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Studying signal transduction

But what is I?
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Relation = I

How faithful is the output to the input? 
How does it represent input?
Synergies for multiple inputs/outputs?
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Studying interaction models

A B Cstrong strong

I (A,C) !min I (A,B), I (B,C)[ ]

weak

But what is I?



Correlation coefficients

!(x, x2 ) = 0

! f (x),g(y)( ) " !(x, y)

One-to-one transformations of microarray
expression data completely destroys the ranking of
correlations. Even sign of correlations may change.
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not invariant



Entropy (unique measure of
randomness, in bits)

S[X] = ! px log px = ! log px
x

"

0 # S[X] # logK

N(x0 ,!
2 )!!"!!S[X] =

1

2
log(2#e! 2 )



Kullback-Leibler divergence

DKL[P ||Q] = px log
px

qxx

!

0 " DKL

How easy it is to mistake P for Q?
Coding losses (in bits).



Mutual Information
(interactions, shared data)

I[X;Y ] = log
pxy

px py
= DKL[pxy || px py ]

!!!!!!!!!!!!= S[X]+ S[Y ]! S[X,Y ]

0 " I[X;Y ] "min(S[X],S[Y ])
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Why MI?
 All dependencies (zero iff joint

probabilities factorize)
 Reparameterization invariant
 Metric-independent measure of “how

related”



MI as MaxEnt
Find least constrained (highest entropy)
approximation q to       , s.t.p
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Higher order dependencies

(Nemenman and Tishby 2005)
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(Axiomatically) Amount of all dependencies
(in bits) among variables.



Higher order irreducible
dependencies

Node

Irreducible
interaction

How much dependency is
there in a set of nodes

that is not present in any
of its subsets?

(Schneidman et al. 2003, Nemenman 2004)



MaxEnt approximations
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MaxEnt approximations
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MaxEnt approximations

!I356 = DKL
[ !Q ||Q]

!I
356

> 0" Irreducible interaction present
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MaxEnt factorization of PDFs
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• N-particle potentials
• Spin models (for discrete variables)
• Random lattices
• Message passing
• Markov Networks



Why is IT not common in
statistics?
Maximum likelihood estimation: 
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Similarly, MI is often overestimated due to
sampling irregularities.



Universally correct smoothing

 
S ! logKeff ! logN (often not enough)

For estimation of entropy at                    see:
Grassberger 1989, 2003, Antos and Kontoyiannins 2002, Wyner and
Foster 2003, Batu et al. 2002, Paninski 2003, Panzeri and Treves
1996, Strong et al. 1998

K / N ! 1

 Bioinformatics, systems biology, ecology
 Computational linguistics, mathematical finances
 Dynamical systems

Incorrect smoothing = over- or underestimation.



No universal estimator for
S>logN

But there is hope (Ma, 1981):

For uniform K-bin distribution the first coincidence
occurs for

 

N
c
! K = 2S

S ! 2 logN
c

Can make estimates in the nonasymptotic regime!
Can this be extended to nonuniform cases?

• Assumptions needed (won’t work always)
• Estimate entropies without estimating distributions.



What is unknown?
Binomial distribution with the prior uniform on p or S:

The Jacobian of a nonlinear transformation
is not constant!

(Even worth for large K.)

S = ! p log p ! (1! p)log(1! p)



One possible uniformization
strategy for S (NSB)
 Posterior variance scales as
 Little bias, except for distribution with long

rank-order tails.
 Counts coincidences and works in Ma

regime (if works).
 Is consistent.
 Allows infinite K

1 / N

(Nemenman et al. 2002, Nemenman 2003)



Another hope:
How stable are S and I ranks?

Smoothing (kernel width)



H. L. Leertouwer De Ruyter and Bialek, 2002



Why fly as a neurocomputing
model system?
 Can record for long times
 Named neurons with known functions
 Nontrivial computation (motion

estimation)
 Vision (specifically, motion estimation)

is behaviorally important
 Possible to generate natural stimuli



Questions
 Can we understand the code?
 Which features of it are important?

 Is this a rate or a timing code?
 Synergy between spikes?

 What does the fly code for?
 How much does it know?
 Is there an evidence for optimality?



