Information theory in systems biology

Ilya Nemenman

(JCSB, Columbia)

Studying signal transduction

How faithful is the output to the input?
How does it represent input?

Studying signal transduction

How faithful is the output to the input?
How does it represent input?
Synergies for multiple inputs/outputs?
But what is I?

Studying interaction models

But what is I?

Correlation coefficients

$\rho\left(x, x^{2}\right)=0$
linear
$\rho(f(x), g(y)) \neq \rho(x, y)$
not invariant

One-to-one transformations of microarray expression data completely destroys the ranking of correlations. Even sign of correlations may change.

Entropy (unique measure of randomness, in bits)

$$
\begin{gathered}
S[X]=-\sum_{x} p_{x} \log p_{x}=-\left\langle\log p_{x}\right\rangle \\
0 \leq S[X] \leq \log K \\
N\left(x_{0}, \sigma^{2}\right) \Rightarrow S[X]=\frac{1}{2} \log \left(2 \pi e \sigma^{2}\right)
\end{gathered}
$$

Kullback-Leibler divergence

$$
\begin{aligned}
& D_{K L}[P \| Q]=\sum_{x} p_{x} \log \frac{p_{x}}{q_{x}} \\
& 0 \leq D_{K L}
\end{aligned}
$$

How easy it is to mistake P for Q ?
Coding losses (in bits).

Mutual Information

(interactions, shared data)

$$
\begin{aligned}
I[X ; Y] & =\left\langle\log \frac{p_{x y}}{p_{x} p_{y}}\right\rangle=D_{K L}\left[p_{x y} \| p_{x} p_{y}\right] \\
& =S[X]+S[Y]-S[X, Y]
\end{aligned}
$$

$0 \leq I[X ; Y] \leq \min (S[X], S[Y])$
$N\left(\vec{x}_{0}, \Sigma\right) \Rightarrow I[X ; Y]=-\frac{1}{2} \log \left(1-\rho^{2}\right)$

Why MI?

- All dependencies (zero iff joint probabilities factorize)
- Reparameterization invariant
- Metric-independent measure of "how related"

MI as MaxEnt

Find least constrained (highest entropy) approximation q to $p_{x y}$, s.t.

$$
\begin{gathered}
p_{x}=q_{x} \\
p_{y}=q_{y} \\
q_{x y}=\frac{1}{Z} \exp \left[-\varphi_{x}-\varphi_{y}\right]=p_{x} p_{y} \\
I[X ; Y]=D_{K L}[P \| Q]
\end{gathered}
$$

Higher order dependencies

$$
I_{X Y Z}=\left\langle\log \frac{p_{x y z}}{p_{x} p_{y} p_{z}}\right\rangle
$$

(Axiomatically) Amount of all dependencies (in bits) among variables.

Higher order irreducible dependencies

(Schneidman et al. 2003, Nemenman 2004)

MaxEnt approximations

MaxEnt approximations

$$
\begin{gathered}
I_{356}^{\prime}=D_{K L}\left[Q^{\prime} \| Q\right] \\
0 \leq I_{356}^{\prime} \leq I_{356}
\end{gathered}
$$

$I_{356}^{\prime}>0 \Rightarrow$ Irreducible interaction present

MaxEnt factorization of PDFs

$$
\begin{aligned}
& P\left(x_{1}, \ldots x_{M}\right)= \\
& \quad=\exp \left[-\sum_{i} \varphi_{i}\left(x_{i}\right)-\sum_{i j} \varphi_{i j}\left(x_{i}, x_{j}\right)-\sum_{i j k} \varphi_{i j k}\left(x_{i}, x_{j}, x_{k}\right)-\cdots\right]
\end{aligned}
$$

- N-particle potentials
- Spin models (for discrete variables)
- Random lattices
- Message passing
- Markov Networks

Why is IT not common in statistics?

Maximum likelihood estimation:

$$
\begin{gathered}
S_{M L}=-\sum_{i} \frac{n_{i}}{N} \log \frac{n_{i}}{N} \\
\left\langle S_{M L}\right\rangle \leq-\sum_{i} \frac{\left\langle n_{i}\right\rangle}{N} \log \frac{\left\langle n_{i}\right\rangle}{N}=S \\
\text { bias } \propto-\frac{K_{e f f}}{N} \propto-\frac{2^{S}}{N} \gg(\text { variance })^{1 / 2} \propto \frac{1}{\sqrt{N}}
\end{gathered}
$$

Similarly, MI is often overestimated due to sampling irregularities.

Universally correct smoothing

$S \propto \log K_{e f f} \ll \log N$

Incorrect smoothing = over- or underestimation.

- Bioinformatics, systems biology, ecology
- Computational linguistics, mathematical finances
- Dynamical systems

For estimation of entropy at $K / N \leq 1$ see:
Grassberger 1989, 2003, Antos and Kontoyiannins 2002, Wyner and Foster 2003, Batu et al. 2002, Paninski 2003, Panzeri and Treves
1996, Strong et al. 1998

No universal estimator for $S>\log N$

But there is hope (Ma, 1981):
For uniform K-bin distribution the first coincidence occurs for

$$
\begin{aligned}
& N_{c} \sim \sqrt{K}=\sqrt{2^{s}} \\
& S \sim 2 \log N_{c}
\end{aligned}
$$

Can make estimates in the nonasymptotic regime! Can this be extended to nonuniform cases?

