December 12, 2003



samples.

8:20 — 8:45 Jose Costa, Applications of entropic graphs in nonparametric
estimation.

8:45 — 8:55 Coffee break.
9:55 — 9:20 Ronitt Rubinfeld, The complexity of approximating the entropy.

9:20 — 9:45 Jonathan Victor, Metric-space approach to information calculations,
with application to single-neuron and multineuronal coding in primary visual
cortex.

9:45 — 10:30 Discussion.



4:50 — 5:15 Yun Gao, Lempel-Ziv Entropy Estimators and Spike Trains.
5:15 — 5:25 C(offee break.

5:25 — 5:50 Pamela Reinagel, Application of some entropy estimation methods
to large experimental data sets from LGN neurons.

5:50 — 6:15 Gal Chechik, Information bearing elements and redundancy reduction
in the auditory pathway.

6:15 — 7:00 Discussion.



— linguistics
— prediction games (Cover)

e dimensions of strange attractors (Grassberger et al.)

e complexity of dynamics

Leave aside average vs. single sequence problem.









e events of negligible probability may have large entropy [Rubinfeld]

e small errors in p = large errors in S

e negative bias (more later) [all]

S(best p) # best S(p)






e we are interested in information

e no context—free information (information about something)

e entropy has no continuous limit






Easier to estimate R, a > 2 (Grassberger, 2003).



Easier to estimate R, a > 2 (Grassberger, 2003).

e Can we use lim,_,1 R, to estimate S7 [Costa]

e Can we use R, to bound S7 [Bialek]



e strong: Sy — S a. s.

e asymptotic normality: lim v N(Sy — S) ~ N (0, 02) (Gabrielli et al.,
2003)

e distribution (Lo): NE(Sy — S)? — o°






e smoothness

e light tails

e small peaks (bounded)



e smoothness

e light tails

e small peaks (bounded)

Always undersampled, but convergence (and rates) are calculable.
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e nearest neighbor distances, any dimension

e average number of neighbors in the vicinity of points (Grassberger
and Procaccia, 1983) [Costa]

e sieving [Victor, Bialek]

Metric is very important!






(light tails, small peaks) — (rank ordered form)
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(light tails, small peaks) — (rank ordered form)
(smoothness) — 77?(maybe also rank plots)



e finite alphabets: plug-in and LZ asymptotically consistent,
convergence rate (bias) ~ K/N
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— plug-in and LZ are universally consistent (under mild conditions)
— no universal rate—of—convergence results exist for either
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N/K — 0, K — oo [Rubinfeld]



e no universally consistent multiplicative entropy estimator for
N/K — 0, K — oo [Rubinfeld]

e universal consistent entropy estimation is possible only for K/N —
const, K — oo [Paninski]






ook for multiplicative estimation for , , otherwise
for additive (nonuniform in S)



ook for multiplicative estimation for , , otherwise
for additive (nonuniform in S)

e “almost” good is enough, especially for K > N



coincidence based Lempel-Ziv (Grassberger), Ma, NSB, Jimenez-
Montano et al., [Bialek, Gao, Shlens]



Asymptotically, K* — K — 1, otherwise effective number of bins.

Estimate: K* > 2° —

Methods can succeed only for N > 2°1



S =log K ~log N? = 2log N,

Works better then it should!



S =log K ~log N? = 2log N,

Works better then it should!

Works in nonasymptotic regime N ~ 21/25
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e imagine sampling sequences of length m > 1 from N_. samples

— ~ N different sequences

— uniformly distributed (equipartition), p ~ 2=™

— ifi. i. d., then (Ma) mS = 2log N =— S = log N,

— what happens earlier: non—independence or equipartition?









e . .. but coincidences can save us for special cases.
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e Let's search for entropy (not distributions!) estimates and . . .



e . .. but coincidences can save us for special cases.

e Let's search for entropy (not distributions!) estimates and . . .

e SEARCH FOR THESE SPECIAL CASES!