! = 60ms
(Lewen et al, 2001)

(Land and Collett, 1974)

5s

Motion estimation in fly H1



Natural stimulus and response

5s

No universal decoding

Spikes every 2.5ms



Highly repeatable spikes
(not rate coding)

1.8s

10ms

.72ms
.81ms .21ms

Is high precision timing for natural stimuli relevant for
information transmission, or just anecdotal?
How to interprete the code?



Analysis
 Collect joint samples of stimuli and responses
 No useful linear features observed
 Analyze I(s,r)
 Analyze r up to 30-60 ms, at discretization up

to 0.2 ms
 Severely undersampled



Information rate at T=30ms
• Information present up

to τ =0.2-0.3 ms
• 30% more information

at τ<1ms. Encoding by
refractoriness?

• ~1 bit/spike at 170
spikes/s and low-
entropy correlated
stimulus.  Design
principle?

• Efficiency >50% for τ
>1ms, and ~80% at
30ms. Optimized for
natural statistics?



Synergy from spike
combinations

Spike pairs

Redundancy due
to stimulus



New bits (optimized code)
• Spikes are very

regular (15 rings)
WKB or liquid
decoder? Interspike
potential?

• CF at half its value,
but fly gets new bits
every 30 ms

• Independent info
(even though
entropies are T
dependent).



Information about…

Signal shape Zero-crossings time

Best estimation at 25ms delay. Little time for reaction.



Other analysis
 Adaptation of the neural code to stimuli

statistics (to maximize information
transmission)

 Speed of adaptation
 Individuality of animals
 Effects of multiple neurons
 Effects of multiple spikes
 Predictive features selection by the fly



Example 2
Transcriptional networks

BC markers

N CB CC M

cont.

proliferation

DNA met.
apoptosis
cytokines

adhesion

cytokinesis

metabolism

Biochemical interaction networks:
The Holy Grail

Search for irreducible steady
state statistical dependencies

(with biologically realistic
assumptions) and hope for the

best.



Problems

Small data requirements ✔ ✖✔ ✖ ✔

Robustness of reconstruction ✔ ✖✔ ✖ ✖✔

Computational complexity ✔ ✖ ✖✔ ✔

Scalability ✔ ✖ ✖✔ ✔

Conditional interactions ✖✔ ✔ ✖✔ ✔

Overfitting ✔ ✖✔ ✖✔ ✔

Co     BN     Reg  ARACNE

Confounding ✖ ✔ ✖ ✔



Interaction network
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Approximate by 2-way
network (few data)
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Locally tree-like approximation
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Locally tree-like approximation
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Locally tree-like:
signals decorrelate fast
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No false positives and
(almost) no false negatives
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More care needed for loops of size 3

I (A,C) !min I (A,B), I (B,C)[ ]



Synthetic networks
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Randomize rates to sample different steady states



Synthetic networks
benchmarks (N=1000)

Graceful decay for smaller N



Complete B-cell network

Cell CycleCell Cycle

Ribosomal ComplexRibosomal Complex

~129000 interactions



c-MYC subnetwork
• Protooncogene,
• 12% background

binding,
• one of top 5% hubs
• significant MI with

2000 genes

Total interactions: 56
Pre-known: 22
Ch-IP validated: 11/12



Also validated in…
 Other hubs
 Various yeast data sets
 RBC metabolic network



RBC metabolic network

 



ARACNE deconvolution of
synthetic data
 39 metabolites, 19 samples
 14 predicted, 11 (possibly 12) confirmed
 Done analysis on 828 samples, 40

predicted, still confirming
 Unrealistically small noise
 Questionable network stability for small

data sets



3rd order (regulated)
interactions
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3rd order interactions
 Many triplets -- focus on important hubs (c-MYC, BCl-

6)
 Search for modulators among genes with large

dynamic range and small MI with the hub
 Find modulators whose under- or over-expression

changes interaction properties of a hub
 No guarantee of irreducibility
 Validate in GO w.r.t. to transcription factors and

kinases among modulators



c-MYC modulators
 1117 candiate modulators (825 with known

function in GO)
 69 candidate modulators identified
 Kinases: 10/69 (background 42/825), p-value

1e-3
 TFs: 15/69 (background 56/825), p-value 1e-

6
 Total: 25/69 (background 98/825),  p-value

3e-8



Many correlated modulators

Over 70% cluster overlap

|expression| change in interactions



Currently
 Biochemical validation
 Search for irreducible modulators
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