Entropy and information estimation: An overview

Ilya Nemenman

December 12, 2003

Workshop schedule: Morning

- 7:30 7:55 Ilya Nemenman, Entropy and information estimation: A general overview.
- **7:55 8:20** Liam Paninski, *Estimating entropy on* m *bins with fewer than* m *samples.*
- 8:20 8:45 Jose Costa, Applications of entropic graphs in nonparametric estimation.
- 8:45 8:55 Coffee break.
- 8:55 9:20 Ronitt Rubinfeld, The complexity of approximating the entropy.
- 9:20 9:45 Jonathan Victor, Metric-space approach to information calculations, with application to single-neuron and multineuronal coding in primary visual cortex.
- **9:45 10:30** *Discussion*.

Workshop schedule: Evening

- **4:00 4:25** William Bialek, Entropy and information in spike trains: Why are we interested and where do we stand?
- **4:25 4:50** Jon Shlens, Estimating Entropy Rates and Information Rates in Retinal Spike Trains.
- 4:50 5:15 Yun Gao, Lempel-Ziv Entropy Estimators and Spike Trains.
- **5:15 5:25** Coffee break.
- 5:25 5:50 Pamela Reinagel, Application of some entropy estimation methods to large experimental data sets from LGN neurons.
- 5:50 6:15 Gal Chechik, Information bearing elements and redundancy reduction in the auditory pathway.
- **6:15 7:00** Discussion.

Why is this an interesting problem?

- information content of (symbolic) sequences
 - spike trains
 - bioinformatics
 - linguistics
 - prediction games (Cover)
 - - . . .
- dimensions of strange attractors (Grassberger et al.)
- complexity of dynamics

Leave aside average vs. single sequence problem.

Why is this a difficult problem? (first try)

$$\lim_{p \to 0} \frac{p \log p}{p} = \infty$$

Why is this a difficult problem? (first try)

$$\lim_{p\to 0} \frac{p\log p}{p} = \infty$$

$$S(\hat{p}) \equiv -\hat{p}\log\hat{p} - (1-\hat{p})\log(1-\hat{p}) \text{ is convex}$$

$$\Longrightarrow ES(\hat{p}) < S(E\,\hat{p}) = S(p)$$

Why is this a difficult problem? (first try)

$$\lim_{p \to 0} \frac{p \log p}{p} \quad = \quad \infty$$

$$S(\hat{p}) \quad \equiv \quad -\hat{p} \log \hat{p} - (1 - \hat{p}) \log (1 - \hat{p}) \text{ is convex}$$

$$\implies \quad E S(\hat{p}) < S(E \, \hat{p}) = S(p)$$

- events of negligible probability may have large entropy [Rubinfeld]
- ullet small errors in $p\Longrightarrow$ large errors in S
- negative bias (more later) [all]

$$S(\mathsf{best}\ p) \neq \mathsf{best}\ S(p)$$

Entropy vs. information

$$I(X,Y) = S(X) + S(Y) - S(X,Y) = S(X) - S(X|Y)$$

Entropy vs. information

$$I(X,Y) = S(X) + S(Y) - S(X,Y) = S(X) - S(X|Y)$$

- we are interested in information
- no context—free information (information about something)
- entropy has no continuous limit

Different entropies

Burg

Shannon
$$S = -\sum p_i \log p_i$$

Renyi
$$R_{\alpha} = \frac{1}{1-\alpha} \log \sum p_i^{\alpha}$$

$$B = \sum \log p_i$$

Different entropies

Shannon	$S = -\sum p_i \log p_i$
Renyi	$R_{\alpha} = \frac{1}{1-\alpha} \log \sum p_i^{\alpha}$
Burg	$B = \sum_{i=1}^{n} \log p_i$

Easier to estimate R_{α} , $\alpha \geq 2$ (Grassberger, 2003).

Different entropies

 $\begin{array}{c|c} \mathsf{Shannon} & S = -\sum p_i \log p_i \\ \mathsf{Renyi} & R_\alpha = \frac{1}{1-\alpha} \log \sum p_i^\alpha \\ \mathsf{Burg} & B = \sum \log p_i \\ \dots & \dots \end{array}$

Easier to estimate R_{α} , $\alpha \geq 2$ (Grassberger, 2003).

