
Predictability, Complexity, and Learning

Ilya Nemenman

Co-authored with: William Bialek, Naftali Tishbi

November 21, 2000

http://xxx.lanl.gov/abs/physics/0007070

1



Outline
• A curious observation.

• Why a new learning and complexity theory is needed?

• Why and how to use information theory?

• Predictive information, its properties, and relations to other

quantities of interest.

• Calculating predictive information for different processes.

• Unique complexity measure through predictive information.

• Possible applications.
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Entropy of words in a spin chain

S(N) = −
2N−1∑
k=0

PN(Wk) log2 PN(Wk)

For this chain, P (W0) = P (W1) = P (W3) = P (W7) = P (W12) =

P (W14) = 2, P (W8) = P (W9) = 1, and all other frequencies

(probabilities) are zero. Thus, S(4) ≈ 2.95 bits.
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Entropy of 3 generated chains

• Jij = δi,j+1

• Jij = J0 δi,j+1, J0 is taken

at random from N (0,1)

every 400000 spins

• Jij is taken at random

from N (0, 1
i−j

)

every 400000 spins

1 · 109 spins total.

Entropy is extensive! It shows no distinction between the cases.
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Subextensive component of the entropy

This component is usually neglected in physics and information theory.

Subextensive entropy shows a qualitative distinction between the

cases! What is the significance of this difference?
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Problems in learning
and complexity theories

• many frameworks to study learning

– statistical learning theory

– Minimal Description Length (optimal coding of data)

– specific algorithms and learning machines

– psychological and biological analysis of learning and adaptation in
animals

– etc.

• different sets of mathematical quantities used

– probabilistic bounds

– learning curves

∗ in different units (especially, in biology)

– complexities of learning tasks

– etc.
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• complexity and (quality) of learning are related—but how?

• many frameworks to study complexity

– Kolmogorov complexity

– Minimal Description Length (stochastic complexity)

– VC-complexity

– causal states (statistical complexity)

– thermodynamic depth

– slow approach of entropy to extensivity (effective measure complexity)

– complexities of dynamical systems

– other entropy-based definitions of complexity

• complexity must be zero for a completely random signal, and

some measures get it wrong

7



There is very little known about connections between various

views on learning and complexity.

We need a universal paradigm created, of which all
studied problems are special cases.

We base this approach on the notion of predictability.
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Why predictability?

• we learn (estimate parameters, extrapolate, classify, . . .) not for the

sake of learning; the problem of learning is to generalize and

predict from training examples, and estimation of parameters

is only an intermediate step

• nonpredictive features in any signal are useless since we ob-

serve now and react in the future

• more features to predict is a problem of intuitively higher

complexity

• it is impossible to predict a totally random string, so if com-

plexity is based on predictability, for such a string it is zero
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Quantifying predictability

• learning is accrual of information

• Shannon’s information theory is the only nonmetric way to

quantify information

Thus we will use information theory to study predictability and

will define predictive information as

the information that the observed data provides about
the data that is coming.
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Definitions

-s
nowpast future

x
T,N T ′, N ′

0

Ipred(T, T ′) =
〈
log2

[
P (xfuture|xpast)

P (xfuture)

] 〉
= S(T ) + S(T ′)− S(T + T ′)

S(T ) = S0 · T + S1(T )

extensive component cancels in predictive information

predictability is a deviation from extensivity!

Ipred(T ) ≡ Ipred(T,∞) = S1(T )
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Properties of Ipred(T )

• Ipred(T ) is information, so Ipred(T ) ≥ 0

• Ipred(T ) is subextensive, limT→∞
Ipred(T )

T = 0

• diminishing returns, limT→∞
Ipred(T )
S(T ) = 0
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Relations to coding

To code N+1’st sample after observing N we need, on average,

`(N) = −〈log2P (xN+1|x1, · · · , xN)〉 = S(N + 1)− S(N) ≈
∂S(N)

∂N

bits of information.

So we define the universal learning curve that measures

excess coding costs due to finiteness of the knowledge we have

Λ(N) ≡ `(N)− `(∞)

= S(N + 1)− S(N)− S0

= S1(N + 1)− S1(N)

≈
∂S1(N)

∂N
=
∂Ipred(N)

∂N
.
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Properties of Λ(N)

• limN→∞Λ(N) = 0

• integral of Λ(N) is the information accumulated about the

model

• Λ(N) relates to conventional learning curves in specific con-
texts. Example:

– fitting noisy data {xi, yi} with y = f(x,α) :
〈χ2(N)〉 = 1

σ2〈[y − f(x;α)]2〉 → 2Λ(N) + 1.
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Relations to other quantities
in learning theory

`(N) thermodynamic dive, N-th order block entropy,
learning curve for some neural networks

