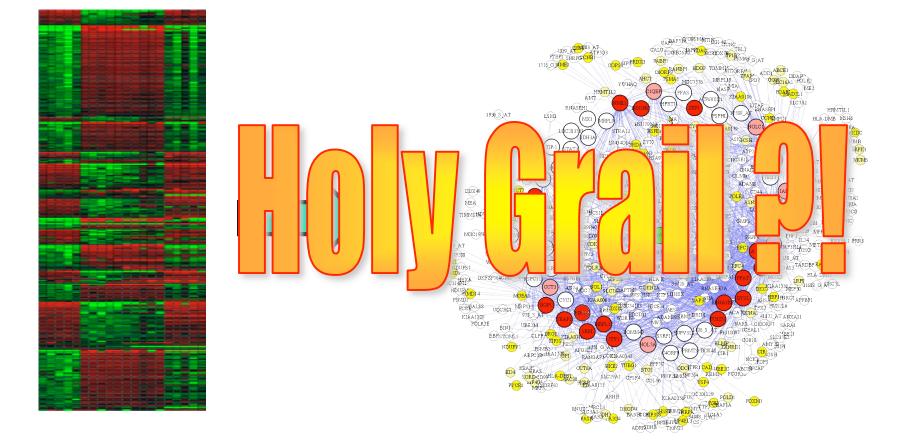
Modeling genetic regulation at different levels: framework, algorithms, applications

Ilya Nemenman (JCSB/Columbia \rightarrow CCS-3/LANL & SFI)

Thanks

- Columbia: Andrea Califano (PI), Adam Margolin (ARACNE, MI estimation), Kai Wang (Modulators, MI estimation), Nila Banerjee (TF signature), Omar Antar (ARACNE on yeast), Riccardo Dalla-Favera (experimental PI), Katia Basso (in-vivo validation), Chris Wiggins (simulations), AMDeC (computer support)
- IBM: Gustavo Stolovitzky (simulations)
- Jerusalem: Naftali Tishby (framework)
- LANL: Michael Wall (RBC network)

Reconstructing interaction models



Reconstruction algorithms: The curse of "percent correct"

					_	_
		1.1				. =
						_
				2		
						- 2
-						
					_	
			_	Ξ.		
_				-	-	_
	-					
	 -	100		-		
			-8-			
					-	
_		_		-		
				-	-	-
	 - 3					
			- 22	Ξ.		
		Ē				

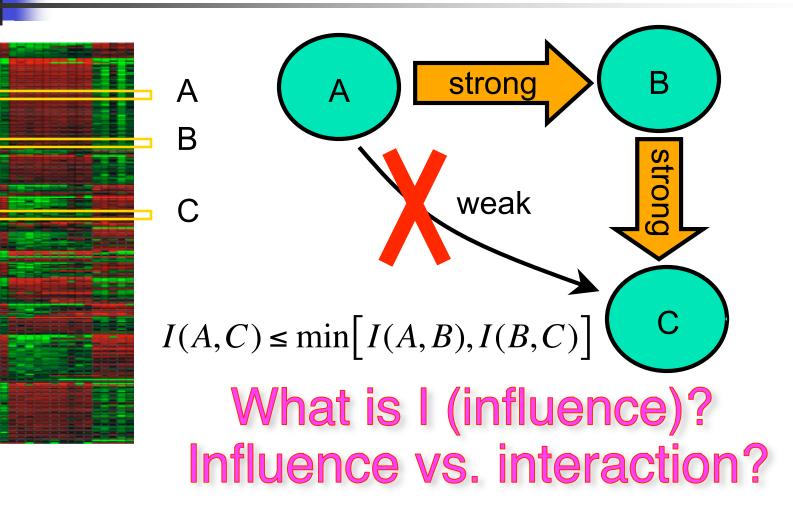
Small data requirements Robustness to fluct. Computational complexity Conditional interactions Reparam inv., non-param.

