models, $r = 1 \ldots \infty$, $K = K(r)$, $\mathcal{P}(r)$:

\[
\mathcal{P}(\alpha_\mu | r) = \begin{cases}
p(\alpha_\mu), & \mu \leq K(r) \\
\delta(\alpha_\mu), & \mu > K(r) \end{cases}
\]

\[
\mathcal{P}(\alpha | r) = \prod_{\mu=1}^{R} \mathcal{P}(\alpha_\mu | r)
\]
Nonuniform \mathcal{D}

Nested finite parameter models, $r = 1 \ldots \infty$, $K = K(r)$, $\mathcal{P}(r)$:

$$\mathcal{P}(\alpha_\mu|r) = \begin{cases} p(\alpha_\mu), & \mu \leq K(r) \\ \delta(\alpha_\mu), & \mu > K(r) \end{cases}$$

$$\mathcal{P}(\alpha|r) = \prod_{\mu=1}^{R} \mathcal{P}(\alpha_\mu|r)$$
Nonuniform \mathcal{D}

Nested finite parameter models, $r = 1 \ldots \infty$, $K = K(r)$, $\mathcal{P}(r)$:

\[
\mathcal{P}(\alpha_\mu | r) = \begin{cases}
p(\alpha_\mu), & \mu \leq K(r) \\
\delta(\alpha_\mu), & \mu > K(r)
\end{cases}
\]

\[
\mathcal{P}(\alpha | r) = \prod_{\mu=1}^{R} \mathcal{P}(\alpha_\mu | r)
\]

\[
\rho(\epsilon; \bar{\alpha}) = \sum_{r: D_r(\bar{\alpha}) \leq \epsilon} \mathcal{P}(r) \mathcal{P}(\hat{\alpha}_r | r)
\]

\[
= \frac{2\pi^{K(r)/2}}{\Gamma[K(r)/2]} \frac{[\epsilon^2 - D_r^2(\bar{\alpha})][K(r)-2]/4}{\sqrt{\det \mathcal{F}_{K(r)}}}
\]
Nonuniform \mathcal{D}

Nested finite parameter models, $r = 1 \ldots \infty$, $K = K(r)$, $\mathcal{P}(r)$:

\[
\begin{align*}
\mathcal{P}(\alpha_\mu | r) &= \begin{cases}
 p(\alpha_\mu), & \mu \leq K(r) \\
 \delta(\alpha_\mu), & \mu > K(r)
\end{cases} \\
\mathcal{P}(\alpha | r) &= \prod_{\mu=1}^{R} \mathcal{P}(\alpha_\mu | r) \\
\rho(\epsilon; \bar{\alpha}) &= \sum_{r: D_r(\bar{\alpha}) \leq \epsilon} \mathcal{P}(r) \mathcal{P}(\hat{\alpha}_r | r)
\end{align*}
\]

Another complete model!
Density near atypical solutions

\[
\rho(\epsilon; \bar{\alpha}) \sim \epsilon^{\frac{-1}{(2\eta - 1)}} \ell^{-1}
\]

\[
\mathcal{D} \propto N^{1/2\eta} \left(\frac{\log N}{\ell} \right)^{1-1/2\eta}
\]
Density near atypical solutions

\[\rho(\epsilon; \bar{\alpha}) \sim \epsilon^{\epsilon^{-1/(2\eta-1)} \ell-1} \]

\[\mathcal{D} \propto N^{1/2\eta} \left(\frac{\log N}{\ell} \right)^{1-1/2\eta} \]

- nested model is at most log worse than the QFT
- QFT may be a power law worse
Density near atypical solutions

\[\rho(\epsilon; \bar{\alpha}) \sim \epsilon^{-(1/(2\eta-1))\ell-1} \]

\[D \propto N^{1/2\eta} \left(\frac{\log N}{\ell} \right)^{1-1/2\eta} \]

- nested model is at most log worse than the QFT
- QFT may be a power law worse
Density near atypical solutions

\[\rho(\epsilon; \bar{\alpha}) \sim \epsilon^{\epsilon^{-1/(2\eta-1)}\ell^{-1}} \]

\[D \propto N^{1/2\eta} \left(\frac{\log N}{\ell} \right)^{1-1/2\eta} \]

- nested model is at most log worse than the QFT
- QFT may be a power law worse
- for natural (structured) data nested case is better
- alignment may be imperfect for finite precision \(\epsilon \)
Which model is being used?