Ipred(∞,∞) excess entropy, effective measure complexity,
stored information, etc.; tempts to focus on
Ipred(∞,∞) = const < ∞ — the least inter-
esting cases

Ipred(N,∞) analysed as I(N, parameters) for parametric
models

Ipred universally generalizes all of these quantities!
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How can Ipred behave?

limN→∞ Ipred = const no long-range structure

• simply predictable (periodic, constant, etc.) processes

• fully stochastic (Markov) processes

limN→∞ Ipred = const× log2N precise learning of a fixed set of
parameters

• learning finite-parameter densities

• analyzed as I(N,parameters) = Ipred(N)

limN→∞ Ipred = const×Nξ learning more features as N grows

• learning continuous densities

• Never explicitly studied!
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Problem setup

Q(x|α) probability density function for ~x parameterized by

unknown parameters α

dimα = K dimensionality of α, may be infinite

P(α) prior distribution of parameters

~x1 · · · ~xN random samples from the distribution

P (~x1, ~x2, · · · , ~xN|α) =
N∏

i=1

Q(~xi|α)

P (~x1, ~x2, · · · , ~xN) =
∫
dKαP(α)

N∏
i=1

Q(~xi|α)

S(~x1, ~x2, · · · , ~xN) ≡ S(N) = −
∫
d~x1 · · · d~xNP ({~xi}) log2P ({~xi})
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Separating the extensive term

S(N) = −
∫
dKᾱP(ᾱ)

dN~x
N∏

j=1

Q(~xj|ᾱ) log2

∫
dKαP(α)

N∏
i=1

Q(~xi|α)


= −

∫
dKᾱP(ᾱ)

dN~x
N∏

j=1

Q(~xj|ᾱ)

× log2

N∏
j=1

Q(~xj|ᾱ)
∫
dKαP(α)

exp[−NEN(α;{~xi})]︷ ︸︸ ︷
N∏

i=1

[
Q(~xi|α)

Q(~xi|ᾱ)

]
This separates S(N) into the extensive and the subextensive
terms

S0 =
∫
dKαP(α)

[
−
∫
dDxQ(~x|α) log2Q(~x|α)

]
,

S1(N) = −
∫
dKᾱ dN ~xiP(ᾱ) log2

[∫
dKαP (α)e−NEN

]
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Annealed approximation
Under some conditions we may have

ψ(α, ᾱ; {xi}) ≡ EN(α; {~xi})︸ ︷︷ ︸
quenched energy

− DKL(ᾱ||α)︸ ︷︷ ︸
annealed energy

≡ −
1

N

N∑
i=1

ln

[
Q(~xi|α)

Q(~xi|ᾱ)

]
+
∫
d~xQ(~x|ᾱ) ln

[
Q(~x|α)

Q(~x|ᾱ)

]
→̃ 0

S1(N)→̃S
(a)
1 (N) ≡ −

∫
dKᾱP(ᾱ) log2

annealed partition function, Z(ᾱ;N)︷ ︸︸ ︷∫
dKαP (α)e−NDKL︸ ︷︷ ︸

annealed free energy, F (ᾱ;N)
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Density of states

We can rewrite the partition function

Z(ᾱ;N) =
∫
dDρ(D; ᾱ) exp[−ND]

ρ(D; ᾱ) =
∫
dKαP(α)δ[D −DKL(ᾱ||α)]∫

dDρ(D; ᾱ) =
∫
dKαP(α) = 1

The density ρ could be very different for different targets.

Thus learning is annealing at decreasing temperature;

properties of predictive information (and learning) almost always

depend on D = 0 behavior of the density.
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Power–law density function

For this case:

ρ(D → 0; ᾱ) ≈ A(ᾱ)D(d−2)/2

S
(a)
1 ≈

d

2
log2N

If d = d(ᾱ), then we can get non half–integer coefficients in front

of the logarithm term.

• this behavior is known in MDL and other literature

• speed of approach to this asymptotics is rarely investigated
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Examples of the logarithmic
predictive information

• Finite parameter models, dimα = K. Then for α ≈ ᾱ and

for sound parameterization

DKL(ᾱ||α) ≈
1

2

∑
µν

(ᾱµ − αµ)Fµν(ᾱν − αν) + · · ·

ρ(D → 0; ᾱ) ≈ P(ᾱ)
2πK/2

Γ(K/2)
(detF)−1/2D(K−2)/2

F — Fisher information matrix

To avoid complications with soundness, we can define the

phase space dimensionality of the model family through the

exponent of the density function.
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• Finite parameter Markov process, learn Q(~x1 · · · ~xN|α). If en-
ergy is extensive,

DKL [Q({~xi}|ᾱ)||Q({~xi}|α)] → NDKL (ᾱ||α) + o(N) .

