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i Studying signal transduction
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How faithful is the output to the input?
How does it represent input?




Studying signal transduction
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How faithful is the output to the input?
How does it represent input?
Synergies for multiple inputs/outputs?

But what is /1?7

Relation =/




i Studying interaction models

/ weak \
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I(A,C)<min|I(A,B),I(B,C)]

But what is /1?7



i Correlation coefficients

p(x,xz) = () linear

p(f(X), g(y)) - ,O(.X, y) not invariant

expression data completely destroys the ranking of

' One-to-one transformations of microarray
® . . .
correlations. Even sign of correlations may change.



Entropy (unique measure of

i randomness, in bits)

SIX1=-) p.logp, =—(logp,)

0<S[X]<logK

1
N(x,,0°) = S[X]:Elog(zﬂeaz)



i Kullback-Leibler divergence

D, [PI01=Y p. log%

0<D,,

How easy it is to mistake P for Q?
Coding losses (in bits).



Mutual Information

i (interactions, shared data)

p
I[X:Y | = <1°g ; >: Dalp, I p.p,]
p.p,

= S[X]+S[Y]-S[X.Y]

O0</[X;Y]<min(S[X],S[Y])

N(x,,2) = I[X;Y]z—%log(l—pz)



i Why MI?

= All dependencies (zero iff joint
probabilities factorize)

= Reparameterization invariant

= Metric-independent measure of “how
related”




i Ml as MaxEnt

Find least constrained (highest entropy)
approximation q to p,,, s.t.

Py =4,
Py =4,

s

g, = EeXp[—(Px -¢,1=p.p,

I[X:Y]= Dy, [P Q]



i Higher order dependencies

Py
Iy, ={log =
P.P,D;

(Axiomatically) Amount of all dependencies
(in bits) among variables.

(Nemenman and Tishby 2005)



Higher order irreducible

i dependencies
’ Node
’ —0—
Irreducible

Interaction
How

ther
that

uch dependeng
In a set of node
t present
of its subsets?

(Schneidman et al. 2003, Nemenman 2004)



i MaxEnt approximations
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i MaxEnt approximations
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i MaxEnt approximations
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i MaxEnt approximations
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i MaxEnt approximations
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i MaxEnt approximations
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i MaxEnt approximations

I§56 = Dy, [Q" I Q]

’
0 S1356 S1356

I',, >0= Irreducible interaction present



i MaxEnt factorization of PDFs

P(x,,...x,, )=

— €Xp —ZQD,-(X,-)—ZQD,-]-(X,.,XJ)—zq)ljk(xi,xj,xk)—---
i ij

i ijk _
* N-particle potentials

« Spin models (for discrete variables)

- Random lattices

* Message passing

» Markov Networks



Why is IT not common In

i statistics?

Maximum likelihood estimation:

St __2 l log_

<SML>S_Z<;Z\;> <?\;>:S

i

K 2° 1
bias < ——L o« —Z— > (variance)"”? o« —

N N JN

Similarly, Ml is often overestimated due to
sampling irregularities.




Universally correct smoothing

S oC lOg Keﬁ << lOg N (often not enough)

Incorrect smoothing = over- or underestimation.

= Bioinformatics, systems biology, ecology
= Computational linguistics, mathematical finances
= Dynamical systems

For estimation of entropy at K/ N <1 see:

Grassberger 1989, 2003, Antos and Kontoyiannins 2002, Wyner and
Foster 2003, Batu et al. 2002, Paninski 2003, Panzeri and Treves
1996, Strong et al. 1998



No universal estimator for

i S>logN

But there is hope (Ma, 1981):

For uniform K-bin distribution the first coincidence

occurs for
N, ~JK =+2°
S~2logN,

Can make estimates in the nonasymptotic regime!
Can this be extended to nonuniform cases?

- Assumptions needed (won’t work always)
- Estimate entropies without estimating distributions.



i What is unknown?

Binomial distribution with the prior uniform on p or S:

1

IS—S |/ 08

S =i—plog p — (1- p)log(l.m.p)
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The Ja*colbnan of a nonlinearltr
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One possible uniformization

i strategy for S (NSB)

Posterior variance scalesas 1/« N

Little bias, except for distribution with long
rank-order tails.