- for QFT or nested asymptotics kicks in fast
- asymptotic decay rate should signify the model
Which model is being used?

- for QFT or nested asymptotics kicks in fast
- asymptotic decay rate should signify the model
- decay rate too fast to observe
- noisy learning

(Gallistel et al., 2001)
Which model is being used?

- for QFT or nested asymptotics kicks in fast
- asymptotic decay rate should signify the model
- decay rate too fast to observe
- noisy learning
- maybe FDT? \(\frac{\partial A}{\partial N} = -\zeta_N \Lambda^\nu \)

(Gallistel et al., 2001)
Fluctuations (drifting target) and dissipation (learning curve)
Fluctuations (drifting target) and dissipation (learning curve)

$$\Delta_{\text{rms}} = \left\{ \nu^{1/\nu} \frac{\Gamma\left(\frac{3}{2\nu}\right)}{\Gamma\left(\frac{1}{2\nu}\right)} \right\}^{1/2} \left(\frac{\Omega}{\zeta}\right)^{1/(2\nu)}$$
The hidden extras...
Which complexity do we want to define?

- complexity of dynamics that generates a time series (not computational or descriptive complexity); thus it must be zero for totally random and for easily predictable processes
- usable for Occam–style punishment in statistical inference
- expressible in conventional physical terms
- must be attached to an ensemble, not a single realization
Complexity measure

- some kind of entropy (we proclaim Shannon’s postulates: monotonicity, continuity, additivity)
Complexity measure

• some kind of entropy (we proclaim Shannon’s postulates: monotonicity, continuity, additivity)

• invariant under invertible temporally local transformations ($x_k \rightarrow x_k + \xi x_{k-1}$: measuring device with inertia, article with misprints, same book in different languages – same universality class)

$$\log P_1(x) = \log P_2(x) + \text{loc. oper.} \Rightarrow C[P_1(x)] = C[P_2(x)]$$

This may present a problem in higher dimensions.
Complexity measure

- some kind of entropy (we proclaim Shannon’s postulates: monotonicity, continuity, additivity)

- invariant under invertible temporally local transformations ($x_k \rightarrow x_k + \xi x_{k-1}$: measuring device with inertia, article with misprints, same book in different languages – same universality class)

$$\log P_1(x) = \log P_2(x) + \text{loc. oper.} \Rightarrow C[P_1(x)] = C[P_2(x)]$$

This may present a problem in higher dimensions.

The divergent subextensive term measures complexity uniquely!
Relations to other definitions . . .

. . . are mostly straightforward.
Relations to other definitions . . .

. . . are mostly straightforward.

For Kolmogorov complexity:
Relations to other definitions . . .

. . . are mostly straightforward.

For Kolmogorov complexity:

- partition all strings into equivalence classes
Relations to other definitions . . .

. . . are mostly straightforward.

For Kolmogorov complexity:

- partition all strings into equivalence classes

- define Kolmogorov complexity $C_K(s)$ of a sequence s with respect to the partition as a length of the shortest program that can generate a sequence from the class s belongs to
Relations to other definitions . . .

. . . are mostly straightforward.

For Kolmogorov complexity:

- partition all strings into equivalence classes

- define Kolmogorov complexity $C_K(s)$ of a sequence s with respect to the partition as a length of the shortest program that can generate a sequence from the class s belongs to

- equivalence = indistinguishable conditional distributions of futures
Relations to other definitions . . .

. . . are mostly straightforward.

For Kolmogorov complexity:

- partition all strings into equivalence classes

- define Kolmogorov complexity $C_K(s)$ of a sequence s with respect to the partition as a length of the shortest program that can generate a sequence from the class s belongs to

- equivalence $=$ indistinguishable conditional distributions of futures

If sufficient statistics exist, then $C_K \approx I_{\text{pred}}$. Otherwise $C_K > I_{\text{pred}}$. C_K is unique up to a constant.
Not finite size scaling!
What’s next?

extraction separating predictive information from non–predictive using the ‘relevant information’ technique

physics of phase transitions, connection to subextensive statistical mechanics

statistics extensions of MDL (predictive information *is* a property of the data, not of the model)

learning unification of approaches: Bayesian, SRM, MDL, Cucker-Smale. . .

bioinformatics what is predictive information of natural symbolic sequences? (DNA, languages, spike trains) can we use changes in predictability for data partitioning? for model building?

dynamical systems theory what is predictive information and complexity of various systems?