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Reconstructing cellular

i Interactions

=)

HG-U95A (approximately 12,600 probes)

= Over-, under- expression,
diagnostics tools (since late
1990s)

= Clustering, pathways
identification (since late 1990s)

= Interaction networks (since
early 2000s)



Reconstructing cellular
interactions
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i Two major problems

Reducibility
‘\‘hat is an interaction?)

Mext specificity

Posttranslational modifications




Problem 1: ARACNE

i (Data Processing Inequality, DPI)
| strongl>‘

B P(A,C)
I(A,C)=[dA dC P(A.C) log P(A)P(C]

\
I(A,C)<min|I(A,B),I(B,C)]

Reparm. invariance; small sample; low complexity.

Performance?
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Performance:

i Few false positives

= No false positives for tree networks

= No false positives under very general
conditions for networks with few strong
loops

= No false negatives under stronger
conditions

= Need to estimate Ml reliably




Synthetic networks
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B-cell dataset: cMYC network

= ~400 arrays (Dalla-Favera et al.
= No dynamics

= ~250 naturally occurring, ~150 perturbed
= ~25 phenotypes (normal, tumors, experimental perturbations)
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Problem 2: posttranslational

i modulation from mRNA data

= Much of regulation in higher eukaryotes is post-
transcriptional (e.g., splicing), and post-translational
(e.g., phosphorylation, complex formation).

= Many mRNA (e.g., p53) constitutively expressed.

Can these be observed from mRNA expressions only?

Solution:

Phenotypic and population variability (even in constitutively
expressed genes) induces higher order dependencies
between TFs, targets, and modulators.




Posttranslational modulation:

i a transistor model
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Posttranslational modulation:
MI signature
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Phenotypic variability of
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Numerical case study:

i Transistor modulation

TF
Interaction

PK
coTF
Genel
Gene2
Gene3

I, (genel)=I(TF,genel | PK high)



Enforcing irreducibility:
ARACNE on a TF-hub
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However:

i No solution yet for...
‘ !\/Iodula!tors are not
\A irreducible.
? Any suggestions?
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Expression Profiles
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Algorithm flowchart

= Focus on a hub (c-MYC).

= Select modulators with 6> microarray noise
(Tu et al., 2002) -- many signaling genes,
constitutively expressed genes.

= Find modulators whose expression inflicts
significant conditional Ml changes for an
ARACNE target in at least one conditional
topology.

= No guarantee of modulator irreducibility.

s Guarantee of target irreducibility (after
multiple hypothesis correction).

Al(8rr»8,18,,)=
:‘I(gTF’gt 18,)—1(8> 8, lg;l)‘ >0



c-MYC modulators

= 1117 candidate modulators

= 100 modulators, 130 targets, 205 interactions

= GO enrichment of the modulator set: kinases, acyltransferases, TFs (all
pP<5%)

= Modulators in known MYC regulation pathways (e.g., BCR)

= TFs: 15/100, p=1e-6.

= 4/5 TF modulators (e.g., E2F5) with TRANSFAC signatures have
binding sites in modulated targets promoter regions.

= Modulators with many (>=4) targets are not-specific (proteolisis,
upstream signaling components, receptor signaling molecules).

= Modulators with few (1-2) effected targets are mostly co-TFs,
interaction-specific.

= ~1/3 modulators are literature-validated.
= Biochemical validation of predictions in progress.



Example:

ﬁ TF co-factor modulator
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BCR pathway:

i Reducibility

«» predicted modulators

> not in the candidate list
=3 TF’s not predicted

& Protein complex

< Targets