- Can we use $\lim_{\alpha \to 1} R_{\alpha}$ to estimate S? [Costa]
- Can we use R_{α} to bound S? [Bialek]

Types of convergences

(Beirlant et al. 1997)

- weak: $S_N \to S$ in probability
- mean square: $E(S_N S)^2 \rightarrow 0$
- strong: $S_N \to S$ a. s.
- asymptotic normality: $\lim \sqrt{N}(S_N-S) \sim \mathcal{N}(0,\sigma^2)$ (Gabrielli et al., 2003)
- distribution (L_2): $NE(S_N-S)^2 \to \sigma^2$

Continuous variables

(Beirlant et al. 1997)

Differential entropy
$$S[P] = -\int dx P(x) \ln P(x)/Q(x)$$

Continuous variables

(Beirlant et al. 1997)

Differential entropy $S[P] = -\int dx P(x) \ln P(x)/Q(x)$

Conditions on P(x) (w. r. t. Q):

- smoothness
- light tails
- small peaks (bounded)

Continuous variables

(Beirlant et al. 1997)

Differential entropy $S[P] = -\int dx P(x) \ln P(x)/Q(x)$

Conditions on P(x) (w. r. t. Q):

- smoothness
- light tails
- small peaks (bounded)

Always undersampled, but convergence (and rates) are calculable.

• plug-in estimates: $S_N = -\int dx \, P_{N,\mathrm{est}} \log P_{N,\mathrm{est}}$

- plug-in estimates: $S_N = -\int dx \, P_{N,\mathrm{est}} \log P_{N,\mathrm{est}}$
- (1d) spacing entropy estimators

- plug-in estimates: $S_N = -\int dx \, P_{N,\mathrm{est}} \log P_{N,\mathrm{est}}$
- (1d) spacing entropy estimators
- nearest neighbor distances, any dimension

- plug-in estimates: $S_N = -\int dx \, P_{N,\mathrm{est}} \log P_{N,\mathrm{est}}$
- (1d) spacing entropy estimators
- nearest neighbor distances, any dimension
- average number of neighbors in the vicinity of points (Grassberger and Procaccia, 1983) [Costa]

- plug-in estimates: $S_N = -\int dx \, P_{N,\mathrm{est}} \log P_{N,\mathrm{est}}$
- (1d) spacing entropy estimators
- nearest neighbor distances, any dimension
- average number of neighbors in the vicinity of points (Grassberger and Procaccia, 1983) [Costa]
- sieving [Victor, Bialek]

- plug-in estimates: $S_N = -\int dx \, P_{N,\mathrm{est}} \log P_{N,\mathrm{est}}$
- (1d) spacing entropy estimators
- nearest neighbor distances, any dimension
- average number of neighbors in the vicinity of points (Grassberger and Procaccia, 1983) [Costa]
- sieving [Victor, Bialek]

Metric is very important!

An asymptotically $(K/N \rightarrow 0)$ easy problem. But for $K \gg N$?

An asymptotically $(K/N \rightarrow 0)$ easy problem. But for $K \gg N$?

(light tails, small peaks) → (rank ordered form)

An asymptotically $(K/N \rightarrow 0)$ easy problem. But for $K \gg N$?

```
(light tails, small peaks) \longrightarrow (rank ordered form) (smoothness) \longrightarrow ???
```

An asymptotically $(K/N \rightarrow 0)$ easy problem. But for $K \gg N$?

```
(light tails, small peaks) \longrightarrow (rank ordered form) (smoothness) \longrightarrow ???(maybe also rank plots)
```

Why is this a difficult problem? (second try) $No\ go\ theorems$

For N samples from an i. i. d. distribution over K bins (Note: non-i. i. d. $= K \to \infty$):

• finite alphabets: plug-in and LZ asymptotically consistent, convergence rate (bias) $\sim K/N$

Why is this a difficult problem? (second try) $No\ go\ theorems$

For N samples from an i. i. d. distribution over K bins (Note: non-i. i. d. $= K \to \infty$):

- finite alphabets: plug-in and LZ asymptotically consistent, convergence rate (bias) $\sim K/N$
- countable alphabets (or $K\gg N$) (Antos and Kontoyiannis, 2002; Wyner and Foster, 2003)
 - plug-in and LZ are universally consistent (under mild conditions)
 - no universal rate-of-convergence results exist for either

Why is this a difficult problem? (second try) $No\ go\ theorems$

For N samples from an i. i. d. distribution over K bins (Note: non-i. i. d. $= K \to \infty$):

- finite alphabets: plug-in and LZ asymptotically consistent, convergence rate (bias) $\sim K/N$
- countable alphabets (or $K\gg N$) (Antos and Kontoyiannis, 2002; Wyner and Foster, 2003)
 - plug-in and LZ are universally consistent (under mild conditions)
 - no universal rate-of-convergence results exist for either

– for any such universal estimator, there is always a bad distribution such that bias $\sim 1/\log N$

- for any such universal estimator, there is always a bad distribution such that bias $\sim 1/\log N$
- no finite variance unbiased entropy estimators; huge variance, small bias, but nonmonotonic is possible (Grassberger, 2003)

- for any such universal estimator, there is always a bad distribution such that bias $\sim 1/\log N$
- no finite variance unbiased entropy estimators; huge variance, small bias, but nonmonotonic is possible (Grassberger, 2003)
- no universally consistent multiplicative entropy estimator for $N/K \to 0$, $K \to \infty$ [Rubinfeld]

- for any such universal estimator, there is always a bad distribution such that bias $\sim 1/\log N$
- no finite variance unbiased entropy estimators; huge variance, small bias, but nonmonotonic is possible (Grassberger, 2003)
- no universally consistent multiplicative entropy estimator for $N/K \to 0, \ K \to \infty$ [Rubinfeld]
- universal consistent entropy estimation is possible only for $K/N \to \mathrm{const}$, $K \to \infty$ [Paninski]

What to do?

look for unbiased estimators for special cases

What to do?