Irreducibility

Stat	Со	GM	Biochem.
×✓	v	×v	×
v	v	× ⁄	*
×	v	×	*•
v	×v	V	× •⁄
×.⁄	×1⁄	×1⁄	×
v	×	v	*

Influenciomics

Influenciomics (steady state)



Two *separate* influenciomics problems

What is a (statistical, biological) interaction?

- What does an arrow mean?
- Higher order dependencies
- Statistical vs. biological?
- Realistic algorithms to uncover them
 - Controlled approximations
 - Biologically sound approximations
 - Performance guarantees
 - Complexity, Robustness, Data requirements...

Defining influence: Variances and Correlations

$$\sigma^{2}(x) \qquad \text{normal} \\ \rho(x, x^{2}) = 0 \qquad \text{linear} \\ \rho(f(x), g(y)) \neq \rho(x, y) \quad \text{not invariant} \end{cases}$$

One-to-one transformations of microarray expression
 data change even signs of the correlations.

Entropy (unique measure of randomness, in bits)

$$S[X] = -\sum_{x=1}^{K} p_x \log p_x = -\langle \log p_x \rangle$$

 $0 \le S[X] \le \log K$ (number of "bins")

$$N(x_0, \sigma^2) \implies S[X] = \frac{1}{2}\log(2\pi e\sigma^2)$$

Defining influence: Mutual Information

$$I[X;Y] = \left\langle \log \frac{p_{xy}}{p_x p_y} \right\rangle$$
$$= S[X] + S[Y] - S[X,Y]$$

 $0 \le I[X;Y] \le \min(S[X],S[Y])$

$$N[(x_0, y_0), \Sigma] \implies I[X;Y] = -\frac{1}{2}\log(1 - \rho_{xy}^2)$$

Why MI as influence measure?

- Captures all dependencies (zero *iff* joint probabilities factorize)
- Reparameterization invariant
- Unique metric-independent measure of "how related"

For 2 variables:

Influence (*I*>0) is interaction.

(Nemenman and Tishby, in prep.)

Kullback-Leibler divergence

 $D_{KL}[P \parallel Q] = \sum_{x} p_x \log \frac{p_x}{q_x}$

 $0 \le D_{KL}$

How easy it is to mistake *P* for *Q*? (KS test, etc.)

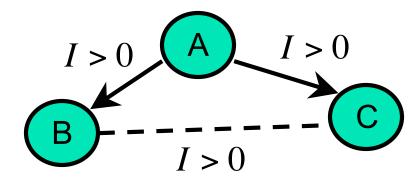
MI as MaxEnt

Find least constrained (highest entropy, no interaction) approximation q to p_{xy} , s.t.

 $p_{x} = q_{x}$ $p_{y} = q_{y}$ $\int \left[\int q_{xy} = \frac{1}{Z} \exp[-\varphi_{x} - \varphi_{y}] \right] = p_{x}p_{y}$

$I[X;Y] = D_{KL}[P \parallel Q] > 0 \implies \text{ interaction}$

By analogy: Example of irreducibility



$$P_{ABC} = \frac{P_{AB}P_{AC}}{P_A} = \frac{1}{Z}f_{AB}f_{BC}$$

MaxEnt approximation without BC:

$$Q_{ABC} = \frac{1}{Z} \exp(-\varphi_{AB} - \varphi_{AC}) \implies D_{KL} [P_{ABC} \parallel Q_{ABC}] = 0$$

For AB: $Q_{ABC} = \frac{1}{Z} \exp(-\varphi_{AC} - \varphi_{BC})$ $D_{KL}[P_{ABC} \parallel Q_{ABC}] > 0$ Irreducible interaction.

