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The method An idea, analysis, asymptotics.
Applications Synthetic and natural data.
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« information content in molecular cell signals

« genomic data

« mutual information based gene expression clustering
— linguistics

+ comparative (historical) language analysis

« origins and authorship of texts

* cryptography
— financial data and other prediction games (Cover)

e dimensions of strange attractors (Grassberger et al.)

e complexity of dynamics
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e along a genome

— search for structures, possibly motifs, (overrepresented sequences) I(M, N; D)
— finding conserved elements: sequences with small predictive entropies
— running IB to extract predictive sequences

® acCross genomes

— estimating mutation rates
— calculating divergence times and building phylogenetic trees
— identifying haplotypes
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e < 100 repeats

N——— :
D Severe undersampling 2long.

e along a genome

— search for structures, possibly motifs, (overrepresented sequences) I(M, N; D)
— finding conserved elements: sequences with small predictive entropies
— running IB to extract predictive sequences

® acCross genomes

— estimating mutation rates
— calculating divergence times and building phylogenetic trees
— identifying haplotypes
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(Strong et al., 1998)
Neurons communicate by stereotypical pulses (spikes). Information
is transmitted by spike rates and (possibly) precise positions of the
spikes.
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electrode holder
and amplifier

\ﬁtaﬁon axis

(Lewen, Bialek, and de
Ruyter van Steveninck, (Bialek and de Ruyter van Steveninck,
2001) 2002; Land and Collett 1974)
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Need to estimate entropies of words

of length ~ 40 from < 200 samples.
Undersampled!
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plogp

lim = o0
p—0 D

Smr, = —plogp— (1 —p)log(l — p) is convex
— ESur < S(Ep) = 5(p)






® No TInite variance unbiased entropy estimators; huge variance, sma
bias, but nonmonotonic is possible (Grassberger, 2003)

e no universally consistent multiplicative entropy estimator for
N/K — 0, K — 0o (Batu et al., 2002)

e universal consistent entropy estimation is possible only for K/N —
const, K — oo (Paninski, 2003)
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— universally consistent (under mild conditions
— no universal rate—of—convergence results exist for either

— for any such universal estimator, there is always a bad distribution such that
bias ~ 1/log N

e correcting for bias as a power series in 2° /N

— replica—averaging over samples (Panzeri and Treves, 1996)

— least bias + variance (Paninski, 2003; Grassberger, 2003)

— empirical evaluation of bias (Strong et al., 1998); so far the best
— ALL WORK FOR 2° < N < K



coincidences ~ 1.

S =log K ~log N* = 2log N,

Works in nonasymptotic regime N ~ 21/25_ Better than it should!
0S ~ 1, but this is all we often need.



e do not learn distributions, learn entropies

e equate smoothness and long tails as high entropy (rapidly decaying
Zipf plot)
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Some common choices:
Maximum likelihood 68— 0

Laplace’s successor rule g=1
Krichevsky—Trofimov (Jeffreys) estimator [ =1/2
Schurmann—Grassberger estimator B=1/K
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BB(B,k — B)(K —i+1)

K—-1+1< K
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Usually only the first regime is observed.
Gets to zero at finite <.
Faster decaying — too rough.
Slower decaying — too smooth.






Equal pseudocounts added to each bin.



P({nit{a}) = T

Equal pseudocounts added to each bin.

Larger 3 means less sensitivity to data, thus more smoothing.






Ym ()

Vo(KB+1) — (B +1)
((65)%[n; = 0])s |

B+1
Kﬁ+1¢1(5+1)_¢1(Kﬂ+1)

(d/dx)™ 1 () —
lo mm
go I'(x) —the polygamma function




0 0.5 1
B
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No a priori way to specify (.

e As (3 varies from 0 to oo, the
peak smoothly moves from 0 to

logo K. For g ~ 1, &(0B) =
log, K — O(KY).

Choosing [ fixes allowed “shapes” of {q;}, and defines the a priori expectation

of entropy.

Such expectation dominates data until N > Kj.

All common estimators are, therefore, bad for learning entropies.
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Ps0di) - pyitficult.
L PR ({a:}) = |

— Pg(Slad)
2. P(S)~1= f5(S — &)dE.



1. Phat({g,}) = 2EUIL  pifficyl.

— Pp(Slail)
2. P(S) ~1= [4(S —&)dE. Easy: Ps(S) is almost a d-function!
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e Smaller 3 means larger allowed volume in the space of {gq;}. Thus averaging
over 3 is Bayesian model selection.

e (62S) is dominated by (§2£), which is small if a particular 3 (model) dominates
(is “selected”)
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Supports understanding that smoothness = speed of decay of Zipf plot.
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e Little bias, as it should be. Exception: too smooth distributions.

e Key point: learn entropies directly without finding {q;}!

e The dominant (3 stabilizes for typical distributions; drifts down (to
complex models) for rough ones and up (to simpler models) for too

smooth cases.






KN>1, A~l

e S~ (Cy—In2)+2In N — ¢ho(A) + O(, L)

O (55)2 ~ wl(A) + O(%v %)



K,N>1,A~1

e S~ (Cy,—In2)+2In N — ¢)y(A) + O

¢ (08)* ~¢¥1(A) +O(7, %)

N &)

Remember Ma's estimate!
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e A\ matters, not £ or V.
e [ he estimator is consistent.

e Thus correct if self-consistent for subsamples.

e When works, works for N ~ 25/2,

e Selection of K by Bayesian integration not an option: small K means smaller

phase space and better approximation.
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Estimator is unbiased
if it Is consistent and
agrees with itself for
all N within error
bars.
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ML estimator converges with ~ 1/N ML estimator cannot be extrapolated.
corrections. NSB estimator is always within error
NSB estimator is always within error bars.

bars.
(SN5B — Sun) /8 SNOB has zero mean if SMY is reliably extrapolated (N > 2°).
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Almost no bias.
Empirical variance < 1 due to long tails in posterior, and S # SN°B(196).

Bands are due to discrete nature of A.
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e Produces error bars.

e Know if we should trust it.

e Neural data seems to be well matched to the estimator
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Do not underestimate difficulty of working on real data!



