Predictive information: From definition to applications to biological systems

Ilya Nemenman

JCSB, Columbia

Thanks to: William Bialek, Naftali Tishby

$$
\begin{gathered}
\text { physics/0007070 } \\
\text { physics/0103076 } \\
\text { q-bio/0402029 }
\end{gathered}
$$

Outline

- A curious observation.
- Quantifying predictability and complexity.
- Predictability and optimization in sensory information processing.
- Learning and predictive information.
- Testing models used by animals.
- Bonus material.

Entropy of words in a spin chain

$$
\begin{aligned}
& \downarrow \downarrow \downarrow \downarrow \uparrow \uparrow \uparrow \downarrow \downarrow \uparrow \uparrow \uparrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\mathrm{W}_{0}=\begin{array}{llll}
0 & 0 & 0 & 0 \\
\mathrm{~W}_{1}= & 0 & 0 & 0
\end{array} 1 \\
\mathrm{~W}_{2}=\begin{array}{llll}
0 & 0 & 1 & 0
\end{array} \\
\cdots \\
\mathrm{~W}_{15}= \\
1
\end{array} 1 \begin{array}{llll}
1 & 1 & 1
\end{array} \\
& \mathrm{~W}_{0} \quad \mathrm{~W}_{1} \ldots \mathrm{~W}_{9} \ldots \mathrm{~W}_{7} \ldots \mathrm{~W}_{0} \quad \mathrm{~W}_{1}
\end{aligned}
$$

Entropy of words in a spin chain

$$
\begin{aligned}
& \downarrow \downarrow \downarrow \downarrow \uparrow \uparrow \uparrow \downarrow \downarrow \uparrow \uparrow \uparrow \downarrow \downarrow \downarrow \downarrow \downarrow \uparrow \\
& \mathrm{W}_{0}=0000
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{W}_{1}=0001 \\
& \mathrm{~W}_{2}=0010 \\
& \mathrm{~W}_{15}=11111
\end{aligned}
$$

$$
S(N)=-\sum_{k=0}^{2^{N}-1} P_{N}\left(W_{k}\right) \log _{2} P_{N}\left(W_{k}\right)
$$

Entropy of words in a spin chain

$$
S(N)=-\sum_{k=0}^{2^{N}-1} P_{N}\left(W_{k}\right) \log _{2} P_{N}\left(W_{k}\right)
$$

For this chain, $P\left(W_{0}\right)=P\left(W_{1}\right)=P\left(W_{3}\right)=P\left(W_{7}\right)=P\left(W_{12}\right)=P\left(W_{14}\right)=2$, $P\left(W_{8}\right)=P\left(W_{9}\right)=1$, and all other frequencies (probabilities) are zero. Thus, $S(4) \approx 2.95$ bits.

Entropy of 3 generated chains

- $J_{\mathrm{ij}}=\delta_{\mathrm{i}, \mathrm{j}+1}$
- $J_{\mathrm{ij}}=J_{0} \delta_{\mathrm{i}, \mathrm{j}+1}, J_{0}$ is taken at random from $\mathcal{N}(0,1)$ every 400000 spins
- J_{ij} is taken at random from $\mathcal{N}\left(0, \frac{1}{\mathrm{i}-\mathrm{j}}\right)$ every 400000 spins
$1 \cdot 10^{9}$ spins total.

Entropy of 3 generated chains

- $J_{\mathrm{ij}}=\delta_{\mathrm{i}, \mathrm{j}+1}$
- $J_{\mathrm{ij}}=J_{0} \delta_{\mathrm{i}, \mathrm{j}+1}, J_{0}$ is taken at random from $\mathcal{N}(0,1)$ every 400000 spins
- J_{ij} is taken at random from $\mathcal{N}\left(0, \frac{1}{\mathrm{i}-\mathrm{j}}\right)$ every 400000 spins $1 \cdot 10^{9}$ spins total.

Entropy is extensive!
It shows no distinction between the cases.

Subextensive component of the entropy

. . . shows a qualitative distinction between the cases!

Subextensive component of the entropy

. . . shows a qualitative distinction between the cases!
Other examples:
const periodic, fully random, chaotic sequences (finite correlation length)
log systems at phase transitions, or at the onset of chaos (divergent correlation length)
power texts, DNA sequences, (likely) some exotic transitions, (many divergent correlation lengths)

Subextensive component of the entropy

shows a qualitative distinction between the cases!

Other examples:
const periodic, fully random, chaotic sequences (finite correlation length)
log systems at phase transitions, or at the onset of chaos (divergent correlation length)
power texts, DNA sequences, (likely) some exotic transitions, (many divergent correlation lengths)

- Entropy density or channel capacity do not distinguish these cases.
- Theory of phase transitions may not distinguish between the last two cases.
- Complexity of underlying dynamics intuitively increases from const to power.