Counts coincidences and works in Ma
regime (if works).

|s consistent.

Allows infinite K

(Nemenman et al. 2002, Nemenman 2003)



Another hope:
How stable are S and / ranks?
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Why fly as a neurocomputing

i model system?

= Can record for long times
= Named neurons with known functions

= Nontrivial computation (motion
estimation)

= Vision (specifically, motion estimation)
IS behaviorally important

= Possible to generate natural stimuli




i Questions

= Can we understand the code?

= Which features of it are important?
= Is this a rate or a timing code?
= Synergy between spikes?

= What does the fly code for?
= How much does it know?
= Is there an evidence for optimality?




Motion estimation in fly H1
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‘L Natural stimulus and response
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Highly repeatable spikes
(not rate coding)
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i Analysis

Collect joint samples of stimuli and responses
No useful linear features observed
Analyze I(s,r)

Analyze r up to 30-60 ms, at discretization up
to 0.2 ms

Severely undersampled
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Information rate at T=30ms

Information present up
to 1 =0.2-0.3 ms

30% more information
at t<1ms. Encoding by
refractoriness?

~1 bit/spike at 170
spikes/s and low-
entropy correlated
stimulus. Design
principle?

Efficiency >50% for t
>1ms, and ~80% at
30ms. Optimized for
natural statistics?



Synergy from spike
combinations
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New bits (optimized code)

« Spikes are very
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i Other analysis

= Adaptation of the neural code to stimuli
statistics (to maximize information
transmission)

= Speed of adaptation

= Individuality of animals

= Effects of multiple neurons

= Effects of multiple spikes

= Predictive features selection by the fly




Example 2

i Transcriptional networks

Biochemical interaction networks:
The Holy Grall

proliferation

DNA met.

apoptosis
cytokines

Search for irreducible steady
state statistical dependencies
(with biologically realistic
assumptions) and hope for the
best.

adhesion

BC markers

cytokinesis

metabolism




i Problems

Small data requirements

Co BN Reg ARACNE

<

X X v
Robustness of reconstruction v X X ) (4

Computational complexity v x X v
Scalability v x X Vv
Conditional interactions X Vv X Vv
Overfitting v X v VvV
Confounding x v x v



i Interaction network
O
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Approximate by 2-way

i network (few data)
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i Locally tree-like approximation
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i Locally tree-like approximation
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Locally tree-like:

i signals decorrelate fast




No false positives and

ﬁ (almost) no false negatives




Synthetic networks
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Precision
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Complete B-cell network

~129000 interactions



c-MYC subnetwork

Protooncogene,

7 12% background
= binding,

-« one of top 5% hubs
significant M| with
2000 genes
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i Also validated In...

= Other hubs
= Various yeast data sets
= RBC metabolic network




RBC metabolic network
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ARACNE deconvolution of

i synthetic data

= 39 metabolites, 19 samples
= 14 predicted, 11 (possibly 12) confirmed

= Done analysis on 828 samples, 40
predicted, still confirming

= Unrealistically small noise

= Questionable network stability for small
data sets




3rd order (regulated)

ﬁ Interactions




i 3rd order interactions

= Many triplets -- focus on important hubs (c-MYC, BCI-
6)

= Search for modulators among genes with large
dynamic range and small Ml with the hub

= Find modulators whose under- or over-expression
changes interaction properties of a hub

= No guarantee of irreducibility

= Validate in GO w.r.t. to transcription factors and
Kinases among modulators




i c-MYC modulators

= 1117 candiate modulators (825 with known
function in GO)

s 69 candidate modulators identified

= Kinases: 10/69 (background 42/825), p-value
1e-3

= [Fs: 15/69 (background 56/825), p-value 1e-
6

= Total: 25/69 (background 98/825), p-value
3e-8




i Many correlated modulators

lexpression| change in interactions

Over 70% cluster overlap



i Currently

s Biochemical validation
s Search for irreducible modulators
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