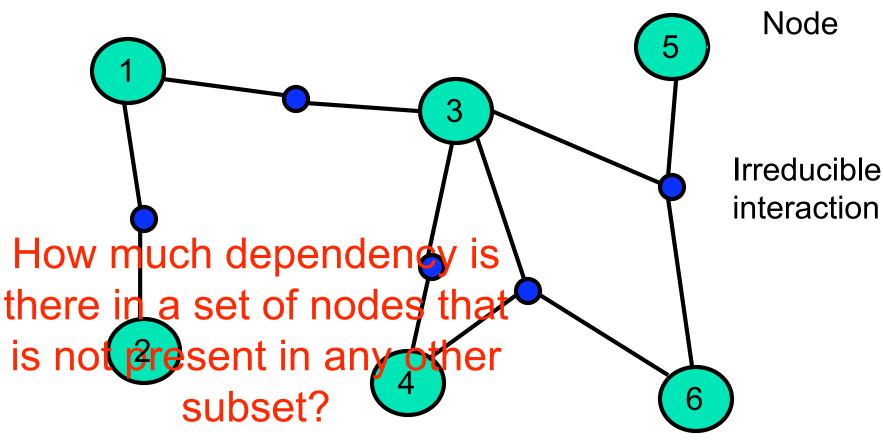
Higher order influences

$$I_{XYZ} = \left\langle \log \frac{p_{xyz}}{p_x p_y p_z} \right\rangle$$

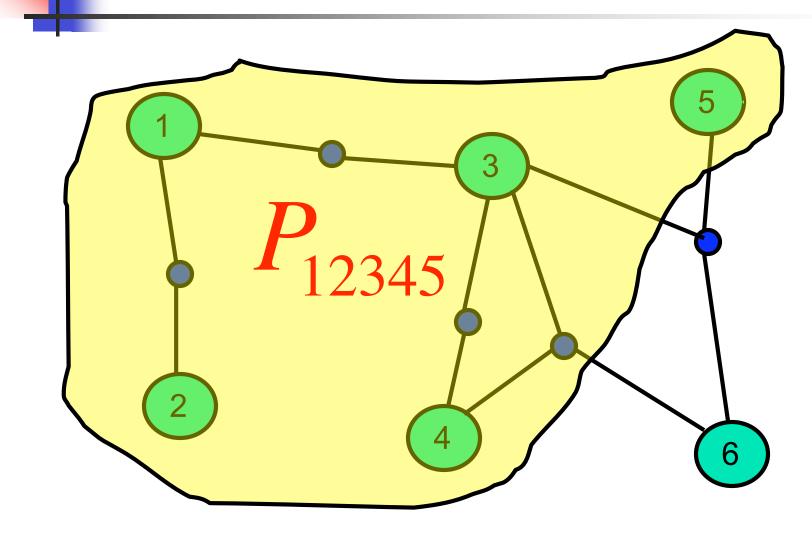
(Axiomatically) Amount of *all* influeneces (in bits) among variables. But these are not irreducible.

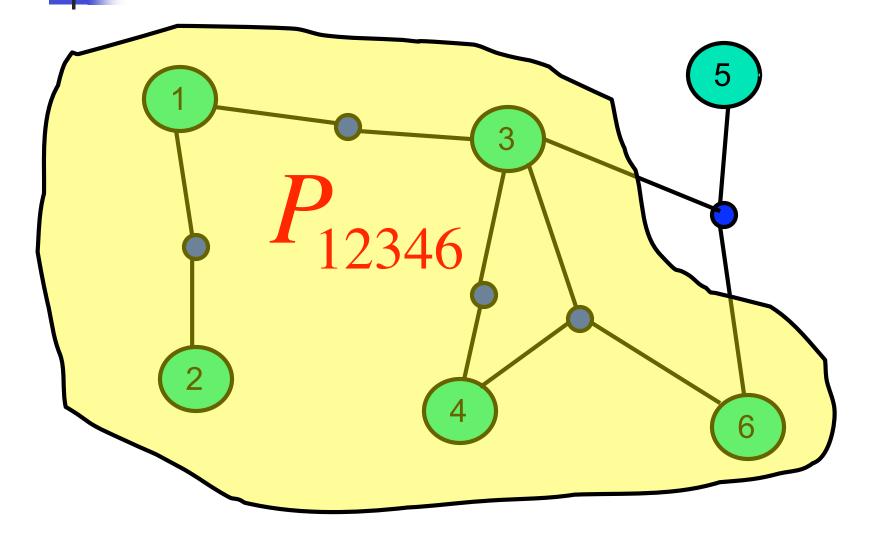
(Nemenman and Tishby, in prep.)