Objectives

- unified description of complexity and learning
- make distinction between useful and unusable data
- do this using physical quantities
- understand models used by organisms to represent the world
- understand biological designs by means of optimization principles

Solution - predictability

- we learn (estimate parameters, extrapolate, classify, ...) to generalize and predict from training examples; estimation of parameters is only an intermediate step

Solution - predictability

- we learn (estimate parameters, extrapolate, classify, ...) to generalize and predict from training examples; estimation of parameters is only an intermediate step
- nonpredictive features in any signal are useless since we observe now and react in the future

Solution - predictability

- we learn (estimate parameters, extrapolate, classify, ...) to generalize and predict from training examples; estimation of parameters is only an intermediate step
- nonpredictive features in any signal are useless since we observe now and react in the future
- learning happens on all scales in biology
- high predictability sources (more details to predict, not easier predictions) are generated by more complex sources (in particular, regular and random sources have low complexity)

Solution - predictability

- we learn (estimate parameters, extrapolate, classify, ...) to generalize and predict from training examples; estimation of parameters is only an intermediate step
- nonpredictive features in any signal are useless since we observe now and react in the future
- learning happens on all scales in biology
- high predictability sources (more details to predict, not easier predictions) are generated by more complex sources (in particular, regular and random sources have low complexity)
- measuring organisms' learning and prediction performance for signals of different complexity may reveal the underlying models

Solution - predictability

- we learn (estimate parameters, extrapolate, classify, ...) to generalize and predict from training examples; estimation of parameters is only an intermediate step
- nonpredictive features in any signal are useless since we observe now and react in the future
- learning happens on all scales in biology
- high predictability sources (more details to predict, not easier predictions) are generated by more complex sources (in particular, regular and random sources have low complexity)
- measuring organisms' learning and prediction performance for signals of different complexity may reveal the underlying models
- optimizing predictive information may be the design principle

Quantifying predictability

Information theory: non-metric, universal way to quantify learning

T, N	0	$T^{\prime}, N^{\prime} \quad x$
past	now	future

Quantifying predictability

Information theory: non-metric, universal way to quantify learning

$$
\begin{array}{rcc}
T, N & 0 & T^{\prime}, N^{\prime} \quad x \\
\hline \text { past } & \text { now future } \\
\mathcal{I}_{\text {pred }}\left(T, T^{\prime}\right) & =\left\langle\log _{2}\left[\frac{P\left(x_{\text {future }} \mid x_{\text {past }}\right)}{P\left(x_{\text {future }}\right)}\right]\right\rangle \\
& =S(T)+S\left(T^{\prime}\right)-S\left(T+T^{\prime}\right)
\end{array}
$$

Quantifying predictability

Information theory: non-metric, universal way to quantify learning

$$
\begin{array}{rl}
T, N & 0 \\
\hline \text { past } & \text { now } \\
\begin{aligned}
\mathcal{I}_{\text {pred }}\left(T, T^{\prime}\right) & \text { future } \\
& =\left\langle\log _{2}\left[\frac{P\left(x_{\text {future }} \mid x_{\text {past }}\right)}{P\left(x_{\text {future }}\right)}\right]\right\rangle \\
& =S(T)+S\left(T^{\prime}\right)-S\left(T+T^{\prime}\right) \\
S(T) & =\mathcal{S}_{0} \cdot T+S_{1}(T)
\end{aligned}
\end{array}
$$

Extensive component cancels in predictive information.
Predictability is a deviation from extensivity!

Quantifying predictability

Information theory: non-metric, universal way to quantify learning

$$
\begin{array}{rl}
T, N & 0 \\
\hline \text { past } & \text { now } \\
\begin{aligned}
\mathcal{I}_{\text {pred }}\left(T, T^{\prime}\right) & \text { future } \\
& =\left\langle\log _{2}\left[\frac{P\left(x_{\text {future }} \mid x_{\text {past }}\right)}{P\left(x_{\text {future }}\right)}\right]\right\rangle \\
& =S(T)+S\left(T^{\prime}\right)-S\left(T+T^{\prime}\right) \\
S(T) & =\mathcal{S}_{0} \cdot T+S_{1}(T)
\end{aligned}
\end{array}
$$

Extensive component cancels in predictive information.
Predictability is a deviation from extensivity!

$$
I_{\text {pred }}(T) \equiv \mathcal{I}_{\text {pred }}(T, \infty)=S_{1}(T)
$$

Properties of $I_{\text {pred }}(T)$

- $I_{\text {pred }}(T)$ is information, so $I_{\text {pred }}(T) \geq 0$

Properties of $I_{\text {pred }}(T)$

- $I_{\text {pred }}(T)$ is information, so $I_{\text {pred }}(T) \geq 0$
- $I_{\text {pred }}(T)$ is subextensive, $\lim _{T \rightarrow \infty} \frac{I_{\text {pred }}(T)}{T}=0$

Properties of $I_{\text {pred }}(T)$

- $I_{\text {pred }}(T)$ is information, so $I_{\text {pred }}(T) \geq 0$
- $I_{\text {pred }}(T)$ is subextensive, $\lim _{T \rightarrow \infty} \frac{I_{\text {pred }}(T)}{T}=0$
- diminishing returns, $\lim _{T \rightarrow \infty} \frac{I_{\text {pred }}(T)}{S(T)}=0$