- look for unbiased estimators for special cases
- look for multiplicative estimation for $S \ll 1$, $1-S \ll 1$, otherwise for additive (nonuniform in S)

What to do?

- look for unbiased estimators for special cases
- look for multiplicative estimation for $S \ll 1$, $1-S \ll 1$, otherwise for additive (nonuniform in S)
- "almost" good is enough, especially for $K\gg N$

Methods

asymptotic corrections to maximum likelihood (plug-in, naive); Miller, jackknife, Panzeri–Treves, Grassberger, Paninski

coincidence based Lempel–Ziv (Grassberger), Ma, NSB, Jimenez–Montano et al., [Bialek, Gao, Shlens]

Asymptotic corrections

$$S(N) = S_{\text{ML}}(N) + \frac{K^*(\{p\})}{2N} + O\left(\frac{K^*}{N}\right)$$
$$S_{\text{ML}} = -\sum \hat{p}_{\text{ML}} \log \hat{p}_{\text{ML}}$$

Asymptotically, $K^* \to K - 1$, otherwise *effective number of bins*.

Estimate: $K^* \geq 2^S \Longrightarrow$

Methods can succeed only for $N \gg 2^S!$

(Some) coincidence-based methods

Ma's (1981) argument, the birthday problem

For uniform K-bin distribution: for $N_c \sim \sqrt{K}$, probability of coincidences ~ 1 .

$$S = \log K \approx \log N_c^2 = 2\log N_c$$

Works better then it should!

(Some) coincidence-based methods

Ma's (1981) argument, the birthday problem

For uniform K-bin distribution: for $N_c \sim \sqrt{K}$, probability of coincidences ~ 1 .

$$S = \log K \approx \log N_c^2 = 2\log N_c$$

Works better then it should!

Works in nonasymptotic regime $N \sim 2^{1/2S}$.

ullet good entropy estimator eq good distribution estimator

- ullet good entropy estimator \neq good distribution estimator
- NSB method [Bialek]

- ullet good entropy estimator \neq good distribution estimator
- NSB method [Bialek]
- imagine sampling sequences of length $m\gg 1$ from N_c samples

- ullet good entropy estimator \neq good distribution estimator
- NSB method [Bialek]
- imagine sampling sequences of length $m\gg 1$ from N_c samples
 - $-\sim N_c^m$ different sequences

- ullet good entropy estimator \neq good distribution estimator
- NSB method [Bialek]
- ullet imagine sampling sequences of length $m\gg 1$ from N_c samples
 - $-\sim N_c^m$ different sequences
 - uniformly distributed (equipartition), $p \approx 2^{-mS}$

- ullet good entropy estimator \neq good distribution estimator
- NSB method [Bialek]
- ullet imagine sampling sequences of length $m\gg 1$ from N_c samples
 - $-\sim N_c^m$ different sequences
 - uniformly distributed (equipartition), $p \approx 2^{-mS}$
 - if i. i. d., then (Ma) $mS = 2 \log N_c^m \Longrightarrow S = \log N_c$

- good entropy estimator \neq good distribution estimator
- NSB method [Bialek]
- ullet imagine sampling sequences of length $m\gg 1$ from N_c samples
 - $-\sim N_c^m$ different sequences
 - uniformly distributed (equipartition), $p \approx 2^{-mS}$
 - if i. i. d., then (Ma) $mS = 2 \log N_c^m \Longrightarrow S = \log N_c$
 - what happens earlier: non-independence or equipartition?

• Good estimators exist for $N\sim 2^S$.

- Good estimators exist for $N \sim 2^S$.
- For $N \ll K$ (or 2^S) no-go theorems exist, . . .

- Good estimators exist for $N \sim 2^S$.
- For $N \ll K$ (or 2^S) no-go theorems exist, . . .
- . . . but coincidences can save us for special cases.

- Good estimators exist for $N \sim 2^S$.
- For $N \ll K$ (or 2^S) no-go theorems exist, . . .
- . . . but coincidences can save us for special cases.
- Let's search for entropy (not distributions!) estimates and . . .

- Good estimators exist for $N \sim 2^S$.
- For $N \ll K$ (or 2^S) no-go theorems exist, . . .
- . . . but coincidences can save us for special cases.
- Let's search for entropy (not distributions!) estimates and . . .
- SEARCH FOR THESE SPECIAL CASES!