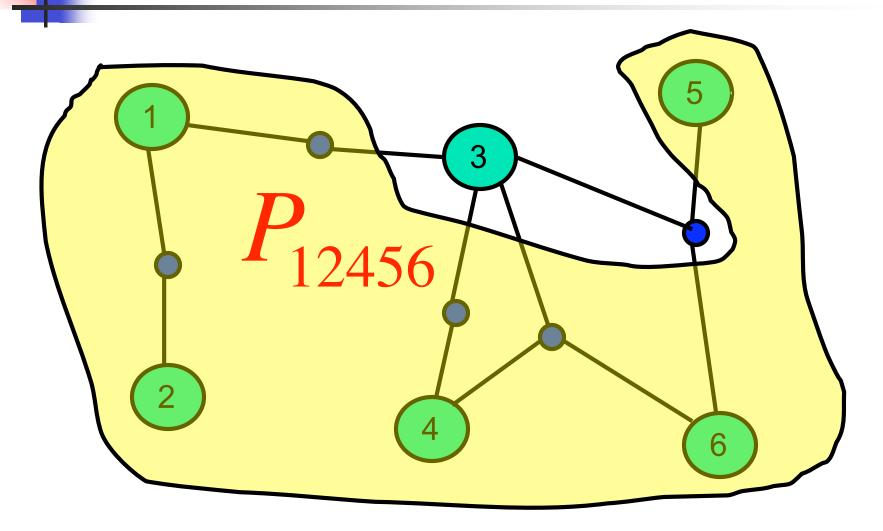
Higher order irreducible dependencies

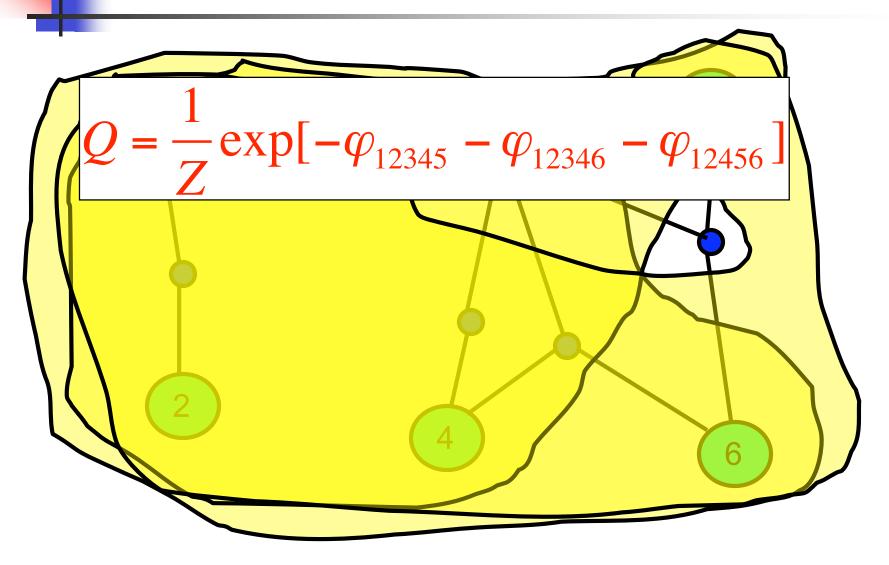


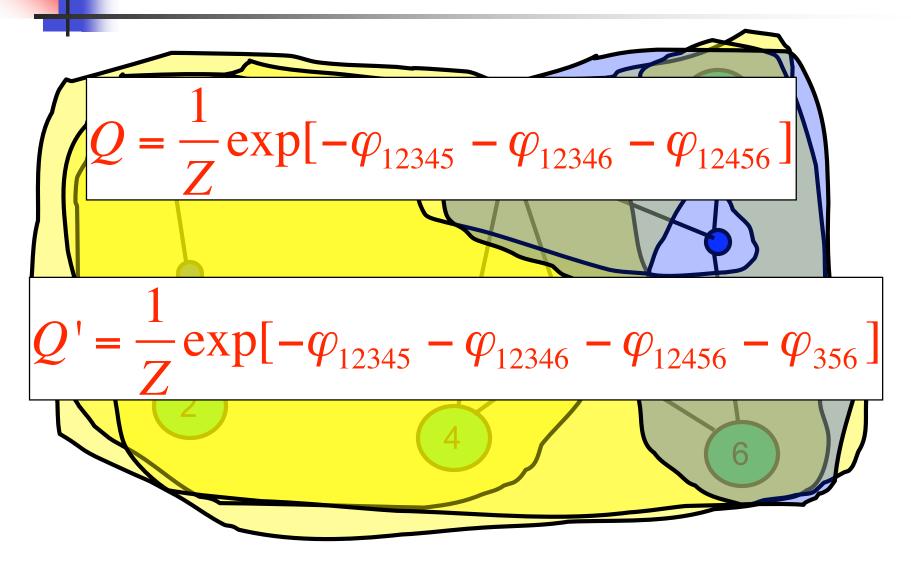
(Schneidman et al. 2003, Nemenman 2004)











$I'_{356} = D_{KL}[Q' \parallel Q]$

$I'_{356} > 0 \Rightarrow$ Irreducible interaction present

MaxEnt factorization of PDFs

$$P(x_1, \dots, x_M) =$$

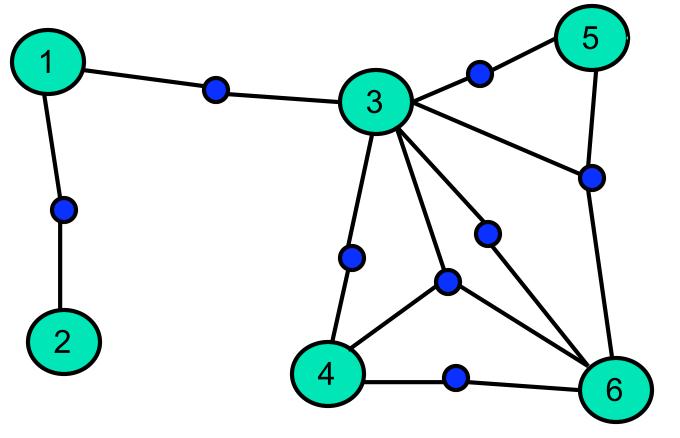
$$= \exp\left[-\sum_{i} \varphi_i(x_i) - \sum_{ij} \varphi_{ij}(x_i, x_j) - \sum_{ijk} \varphi_{ijk}(x_i, x_j, x_k) - \dots\right]$$

- N-particle potentials