Properties of $I_{\text {pred }}(T)$

- $I_{\text {pred }}(T)$ is information, so $I_{\text {pred }}(T) \geq 0$
- $I_{\text {pred }}(T)$ is subextensive, $\lim _{T \rightarrow \infty} \frac{I_{\text {pred }}(T)}{T}=0$
- diminishing returns, $\lim _{T \rightarrow \infty} \frac{I_{\text {pred }}(T)}{S(T)}=0$
- prediction and postdiction are symmetric

Properties of $I_{\text {pred }}(T)$

- $I_{\text {pred }}(T)$ is information, so $I_{\text {pred }}(T) \geq 0$
- $I_{\text {pred }}(T)$ is subextensive, $\lim _{T \rightarrow \infty} \frac{I_{\text {pred }}(T)}{T}=0$
- diminishing returns, $\lim _{T \rightarrow \infty} \frac{I_{\mathrm{pred}}(T)}{S(T)}=0$
- prediction and postdiction are symmetric
- it relates to and generalizes many relevant quantities
- learning: universal learning curves
- complexity: complexity measures
- coding: model coding length

How can $I_{\text {pred }}$ behave?

$\lim _{N \rightarrow \infty} I_{\text {pred }}=$ const no long-range structure

- simply predictable (periodic, constant, etc.) processes
- fully stochastic (Markov) processes

How can $I_{\text {pred }}$ behave?

$\lim _{N \rightarrow \infty} I_{\text {pred }}=$ const no long-range structure

- simply predictable (periodic, constant, etc.) processes
- fully stochastic (Markov) processes
$\lim _{N \rightarrow \infty} I_{\text {pred }}=$ const $\times \log _{2} N$ precise learning of a fixed set of parameters
- learning finite-parameter densities
- well known as $I(N$, parameters $)=I_{\text {pred }}(N)$
- physical system at criticality
- (possibly) nonextensive statistics systems

How can $I_{\text {pred }}$ behave?

$\lim _{N \rightarrow \infty} I_{\text {pred }}=$ const no long-range structure

- simply predictable (periodic, constant, etc.) processes
- fully stochastic (Markov) processes
$\lim _{N \rightarrow \infty} I_{\text {pred }}=$ const $\times \log _{2} N$ precise learning of a fixed set of parameters
- learning finite-parameter densities
- well known as $I(N$, parameters $)=I_{\text {pred }}(N)$
- physical system at criticality
- (possibly) nonextensive statistics systems
$\lim _{N \rightarrow \infty} I_{\text {pred }}=$ const $\times N^{\xi}$ learning more features as N grows
- learning continuous densities
- language
- some critical phenomena (wetting transitions)
- not well studied

Which complexity do we want to define?

- complexity of dynamics that generates a time series (not computational or descriptive complexity); thus it must be zero for totally random and for easily predictable processes
- usable for Occam-style punishment in statistical inference
- expressible in conventional physical terms
- must be attached to an ensemble, not a single realization

Complexity measure

- some kind of entropy (we proclaim Shannon's postulates: monotonicity, continuity, additivity)

Complexity measure

- some kind of entropy (we proclaim Shannon's postulates: monotonicity, continuity, additivity)
- invariant under invertible temporally local transformations $\left(x_{k} \rightarrow\right.$ $x_{k}+\xi x_{k-1}$: measuring device with inertia, article with misprints, same book in different languages - same universality class)

$$
\log P_{1}(x)=\log P_{2}(x)+\text { loc. oper. } \Rightarrow C\left[P_{1}(x)\right]=C\left[P_{2}(x)\right]
$$

This may present a problem in higher dimensions.

Complexity measure

- some kind of entropy (we proclaim Shannon's postulates: monotonicity, continuity, additivity)
- invariant under invertible temporally local transformations $\left(x_{k} \rightarrow\right.$ $x_{k}+\xi x_{k-1}$: measuring device with inertia, article with misprints, same book in different languages - same universality class)

$$
\log P_{1}(x)=\log P_{2}(x)+\text { loc. oper. } \Rightarrow C\left[P_{1}(x)\right]=C\left[P_{2}(x)\right]
$$

This may present a problem in higher dimensions.

The divergent subextensive term measures complexity uniquely!

Relations to other definitions of complexity ...

... are mostly straightforward.

Relations to other definitions of complexity ...

... are mostly straightforward.
For Kolmogorov complexity:

Relations to other definitions of complexity ...

... are mostly straightforward.
For Kolmogorov complexity:

- partition all strings into equivalence classes

Relations to other definitions of complexity

... are mostly straightforward.
For Kolmogorov complexity:

- partition all strings into equivalence classes
- define Kolmogorov complexity $C_{K}(s)$ of a sequence s with respect to the partition as a length of the shortest program that can generate a sequence from the class s belongs to

Relations to other definitions of complexity

... are mostly straightforward.
For Kolmogorov complexity:

- partition all strings into equivalence classes
- define Kolmogorov complexity $C_{K}(s)$ of a sequence s with respect to the partition as a length of the shortest program that can generate a sequence from the class s belongs to
- equivalence $=$ indistinguishable conditional distributions of futures

Relations to other definitions of complexity

... are mostly straightforward.
For Kolmogorov complexity:

- partition all strings into equivalence classes
- define Kolmogorov complexity $C_{K}(s)$ of a sequence s with respect to the partition as a length of the shortest program that can generate a sequence from the class s belongs to
- equivalence $=$ indistinguishable conditional distributions of futures

If sufficient statistics exist, then $C_{K} \approx I_{\text {pred }}$. Otherwise $C_{K}>I_{\text {pred }}$. C_{K} is unique up to a constant.

