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Why fly as a neurocomputing

i model system?

= Can record for long times
= Named neurons with known functions

= Nontrivial computation (motion
estimation)

= Vision (specifically, motion estimation)
IS behaviorally important

= Possible to generate natural stimuli




i Questions

= Can we understand the code?

= Which features of it are important?
= Rate or precise timing (how precise)?
= Synergy between spikes?

= What/how much does the fly know?
= Is there an evidence for optimality?




Recording from fly's H1
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Motion estimation in fly H1
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Linear decoding for sparse

i spikes

Small parameter ~7/(¢t,—¢, ) allows to build linear
decoding schemes even for nonlinearly encoded stimuli.

S =D FE—t)+ D filt—t,t—t)+...

This is cluster expansion or spatially variable mean-field
approximation in statistical mechanics.

(Bialek, Zee, 1990)



Linear decoding

stimulus
Jdo / /reconstruction
§ Il Position of each spike
~20 within ~2ms matters!
—so|- But what if ...
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Natural stimuli
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Natural stimuli

= Poisson behavior for
“boring” stimuli

= ~2 ms resolution known to
be important for white
noise stimuli

= Could such “brisk” spikes
be due to ~1 ms
correlations in stimulus?

= What if stimulus has
natural correlations? T = 60ms

response = 30ms




‘L Natural stimulus and response
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Highly repeatable spikes

(not rate coding)




How to characterize coding

i without an explicit decoding ?

S[x]=-) p(x)logp(x),  x=s,{t}

p(s,{t;})
I[5.{1,}]1= ALl |
[5,{t,}] S{%P“ o

= Captures all dependencies (zero iff joint probabilities
factorize)

= Reparameterization invariant
= Unique metric-independent measure of “how related”




Experiment design
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i Problems

= Total of about 10-15 min of recordings (limited by
stationarity of the outside world)

= At most 200 repetitions

= Stimulus correlation of 60ms: only 10000 independent
samples (repeated or nonrepeated)

= Need to sample words of length 30 ms (behavioral) to
60 ms (stimulus) at resolution down to 0.2 ms (binary
words of length up to ~100).




Undersampling and
entropy/MI estimation

Maximum likelihood estimation:

n.
p., i=1...K II I' |:> p =—’
(K - # of bins)

i 1 2 3 4 5 6 (N - sample size)

Sur =—Zﬁ’logﬁ’

' <SML>S—E<%>10g@=S

N



Undersampling and

i entropy/MI estimation

(Sue) S—Z%log% =S
log K \

. 2° . 1
bias o< — ~ = (variance)'’” o< ——

JN

i

Fluctuations underestimate entropies and
overestimate mutual informations.

(Need smoothing.)



Correct smoothing possible

S<logN

Incorrect smoothing --
i= 1 2 3 4 5 6 over- or underestimation.

13 bits for NR, 6-7 bits for R

Even refractory Poisson process at this 7,7 has
over 15-20 bits of entropy!

For estimation of entropy at K/ N <1 see:

Grassberger 1989, 2003, Antos and Kontoyiannins 2002, Wyner and

Foster 2003, Batu et al. 2002, Paninski 2003, Panzeri and Treves
1996, Strong et al. 1998



i What if S>logN ?

But there is hope (Ma, 1981):

For uniform K-bin distribution the first coincidence occurs

for
N ~vK =+2°

Time of first coincidence
S~21logN, <

Can make estimates for square-root-fewer samples!
Can this be extended to nonuniform cases?

« Assumptions needed (won't work always)
» Estimate entropies without estimating distributions.



i What is unknown?

Binomial distribution:
S=—plogp—

(I-p)log(l-p)

jl Assume (Bayes)
a

uniform (no assumptions)

Sy a
p S



i What is unknown?

1.O1||?||Té='|"‘|1—|—|—7‘ g_ﬁest—sﬁue>
Selection of wrong “unknown” 95..




One possible uniformization

i strategy for S (NSB)

Posterior variance scalesas 1/~ N
Little bias, except in some known cases.

Counts coincidences and works in Ma regime (if
works).

Is guaranteed correct for large N.
Allows infinite # of bins.

(Nemenman et al. 2002, Nemenman 2003)



For large K the problem is

1
P;({g;}) = ZB)

Dirichlet priors, a.k.a.,
adding pseudocounts
(include the uniform
prior, the ML prior, and
others).

Inference is analytic
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( _Zil%) ﬁ%ﬁ_l

0.8

| B=0.0007, S=1.05bits |

o

| B=0.02, S =5.16 bits

l l ‘ i .l .;1[1 s lu

L . JIJ J!

oO

' B=1,S=9.35bits |

ld MLWWWA LW'» () J ‘”h 'W W« ML

200 400 600 800 1000
bin number




For large K the problem is
extreme (S known a priori)

Pgn=——5(1-X" 4] Hq"

Z(pB)

Dirichlet priors, a.k.a.,
adding pseudocounts
(include the uniform

prior, the ML prior, and 2
others).

Inference is analytic.
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i Uniformize on S

1 K S dsS
Pﬁ({ql'}?ﬁ): E 5(1_21.:1%) H%ﬁ E

P(S|,_,)

N=0

= A delta-function sliding along the a priori entropy
expectation.

= This is also Bayesian model selection (small B large phase
space)

= Have error bars (dominated by posterior variance in 3, not
at fixed j3 ).



S, bits

Synthetic test

Refractory Poisson, rate 0.26 spikes/ms, refractory period 1.8 ms,
T=15ms, discretization 0.5ms, true entropv 13.57 bits.
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= Estimator is
unbiased if
consistent and
self-consistent.

= Always do this
check.

(Nemenman et al. 2004)



$ Natural data (all S)
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Neural code:

i What remains hidden?

= Given entropy of slices, find the mean
noise entropy with error bars (slice
entropies are correlated and bimodal).

= Samples for total entropy are also
correlated and have long tailed Zipf
plots.

= For very fine discretizations and
T~30ms need extrapolation.
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0.2 ms -- comparable to channel opening/
closing noise and experimental noise.

Information present up
tot=0.3 ms

30% more information
at t<1ms. Encoding by
refractoriness?

~1 bit/spike at 150
spikes/s and low-
entropy correlated
stimulus. Design
principle?

Efficiency >50% for 1
>1ms, and ~75% at
25ms. Optimized for
natural statistics?



Synergy from spike
combinations
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New bits (optimized code)

+ Spikes are very
1200 — - regular (>10 beats)
soo || e E WKB decoder?
G, | Interspike potential?
R N - CF at half its value,
i but fly gets new bits
b T I, ms every 25 ms
N _ » Independent info
HHE AR entropies are T
Y T, dependent).
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Precision is limited by physical
noise sources
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= One often
considers a
1/f rank-
order plot as
a sign of
intelligence.

s But...
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A very intelligent fly
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Zipf law may be a result of complexity of the world,
not the language.
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