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Reconstructing
interaction models



Reconstruction algorithms:
The curse of “percent correct”

     Stat    Co     GM     Biochem.  
Small data requirements ✖✔ ✔ ✖✔ ✖

Robustness to fluct. ✔ ✔ ✖✔ ✖

Computational complexity ✖ ✔ ✖ ✖✔

Conditional interactions ✔ ✖✔ ✔ ✖✔

Reparam inv., non-param. ✖✔ ✖✔ ✖✔ ✔

Irreducibility ✔ ✖ ✔    ✖



Influenciomics (steady state)
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Two separate
influenciomics problems
 What is a (statistical, biological) interaction?

 What does an arrow mean?
 Higher order dependencies
 Statistical vs. biological?

 Realistic algorithms to uncover them
 Controlled approximations
 Biologically sound approximations
 Performance guarantees
 Complexity, Robustness, Data requirements…



Defining influence:
Variances and Correlations

!(x, x2 ) = 0

! f (x),g(y)( ) " !(x, y)

One-to-one transformations of microarray expression
data change even signs of the correlations.!

linear

not invariant

! 2
(x) normal



Entropy (unique measure of
randomness, in bits)

S[X] = ! px log px
x=1

K

" = ! log px

0 # S[X] # logK
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(number of “bins”)



Defining influence:
Mutual Information

I[X;Y ] = log
pxy

px py

!!!!!!!!!!!!= S[X]+ S[Y ]! S[X,Y ]

0 " I[X;Y ] "min(S[X],S[Y ])

N[(x0 , y0 ),!]!!"!!I[X;Y ] = #
1

2
log(1# $

xy
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Why MI as influence
measure?
 Captures all dependencies (zero iff joint

probabilities factorize)
 Reparameterization invariant
 Unique metric-independent measure of

“how related”

(Nemenman and Tishby, in prep.)

Influence (I>0) is interaction.
For 2 variables:



Kullback-Leibler divergence

DKL[P ||Q] = px log
px

qxx

!

0 " DKL

How easy it is to mistake P for Q?
(KS test, etc.)



MI as MaxEnt
Find least constrained (highest entropy, no
interaction) approximation q to       , s.t.p

xy

p
x
= q

x

p
y
= q

y

q
xy
=
1

Z
exp[!"

x
!"

y
] = p

x
p
y

I[X;Y ] = D
KL
[P ||Q]> 0! interaction



By analogy:
Example of irreducibility

A

B C

I > 0I > 0

I > 0

PABC =
PABPAC

PA
=
1

Z
fAB fBC

MaxEnt approximation without BC:
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) !!!!D
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No irreducible interaction!
For AB:  D
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Higher order influences

(Nemenman and Tishby, in prep.)

I
XYZ

= log
p
xyz

p
x
p
y
p
z

(Axiomatically) Amount of all influeneces (in
bits) among variables.

But these are not irreducible.



Higher order irreducible
dependencies

Node

Irreducible
interaction

How much dependency is
there in a set of nodes that
is not present in any other

subset?
(Schneidman et al. 2003, Nemenman 2004)
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MaxEnt approximations
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MaxEnt approximations
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MaxEnt approximations
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MaxEnt approximations
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MaxEnt approximations
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MaxEnt approximations

!I356 = DKL
[ !Q ||Q]

!I
356

> 0" Irreducible interaction present



MaxEnt factorization of PDFs

 

P(x1,KxM ) =

!!!= exp ! " i (xi )
i

# ! " ij (xi , x j )
ij

# ! " ijk (xi , x j , xk )
ijk

# !L
$

%
&

'

(
)

• N-particle potentials
• Spin models -- inverse problem (for discrete variables)
• Random lattices
• Message passing (and if MP works -- ask me later)
• Markov Networks



Two separate
influenciomics problems
 What is an interaction?

 What does an arrow mean?
 Higher order dependencies

 Realistic algorithms to uncover them
 Controlled approximations (e.g., know the order)
 Biologically sound assumptions (new knowledge from their

verification)
 Performance guarantees (focus on low false positives for

irredicibility)
 Complexity, Robustness, Data requirements…



Interaction network
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(Basso et al. 2005, Margolin et al. 2005)



Disregard high orders
(undersampling)
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Is second order all we ever need? Cf. Schneidman et al. 2005



Locally tree-like approximation
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Locally tree-like approximation
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Locally tree-like:
signals decorrelate fast
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Conjecture: Message passing works = locally tree-like



ARACNE: remove the
weakest link in every triplet

More care needed for loops of size 3

I (A,C) !min I (A,B), I (B,C)[ ]

Techniques for MI estimation needed!



No false positives
Where 2-way -- it’s 2-way

Theorem 1. If MIs can be estimated with no errors, then ARACNE
reconstructs the underlying interaction network exactly, provided this
network is a tree and has only pairwise interactions.

Theorem 3. Locally tree-like -- no false positives (no false negatives 
under stronger conditions).

Theorem 2. The Chow-Liu maximum mutual information tree is a 
subnetwork of the network reconstructed by ARACNE.



Estimating I: smoothing
(e.g., Gaussian Kernels)

I



Estimating I: stability of ranks

Smoothing strength

Also:
 NSB
 copula



Aside: Bethe approximation,
Message passing (MP)

P({xi}) =
P(xi , x j )!
P(xi )

q"1!
Exact for trees

MP (belief propagation, transf. matrix) works for trees and
sometimes for loopy networks. But when exactly?

P(x
i
) = ?



Conjecture
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= # � 1

Locally tree like assumption is what makes MP work!