$I_{\text {pred }}$ optimization in biology

$I_{\text {pred }}$ optimization in biology

$$
\tau \frac{d x}{d t}=-x+\phi(t)+\eta(t), \quad\langle\eta(t) \eta(0)\rangle=1 / I_{0} \delta(t)
$$

$I_{\text {pred }}$ optimization in biology

$$
\begin{gathered}
\xrightarrow[\text { input, } \phi]{S_{\phi}(\omega) \propto \omega^{-\alpha}} \text { "bug" } \\
\tau \frac{d x}{d t}=-x+\phi(t)+\eta(t), \quad\langle\eta(t) \eta(0)\rangle=1 / I_{0} \delta(t) \\
\mathcal{I}([\phi],[x])=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T / 2}^{T / 2} \frac{d \omega}{2 \pi} \log \left(1+\frac{S_{\phi}(\omega)}{1 / I_{0}}\right)
\end{gathered}
$$

Maximization w.r.t. τ is meaningless.

$I_{\text {pred }}$ extraction and maximization

(Baylor and Hodgkin, 1974)

$I_{\text {pred }}$ extraction and maximization

$$
I\left(\left[x_{\text {past }}\right],\left[\phi_{\text {future }}\right]\right)-\text { too difficult }
$$

(Baylor and Hodgkin, 1974)

$I_{\text {pred }}$ extraction and maximization

$I\left(\left[x_{\text {past }}\right],\left[\phi_{\text {future }}\right]\right)-$ too difficult

$$
I\left(x_{0}, \phi_{0}\right)=\log \frac{\left\langle\phi^{2}\right\rangle}{\left\langle\phi^{2}\right\rangle-\frac{\left\langle\phi_{f}^{2}\right\rangle^{2}}{\left\langle x^{2}\right\rangle}}
$$

(Baylor and Hodgkin, 1974)

Fly H1 predictive information

Fly H1 predictive information

Fly H1 predictive information

Estimate $I\left(\right.$ spikes $\left._{\text {past }}, v_{\text {future }}\right)$.
Close to maximum!

Specific examples: problem setup

$Q(\vec{x} \mid \boldsymbol{\alpha})$ p. d. f. for \vec{x} parameterized by unknown parameters $\boldsymbol{\alpha}$ $\operatorname{dim} \alpha=K$ dimensionality of α, may be infinite $\mathcal{P}(\alpha)$ prior distribution of parameters
$\vec{x}_{1} \cdots \vec{x}_{\mathrm{N}}$ random samples from the distribution

Specific examples: problem setup

$Q(\vec{x} \mid \boldsymbol{\alpha})$ p. d. f. for \vec{x} parameterized by unknown parameters $\boldsymbol{\alpha}$ $\operatorname{dim} \alpha=K$ dimensionality of α, may be infinite $\mathcal{P}(\alpha)$ prior distribution of parameters
$\vec{x}_{1} \cdots \vec{x}_{\mathrm{N}}$ random samples from the distribution

$$
\begin{aligned}
P\left(\vec{x}_{1}, \vec{x}_{2}, \cdots, \vec{x}_{\mathrm{N}} \mid \boldsymbol{\alpha}\right) & =\prod_{\mathrm{i}=1}^{\mathrm{N}} Q\left(\vec{x}_{\mathrm{i}} \mid \boldsymbol{\alpha}\right) \\
P\left(\vec{x}_{1}, \vec{x}_{2}, \cdots, \vec{x}_{\mathrm{N}}\right) & =\int d^{K} \alpha \mathcal{P}(\boldsymbol{\alpha}) \prod_{\mathrm{i}=1}^{\mathrm{N}} Q\left(\vec{x}_{\mathrm{i}} \mid \boldsymbol{\alpha}\right) \\
S\left(\vec{x}_{1}, \vec{x}_{2}, \cdots, \vec{x}_{\mathrm{N}}\right) & \equiv S(N) \\
& =-\int d \vec{x}_{1} \cdots d \vec{x}_{\mathrm{N}} P\left(\left\{\vec{x}_{\mathrm{i}}\right\}\right) \log _{2} P\left(\left\{\vec{x}_{\mathrm{i}}\right\}\right)
\end{aligned}
$$

Density of states

$$
\mathcal{E}_{N} \equiv \frac{1}{N} \sum_{i} \log \left[\frac{Q\left(\vec{x}_{\mathrm{i}} \mid \overline{\boldsymbol{\alpha}}\right)}{Q\left(\vec{x}_{\mathrm{i}} \mid \boldsymbol{\alpha}\right)}\right] \xrightarrow{\text { anneal }} \epsilon=\int d \vec{x} Q(\vec{x} \mid \overline{\boldsymbol{\alpha}}) \log \frac{Q(\vec{x} \mid \overline{\boldsymbol{\alpha}})}{Q(\vec{x} \mid \boldsymbol{\alpha})}
$$