- Assumptions needed (won't work always)
- Estimate entropies without estimating distributions.

What is unknown?

Binomial distribution with the prior uniform on p or S :

One possible uniformization strategy for S (NSB)

- Posterior variance scales as $1 / \sqrt{N}$
- Little bias, except for distribution with long rank-order tails.
- Counts coincidences and works in Ma regime (if works).
- Is consistent.
- Allows infinite K

Another hope: How stable are S and / ranks?

H. L. Leertouwer

Why fly as a neurocomputing model system?

- Can record for long times
- Named neurons with known functions
- Nontrivial computation (motion estimation)
- Vision (specifically, motion estimation) is behaviorally important
- Possible to generate natural stimuli

Questions

- Can we understand the code?
- Which features of it are important?
- Is this a rate or a timing code?
- Synergy between spikes?
- What does the fly code for?
- How much does it know?
- Is there an evidence for optimality?

Motion estimation in fly H1

(Land and Collett, 1974)
electrode holder and amplifier

(Lewen et al, 2001)

Natural stimulus and response

Highly repeatable spikes (not rate coding)

Analysis

- Collect joint samples of stimuli and responses
- No useful linear features observed
- Analyze I(s,r)
- Analyze r up to 30-60 ms, at discretization up to 0.2 ms
- Severely undersampled

Information rate at $T=30 \mathrm{~ms}$

- Information present up to $\tau=0.2-0.3 \mathrm{~ms}$
- 30\% more information at $\tau<1 \mathrm{~ms}$. Encoding by refractoriness?
- ~1 bit/spike at 170 spikes/s and lowentropy correlated stimulus. Design principle?
- Efficiency $>50 \%$ for τ $>1 \mathrm{~ms}$, and $\sim 80 \%$ at 30ms. Optimized for natural statistics?

Synergy from spike combinations

New bits (optimized code)

- Spikes are very regular (15 rings) WKB or liquid decoder? Interspike potential?
. - CF at half its value, but fly gets new bits every 30 ms
- Independent info (even though entropies are T dependent).

inforn ation about...

Signal shape

Zero-crossings time

Best estimation at 25 ms delay. Little time for reaction.

Other analysis

- Adaptation of the neural code to stimuli statistics (to maximize information transmission)
- Speed of adaptation
- Individuality of animals
- Effects of multiple neurons
- Effects of multiple spikes
- Predictive features selection by the fly

Example 2 Transcriptional networks

proliferation

DNA met
apoptosis cytokines
adhesion
BC markers
cytokinesis
metabolism

Biochemical interaction networks: The Holy Grail

Search for irreducible steady state statistical dependencies
(with biologically realistic assumptions) and hope for the best.

Problems

Co BN Reg ARACNE

Small data requirements
Robustness of reconstruction
Computational complexity
Scalability
Conditional interactions
Overfitting
Confounding

Interaction network

Approximate by 2-way network (few data)

Locally tree-like approximation

Locally tree-like approximation

Locally tree-like: signals decorrelate fast

No false positives and (almost) no false negatives

Synthetic networks

$$
\frac{d x_{i}}{d t}=a_{i} \prod_{j} \frac{I_{0, j}^{v_{j}}}{I_{j}^{v_{j}}+I_{0, j}^{v_{j}}} \prod_{j}\left(1+\frac{A_{0, j}^{v_{j}}}{A_{j}^{v_{j}}+A_{0, j}^{v_{j}}}\right)-b_{i} x_{i}
$$

Randomize rates to sample different steady states

Synthetic networks benchmarks ($N=1000$)

Graceful decay for smaller N

Complete B-cell network

~129000 interactions

c-MYC subnetwork

- Protooncogene,
- 12\% background binding,
- one of top 5% hubs
- significant MI with 2000 genes

Total interactions: 56 Pre-known: 22 Ch-IP validated: 11/12

Also validated in...

- Other hubs
- Various yeast data sets
- RBC metabolic network

RBC metabolic network

ARACNE deconvolution of synthetic data

- 39 metabolites, 19 samples
- 14 predicted, 11 (possibly 12) confirmed
- Done analysis on 828 samples, 40 predicted, still confirming
- Unrealistically small noise
- Questionable network stability for small data sets

3rd order (regulated) interactions

3rd order interactions

- Many triplets -- focus on important hubs (c-MYC, BCI6)
- Search for modulators among genes with large dynamic range and small MI with the hub
- Find modulators whose under- or over-expression changes interaction properties of a hub
- No guarantee of irreducibility
- Validate in GO w.r.t. to transcription factors and kinases among modulators

c-MYC modulators

- 1117 candiate modulators (825 with known function in GO)
- 69 candidate modulators identified
- Kinases: 10/69 (background 42/825), p-value 1e-3
- TFs: 15/69 (background 56/825), p-value 1e6
- Total: 25/69 (background 98/825), p-value 3e-8

Many correlated modulators

Over 70\% cluster overlap

Currently

- Biochemical validation
- Search for irreducible modulators

Thanks

- Columbia: Andrea Califano, Chris Wiggins, Riccardo dalla Favera, Katia Basso, Adam Margolin, Kai Wang, Nila Banerjee, Omar Antar
- IBM: Gustavo Stolovitzky
- Princeton: William Bialek, Fariel Shafee
- Indiana: Rob de Ruyter van Steveninck
- Jerusalem: Naftali Tishby
- OSDN/SourceForge