- Spin models -- inverse problem (for discrete variables)
- Random lattices
- Message passing (and if MP works -- ask me later)
- Markov Networks

Two *separate* influenciomics problems

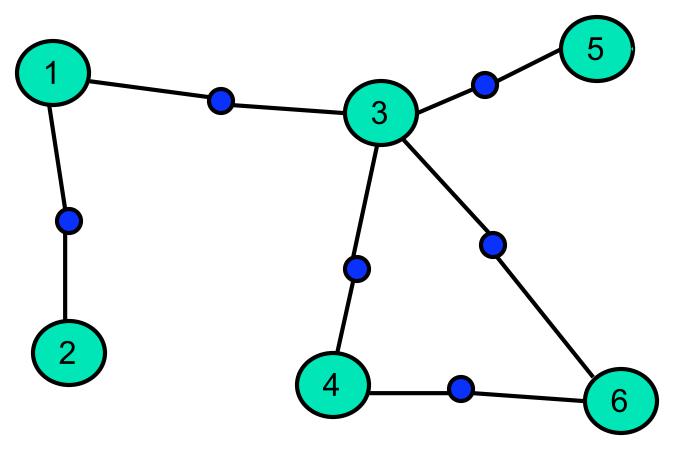
- What is an interaction?
 - What does an arrow mean?
 - Higher order dependencies
- Realistic algorithms to uncover them
 - Controlled approximations (e.g., know the order)
 - Biologically sound assumptions (new knowledge from their verification)
 - Performance guarantees (focus on low false positives for irredicibility)
 - Complexity, Robustness, Data requirements...