Density of states

$$
\begin{gathered}
\mathcal{E}_{N} \equiv \frac{1}{N} \sum_{i} \log \left[\frac{Q\left(\vec{x}_{i} \mid \overline{\boldsymbol{\alpha}}\right)}{Q\left(\vec{x}_{\mathrm{i}} \mid \boldsymbol{\alpha}\right)}\right] \stackrel{\text { annea } \mid}{ } \epsilon=\int d \vec{x} Q(\vec{x} \mid \overline{\boldsymbol{\alpha}}) \log \frac{Q(\vec{x} \mid \overline{\boldsymbol{\alpha}})}{Q(\vec{x} \mid \boldsymbol{\alpha})} \\
Z(\overline{\boldsymbol{\alpha}} ; N)=\int d \epsilon \rho(\epsilon ; \overline{\boldsymbol{\alpha}}) \exp [-N \epsilon] \\
\rho(\epsilon ; \overline{\boldsymbol{\alpha}})=\int d^{K} \alpha \mathcal{P}(\boldsymbol{\alpha}) \delta\left[\epsilon-D_{\mathrm{KL}}(\overline{\boldsymbol{\alpha}}| | \boldsymbol{\alpha})\right]
\end{gathered}
$$

Density of states

$$
\begin{aligned}
& \mathcal{E}_{N} \equiv \frac{1}{N} \sum_{i} \log \left[\frac{Q\left(\vec{x}_{\mathrm{i}} \mid \overline{\boldsymbol{\alpha}}\right)}{Q\left(\vec{x}_{\mathrm{i}} \mid \boldsymbol{\alpha}\right)}\right] \xrightarrow{\text { anneal }} \epsilon=\int d \vec{x} Q(\vec{x} \mid \overline{\boldsymbol{\alpha}}) \log \frac{Q(\vec{x} \mid \overline{\boldsymbol{\alpha}})}{Q(\vec{x} \mid \boldsymbol{\alpha})} \\
& Z(\overline{\boldsymbol{\alpha}} ; N)=\int d \epsilon \rho(\epsilon ; \overline{\boldsymbol{\alpha}}) \exp [-N \epsilon] \\
& \rho(\epsilon ; \overline{\boldsymbol{\alpha}})=\int d^{K} \alpha \mathcal{P}(\boldsymbol{\alpha}) \delta\left[\epsilon-D_{\mathrm{KL}}(\overline{\boldsymbol{\alpha}} \| \boldsymbol{\alpha})\right] \\
& \int d \epsilon \rho(\epsilon ; \overline{\boldsymbol{\alpha}})=\int d^{K} \alpha \mathcal{P}(\boldsymbol{\alpha})=1 \quad \text { annealing works! }
\end{aligned}
$$

Density of states

$$
\begin{aligned}
& \mathcal{E}_{N} \equiv \frac{1}{N} \sum_{i} \log \left[\frac{Q\left(\vec{x}_{\mathrm{i}} \mid \overline{\boldsymbol{\alpha}}\right)}{Q\left(\vec{x}_{\mathrm{i}} \mid \boldsymbol{\alpha}\right)}\right] \xrightarrow{\text { annea| }} \epsilon=\int d \vec{x} Q(\vec{x} \mid \overline{\boldsymbol{\alpha}}) \log \frac{Q(\vec{x} \mid \overline{\boldsymbol{\alpha}})}{Q(\vec{x} \mid \boldsymbol{\alpha})} \\
& Z(\overline{\boldsymbol{\alpha}} ; N)=\int d \epsilon \rho(\epsilon ; \overline{\boldsymbol{\alpha}}) \exp [-N \epsilon] \\
& \rho(\epsilon ; \overline{\boldsymbol{\alpha}})=\int d^{K} \alpha \mathcal{P}(\boldsymbol{\alpha}) \delta\left[\epsilon-D_{\mathrm{KL}}(\overline{\boldsymbol{\alpha}}| | \boldsymbol{\alpha})\right] \\
& \int d \epsilon \rho(\epsilon ; \overline{\boldsymbol{\alpha}})=\int d^{K} \alpha \mathcal{P}(\boldsymbol{\alpha})=1 \quad \text { annealing works! }
\end{aligned}
$$

Annealed approximation (almost) always works. Learning is annealing at decreasing temperature. Nonzero $\rho \Longrightarrow$ consistency in learning.