Biological soundness
 Higher order interactions project to

lower orders
 Fast decorrelation, sparseness:

I(gene,copy)>> I(gene,second best)
 Small loops often transient



Why is IT not common in
statistics?
Maximum likelihood estimation: 

S
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= !
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(N - sample size)(K - # of bins)
i =   1     2     3     4     5     6 



Why is IT not common in
statistics?
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!! � !!(variance)

1/2
!

1

N

Fluctuations underestimate entropies and
overestimate mutual informations.

(Need smoothing.)

log K



Correct smoothing possible

S ! logN

(often not enough)

For estimation of entropy at                    see:
Grassberger 1989, 2003, Antos and Kontoyiannins 2002, Wyner and
Foster 2003, Batu et al. 2002, Paninski 2003, Panzeri and Treves
1996, Strong et al. 1998

K / N ! 1

Incorrect smoothing = over- or underestimation.

Developed for problems ranging from
mathematical finance to computational biology.

i =   1     2     3     4     5     6 



What if S>logN ?
But there is hope (Ma, 1981):

For uniform K-bin distribution the first coincidence occurs
for

 

N
c
� K = 2S

S � !2!logN
c

Can make estimates for square-root-fewer samples!
Can this be extended to nonuniform cases?

• Assumptions needed (won’t work always)
• Estimate entropies without estimating distributions.

Time of first coincidence



What is unknown?
Binomial distribution:

S = ! p log p !

!!!!(1! p)log(1! p)

p     1-p uniform (no assumptions)

p S



What is unknown?

Selection of wrong “unknown”
biases the estimation.

(Even worse for large K.)

! =
S
est
" S

true

#S
est

t



One possible uniformization
strategy for S (NSB)

 Posterior variance scales as
 Little bias, except in some known cases.
 Counts coincidences and works in Ma regime

(if works).
 Is guaranteed correct for large N.
 Allows infinite # of bins.

1 / N

(Nemenman et al. 2002, Nemenman 2003)



Synthetic networks
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Synthetic networks (N=1000):
Biological vs. Statistical Interactions

Graceful decay for smaller N
Half of all loops kept.



B-cell dataset

 ~400 arrays
 No dynamics
 ~250 naturally occurring, ~150 perturbed
 ~25 phenotypes (normal, tumors, experimental

perturbations)
 Expression range due to differential expression in

different phenotypes



Complete B-cell network

Cell CycleCell Cycle

Ribosomal ComplexRibosomal Complex

~129000 interactions



c-MYC subnetwork
• Protooncogene,
• 12% background

binding,
• one of top 5% hubs
• significant MI with

2000 genes

Total interactions: 56
Pre-known: 22
New Ch-IP validated: 11/12Ch-IP

other info



Also validated in…
 Other hubs
 Various yeast data sets
 RBC metabolic network (synthetic)

 

~80% precision
20-80% recall (depending on N)



3rd order interactions
(modulated, conditional, transistor)
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Nontranscriptional modulators from expression data!



Numerical case study:
Non-transcriptional modulation



Large hubs,
global (discrete) modulators
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Large hubs,
global (discrete) modulators

 Focus on important hubs (c-MYC)
 Pre-filter candidate modulators by

dynamic range and other conditions.
 Find modulators whose expression

inflicts significant changes on
topology of the ARACNE hubs’
interactions

 No guarantee of irreducibility
 Validate in GO w.r.t. to transcription

factors and kinases among
modulators

N
+
! N

!
> 0



c-MYC modulators
 1117 candidate modulators (825 with known

molecular function in GO)
 82 (69) candidate modulators identified
 Kinases: 10/69 (backgr. 42/825), p=1e-3
 TFs: 15/69 (backgr. 56/825), p=1e-6 (validated -- see

below).
 Total: 25/69 (backgr. 98/825),  p=3e-8
 Large scale modulators: ubiquitin conjugating

enzyme, mRNA stability, DNA/chromatin
modification, etc.



Large hubs, local modulator
(MI change, transistor)
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Large hubs,
local modulators

 Focus on important hubs (c-MYC)
 Pre-filter candidate modulators by

dynamic range and other conditions.
 Find modulators whose expression

inflicts significant conditional MI
changes for an ARACNE target in at
least one conditional topology

 No guarantee of irreducibility
 Validate in GO w.r.t. to transcription

factors and kinases among
modulators
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ARACNE helps
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c-MYC modulators
 1117 candidate modulators
 100 modulators identified, modulating 205 interactions with 130 targets
 Modulators enriched in: kinases, acyltransferases, TFs (all at p<5%);

correspond to known MYC modulation pathways.
 TFs: 15, p=1e-6.
 4 out of 5 TF modulators (e.g., E2F5) with TRANSFAC signatures have

binding sites in modulated targets promoter regions.
 Modulators with largest number of effected targets are not-target-

specific (proteolisis, upstream signaling components, receptor signaling
molecules).

 Modulators with small number of effected targets are mostly co-TFs,
are interaction-specific.

 About one third of modulators are literature-validated.



Example:
TF co-factor modulator



Reducibility:
modulating pathways

LYN FYNHCK

BTK BLNK

AKT

GSK3

SY
K

Ig
α

Ig
β

CD22 BCR

PLCγ

PKC

DAG IP3

Ca2+

ERK MAPKJNK
IKK

IκB
NFAT

NF-κB

MYC

predicted modulators

not in the candidate list

TF’s not predicted

Targets

Protein complex



Many correlated modulators

Over 70% cluster overlap

|expression| change in interactions



Currently
 Biochemical validation
 Search for irreducible modulators
 Dealing with small loops



Summary
 IT quantities good measures of dependency
 Defined irreducible interactions
 Proposed a set of simplifying assumptions and a

corresponding algorithm for second order interactions
 Bootstrapped the algorithm to identify certain third

order dependencies
 Validated algorithms in-silico
 Analyzed interaction network of c-MYC, validated in-

vivo and through literature