and extensive term is replaced by

S [{~xi}|α] ≡ −
∫
dN~xQ({~xi}|α) log2Q({~xi}|α)

→ NS0 + S∗0; S∗0 =
K′

2
log2N

then

S
(a)
1 (N) =

K +K′

2
log2N

Predictive information does not distinguish predictability
coming from unknown parameters and from intrinsic
long–range correlations. This is similar to describing physi-
cal systems with correlations using order parameters.
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Essential singularity in
the density function

As d→∞ we may imagine the following behavior

ρ(D → 0; ᾱ) ≈ A(ᾱ) exp

[
−
B(ᾱ)

Dµ

]
, µ > 0

C(ᾱ) = [B(ᾱ)]1/(µ+1)

(
1

µµ/(µ+1)
+µ1/(µ+1)

)
S

(a)
1 (N) ≈

1

ln 2
〈C(ᾱ)〉ᾱNµ/(µ+1)

• finite parameter model with increasing number of parameters

K ∼ Nµ/(µ+1)

• as µ→∞ complexity grows and then vanishes to the leading

order when S
(a)
1 becomes extensive
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Example of the power–law Ipred
Learning a nonparametric (infinite parameter) density Q(x) =
1/l0e

−φ(x), x ∈ [0, L], with some smoothness constraints (Bialek,
Callan, and Strong 1996).

P[φ(x)] =
1

Z
exp

[
−
l

2

∫
dx

(
∂φ

∂x

)2
]
δ

[
1

l0

∫
dx e−φ(x) − 1

]

ρ(D → 0; φ̄) = A[φ̄(x)]D−3/2 exp

(
−
B[φ̄(x)]

D

)

S
(a)
1 (N) ≈

1

2 ln 2

√
N

(
L

l

)1/2

• increasing number of ‘effective parameters’ (bins) of adaptive
size ∼

√
l/NQ(x)

• heuristic arguments for the dimensionality ζ and the smooth-
ness exponent η give S1(N) ∼ Nζ/2η — demonstrates a
crossover from complexity to randomness
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A note on fluctuations
• fluctuations always decrease S1
• fluctuations (and S1) are ill or well defined together with S0
• for finite parameter system fluctuation do not grow with N

– for finite Vapnik–Chervonenkis (VC) dimension (capacity measure)
fluctuations are uniformly small

– for infinite VC dimension the decrease of fluctuations is prior depen-
dent, very different approaches to asymptotia (even, possibly, phase
transitions) are possible

• for infinite parameter systems, fluctuations are necessarily
prior (regularization) dependent and are small if sublinear
S

(a)
1 (N) can be calculated

Explicit links between statistical learning theory (capacity of
model space) and MDL–type theories (volumes in model space)
are established.
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Which complexity we study?
We study complexity of predicting a time series, not computa-

tional complexity, algorithmic complexity, or similar. So we look

for a definition that can be used for

• Occam–style punishment for complexity in statistical infer-

ence (statistics)

• defining and measuring complexity of dynamical processes

that generate the time series (physics)
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What do we want in complexity measure?

• it must be zero for totally random and for easily predictable

processes (accepted among physicists, but not so much among

statisticians)

• to relate to physics, it must be measured by conventional

thermodynamic quantities (accepted among physicists, but

new to statisticians)

• must not be over–universal, that is it should depend not only

on entropy (in principle, accepted by everybody, but usually

violated by physicists)

• must be an ensemble property (this is controversial, but see

Grassberger)

• must relate to specific complexity measures studied before
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Unique measure of complexity!
Complexity measure must be:
• some kind of entropy (we proclaim Shannon’s postulates)

– monotonic in N for N equally likely signals

– additive for statistically independent signals

– a weighted sum of measure at branching points if measuring a leaf
on a tree

• reparameterization, quantization invariant, thus subextensive

• invertible temporally local transformations (e. g., xk → xk +

ξxk−1—measuring device with inertia) and prior insensitive ∗

The divergent subextensive term measures
complexity uniquely!

∗The last two conditions may be replaced by a requirement that complexity
must stay invariant for any choice of the reference distribution (constructed
of local operators) that is needed to define entropy of continuous variables.
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What’s next?
• separating predictive information from non–predictive using

the ‘relevant information’ technique
• reflection to physics — finding order parameters for phase

transitions using behavior of the predictive information
• reflection to biology — large expansion from receptors to pri-

mary sensory cortices may be due to efficient representation
of predictive information, not current state of the world

• reflection to psychology — experiments on learning distribu-
tions and language (power law complexity class) by humans;
what expectations of the world do we have?

• reflection to statistics

– nonparametric models may be simpler then finite parameter ones (rel-
evant to biology)

– predictive information is the property of the data (nonparametric ex-
tension of the MDL principle)
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Summary

We have built a generalizing and unique theory of learning and

complexity.
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