Density at $\epsilon \rightarrow 0, I_{\text {pred }}$, and learning

Occam factor, generalization error, prediction error, fluctuation determinant:

$$
\mathcal{D}(\overline{\boldsymbol{\alpha}} ; N) \approx-\log \int d \epsilon \rho(\epsilon ; \overline{\boldsymbol{\alpha}}) \mathrm{e}^{-N \epsilon}
$$

Density at $\epsilon \rightarrow 0, I_{\text {pred }}$, and learning

Occam factor, generalization error, prediction error, fluctuation determinant:

$$
\mathcal{D}(\overline{\boldsymbol{\alpha}} ; N) \approx-\log \int d \epsilon \rho(\epsilon ; \overline{\boldsymbol{\alpha}}) \mathrm{e}^{-N \epsilon}
$$

Predictive information:

$$
I_{\mathrm{pred}}(N) \approx \int d^{K} \bar{\alpha} \mathcal{P}(\overline{\boldsymbol{\alpha}}) \mathcal{D}(\overline{\boldsymbol{\alpha}}, N)
$$

Density at $\epsilon \rightarrow 0, I_{\text {pred }}$, and learning

Occam factor, generalization error, prediction error, fluctuation determinant:

$$
\mathcal{D}(\overline{\boldsymbol{\alpha}} ; N) \approx-\log \int d \epsilon \rho(\epsilon ; \overline{\boldsymbol{\alpha}}) \mathrm{e}^{-N \epsilon}
$$

Predictive information:

$$
I_{\mathrm{pred}}(N) \approx \int d^{K} \bar{\alpha} \mathcal{P}(\overline{\boldsymbol{\alpha}}) \mathcal{D}(\overline{\boldsymbol{\alpha}}, N)
$$

Universal learning curves:

$$
\begin{aligned}
\Lambda(\overline{\boldsymbol{\alpha}} ; N) & \equiv D_{\mathrm{KL}}\left(\overline{\boldsymbol{\alpha}} \| \boldsymbol{\alpha}_{\mathrm{est}}\right) \approx \frac{d \mathcal{D}(\overline{\boldsymbol{\alpha}} ; N)}{d N} \\
\Lambda(N) & \equiv \int d \overline{\boldsymbol{\alpha}} \mathcal{P}(\overline{\boldsymbol{\alpha}}) \Lambda(\overline{\boldsymbol{\alpha}} ; N) \approx \frac{d I_{\mathrm{pred}}}{d N}
\end{aligned}
$$

Finite number of states and finite $I_{\text {pred }}$

$$
\rho\left(\epsilon ; a_{i}\right)=\sum_{j=1}^{M} \mathcal{P}_{j} \delta\left(d_{i j}-\epsilon\right)
$$

Finite number of states and finite $I_{\text {pred }}$

$$
\begin{aligned}
\rho\left(\epsilon ; a_{i}\right) & =\sum_{j=1}^{M} \mathcal{P}_{j} \delta\left(d_{i j}-\epsilon\right) \\
\mathcal{D}\left(a_{i} ; N\right) & =c_{1}-c_{2} \exp \left[-N c_{3}\right] \\
\Lambda\left(a_{i} ; N\right) & \approx c_{2} c_{3} \exp \left[-N c_{3}\right]
\end{aligned}
$$

$I_{\text {pred }}$ saturates as $N \rightarrow \infty$

Power-law density function

$$
\rho(\epsilon \rightarrow 0 ; \overline{\boldsymbol{\alpha}}) \approx A(\overline{\boldsymbol{\alpha}}) \epsilon^{(d-2) / 2}
$$

Power-law density function

$$
\rho(\epsilon \rightarrow 0 ; \overline{\boldsymbol{\alpha}}) \approx A(\overline{\boldsymbol{\alpha}}) \epsilon^{(d-2) / 2}
$$

Example: sound finite parameter models, $\operatorname{dim} \boldsymbol{\alpha}=d$.

$$
\begin{aligned}
\rho(\epsilon ; \overline{\boldsymbol{\alpha}}) & \xrightarrow{\epsilon \rightarrow 0} \mathcal{P}(\overline{\boldsymbol{\alpha}}) \frac{2 \pi^{d / 2}}{\Gamma(d / 2)}(\operatorname{det} \mathcal{F})^{-1 / 2} \epsilon^{(d-2) / 2} \\
I_{\text {pred }} \approx S_{1}^{(\mathrm{a})} & \approx \frac{d}{2} \log _{2} N
\end{aligned}
$$

Power-law density function

$$
\rho(\epsilon \rightarrow 0 ; \overline{\boldsymbol{\alpha}}) \approx A(\overline{\boldsymbol{\alpha}}) \epsilon^{(d-2) / 2}
$$

Example: sound finite parameter models, $\operatorname{dim} \boldsymbol{\alpha}=d$.

$$
\begin{aligned}
\rho(\epsilon ; \overline{\boldsymbol{\alpha}}) & \xrightarrow{\epsilon \rightarrow 0} \mathcal{P}(\overline{\boldsymbol{\alpha}}) \frac{2 \pi^{d / 2}}{\Gamma(d / 2)}(\operatorname{det} \mathcal{F})^{-1 / 2} \epsilon^{(d-2) / 2} \\
I_{\mathrm{pred}} \approx S_{1}^{(\mathrm{a})} & \approx \frac{d}{2} \log _{2} N
\end{aligned}
$$

Speed of approach to this asymptotics is rarely investigated.

Another example

Learning $Q\left(\vec{x}_{1} \cdots \vec{x}_{\mathrm{N}} \mid \boldsymbol{\alpha}\right)$, a finite parameter Markov process with long range intrinsic correlations such that

$$
\begin{aligned}
S\left[\left\{\vec{x}_{\mathrm{i}}\right\} \mid \boldsymbol{\alpha}\right] & \equiv-\int d^{N} \vec{x} Q\left(\left\{\vec{x}_{\mathrm{i}}\right\} \mid \boldsymbol{\alpha}\right) \log _{2} Q\left(\left\{\vec{x}_{\mathrm{i}}\right\} \mid \boldsymbol{\alpha}\right) \\
& \rightarrow N \mathcal{S}_{0}+\mathcal{S}_{0}^{*} ; \quad \mathcal{S}_{0}^{*}=\frac{K^{\prime}}{2} \log _{2} N
\end{aligned}
$$

Another example

Learning $Q\left(\vec{x}_{1} \cdots \vec{x}_{\mathrm{N}} \mid \boldsymbol{\alpha}\right)$, a finite parameter Markov process with long range intrinsic correlations such that

$$
\begin{aligned}
S\left[\left\{\vec{x}_{\mathrm{i}}\right\} \mid \boldsymbol{\alpha}\right] & \equiv-\int d^{N} \vec{x} Q\left(\left\{\vec{x}_{\mathrm{i}}\right\} \mid \boldsymbol{\alpha}\right) \log _{2} Q\left(\left\{\vec{x}_{\mathrm{i}}\right\} \mid \boldsymbol{\alpha}\right) \\
& \rightarrow N \mathcal{S}_{0}+\mathcal{S}_{0}^{*} ; \quad \mathcal{S}_{0}^{*}=\frac{K^{\prime}}{2} \log _{2} N \\
S_{1}^{(\mathrm{a})}(N) & \approx \frac{K+K^{\prime}}{2} \log _{2} N
\end{aligned}
$$

Another example

Learning $Q\left(\vec{x}_{1} \cdots \vec{x}_{\mathrm{N}} \mid \boldsymbol{\alpha}\right)$, a finite parameter Markov process with long range intrinsic correlations such that

$$
\begin{aligned}
S\left[\left\{\vec{x}_{\mathrm{i}}\right\} \mid \boldsymbol{\alpha}\right] & \equiv-\int d^{N} \vec{x} Q\left(\left\{\vec{x}_{\mathrm{i}}\right\} \mid \boldsymbol{\alpha}\right) \log _{2} Q\left(\left\{\vec{x}_{\mathrm{i}}\right\} \mid \boldsymbol{\alpha}\right) \\
& \rightarrow N \mathcal{S}_{0}+\mathcal{S}_{0}^{*} ; \quad \mathcal{S}_{0}^{*}=\frac{K^{\prime}}{2} \log _{2} N \\
S_{1}^{(\mathrm{a})}(N) & \approx \frac{K+K^{\prime}}{2} \log _{2} N
\end{aligned}
$$

Do not distinguish predictability from unknown parameters and from intrinsic correlations.
In physics similar to: order parameters \Longleftrightarrow interactions.

RG, not finite size scaling!

RG, not finite size scaling!

$$
S(N)=S(\text { block })+S(\text { spin } \mid \text { block })
$$

Scaling fields carry information across.
Is $I_{\text {pred }}=f$ (scaling exponents) $\log N$?

Essential singularity in the density

$$
\begin{aligned}
\rho(\epsilon \rightarrow 0 ; \overline{\boldsymbol{\alpha}}) & \approx A(\overline{\boldsymbol{\alpha}}) \exp \left[-\frac{B(\overline{\boldsymbol{\alpha}})}{\epsilon^{\mu}}\right], \quad \mu>0 \\
S_{1}^{(\mathrm{a})}(N) & \propto N^{\mu /(\mu+1)}
\end{aligned}
$$

Essential singularity in the density

$$
\begin{aligned}
\rho(\epsilon \rightarrow 0 ; \overline{\boldsymbol{\alpha}}) & \approx A(\overline{\boldsymbol{\alpha}}) \exp \left[-\frac{B(\overline{\boldsymbol{\alpha}})}{\epsilon^{\mu}}\right], \quad \mu>0 \\
S_{1}^{(\mathrm{a})}(N) & \propto N^{\mu /(\mu+1)}
\end{aligned}
$$

- finite parameter model with increasing number of parameters $K \sim$ $N^{\mu /(\mu+1)} ; S_{1}(N) \sim N^{\mu / \mu+1}$, not $S_{1}(N) \sim \frac{N^{\mu / \mu+1}}{2} \log N$
- as $\mu \rightarrow \infty$ complexity grows and then vanishes to the leading order when $S_{1}^{(\mathrm{a})}$ becomes extensive

Example of the power-law $I_{\text {pred }}$

Learning a smooth nonparameteric density $Q(x)=1 / l_{0} \mathrm{e}^{-\phi(x)}$, $x \in[0, L]$ (Bialek, Callan, and Strong 1996).

$$
\mathcal{P}[\phi(x)]=\frac{1}{\mathcal{Z}} \exp \left[-\frac{l}{2} \int d x\left(\frac{\partial \phi}{\partial x}\right)^{2}\right] \delta\left[\frac{1}{l_{0}} \int d x \mathrm{e}^{-\phi(x)}-1\right]
$$

Example of the power-law $I_{\text {pred }}$

Learning a smooth nonparametric density $Q(x)=1 / l_{0} \mathrm{e}^{-\phi(x)}$, $x \in[0, L]$ (Bialek, Callan, and Strong 1996).

$$
\begin{aligned}
\mathcal{P}[\phi(x)] & =\frac{1}{\mathcal{Z}} \exp \left[-\frac{l}{2} \int d x\left(\frac{\partial \phi}{\partial x}\right)^{2}\right] \delta\left[\frac{1}{l_{0}} \int d x \mathrm{e}^{-\phi(x)}-1\right] \\
\rho(D \rightarrow 0 ; \bar{\phi}) & =A[\bar{\phi}(x)] \epsilon^{-3 / 2} \exp \left(-\frac{B[\bar{\phi}(x)]}{\epsilon}\right) \\
S_{1}^{(a)}(N) & \propto \sqrt{N}\left(\frac{L}{l}\right)^{1 / 2}
\end{aligned}
$$

Example of the power-law $I_{\text {pred }}$

Learning a smooth nonparameteric density $Q(x)=1 / l_{0} \mathrm{e}^{-\phi(x)}$, $x \in[0, L]$ (Bialek, Callan, and Strong 1996).

$$
\begin{aligned}
\mathcal{P}[\phi(x)] & =\frac{1}{\mathcal{Z}} \exp \left[-\frac{l}{2} \int d x\left(\frac{\partial \phi}{\partial x}\right)^{2}\right] \delta\left[\frac{1}{l_{0}} \int d x \mathrm{e}^{-\phi(x)}-1\right] \\
\rho(D \rightarrow 0 ; \bar{\phi}) & =A[\bar{\phi}(x)] \epsilon^{-3 / 2} \exp \left(-\frac{B[\bar{\phi}(x)]}{\epsilon}\right) \\
S_{1}^{(a)}(N) & \propto \sqrt{N}\left(\frac{L}{l}\right)^{1 / 2}
\end{aligned}
$$

- increasing number of "effective parameters" (bins) of adaptive size $\sim \sqrt{l / N Q(x)}$

Example of the power-law $I_{\text {pred }}$

Learning a smooth nonparameteric density $Q(x)=1 / l_{0} \mathrm{e}^{-\phi(x)}$, $x \in[0, L]$ (Bialek, Callan, and Strong 1996).

$$
\begin{aligned}
\mathcal{P}[\phi(x)] & =\frac{1}{\mathcal{Z}} \exp \left[-\frac{l}{2} \int d x\left(\frac{\partial \phi}{\partial x}\right)^{2}\right] \delta\left[\frac{1}{l_{0}} \int d x \mathrm{e}^{-\phi(x)}-1\right] \\
\rho(D \rightarrow 0 ; \bar{\phi}) & =A[\bar{\phi}(x)] \epsilon^{-3 / 2} \exp \left(-\frac{B[\bar{\phi}(x)]}{\epsilon}\right) \\
S_{1}^{(a)}(N) & \propto \sqrt{N}\left(\frac{L}{l}\right)^{1 / 2}
\end{aligned}
$$

- increasing number of "effective parameters" (bins) of adaptive size $\sim \sqrt{l / N Q(x)}$
- heuristic arguments for the dimensionality ζ and the smoothness exponent η give $S_{1}(N) \sim N^{\zeta / 2 \eta}$ - demonstrates a crossover from complexity to randomness

Which model is being used?

for QFT or nested asymptotics kicks in fast

- asymptotic decay rate should signify the model

Which model is being used?

(Gallistel et al., 2001)
for QFT or nested asymptotics kicks in fast

- asymptotic decay rate should signify the model
decay rate too fast to observe
- noisy learning

Which model is being used?

(Gallistel et al., 2001)
for QFT or nested asymptotics kicks in fast

- asymptotic decay rate should signify the model
decay rate too fast to observe
- noisy learning
maybe FDT? $\frac{\partial \Lambda}{\partial N}=-\zeta_{N} \Lambda^{\nu}$

Fluctuations (drifting target) and dissipation (learning curve)

(Fairhall et al., 2001)

Fluctuations (drifting target) and dissipation (learning curve)

(Fairhall et al., 2001)

$$
\Delta_{\mathrm{rms}}=\left\{\nu^{1 / \nu} \frac{\Gamma\left(\frac{3}{2 \nu}\right)}{\Gamma\left(\frac{1}{2 \nu}\right)}\right\}^{1 / 2}\left(\frac{\Omega}{\zeta}\right)^{1 /(2 \nu)}
$$

What's next?

extraction separating predictive information from non-predictive using the Information Bottleneck technique
physics of phase transitions, connection to subextensive statistical mechanics
learning unification of approaches: Bayesian, SRM, MDL, CuckerSmale. . .
biology what is predictive information of natural symbolic sequences (DNA, languages, spike trains)? animal behavior? can we understand molecular circuits in terms of learning (extracting $I_{\text {pred }}$?
dynamical systems theory what is predictive information and complexity of various systems?