Interaction network



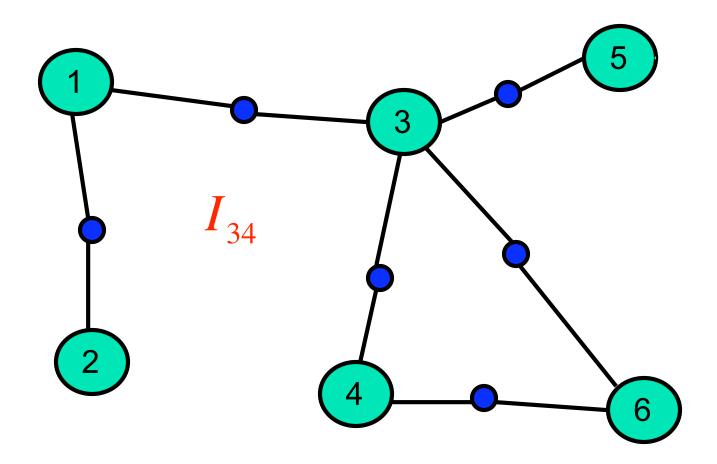
(Basso et al. 2005, Margolin et al. 2005)

Disregard high orders (undersampling)

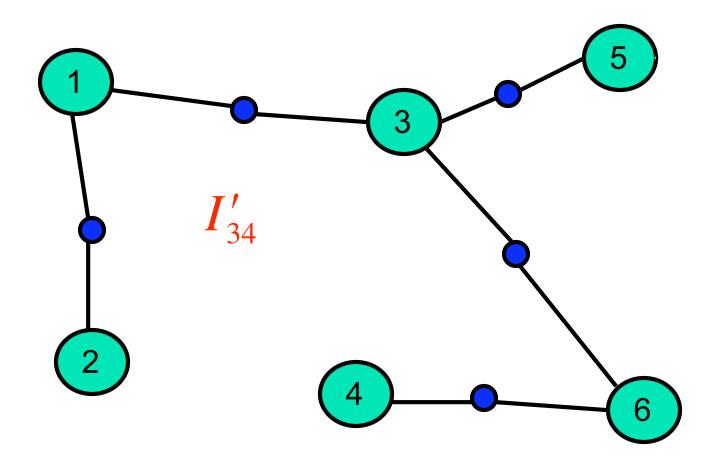


Is second order all we ever need? Cf. Schneidman et al. 2005

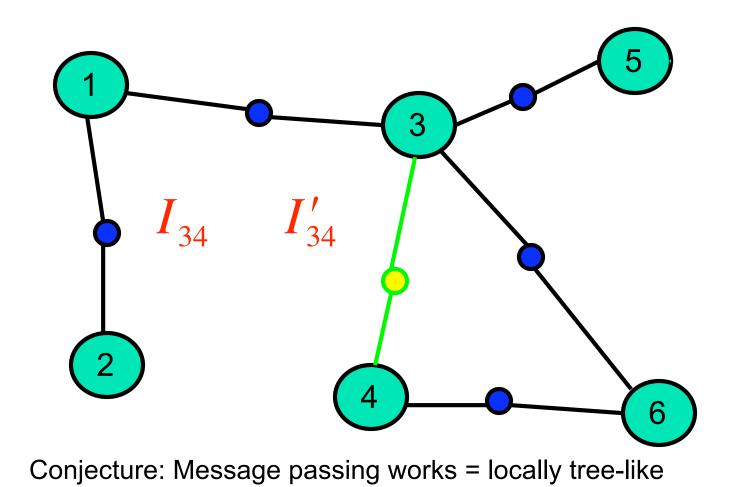
Locally tree-like approximation



Locally tree-like approximation



Locally tree-like: signals decorrelate fast



ARACNE: remove the weakest link in every triplet

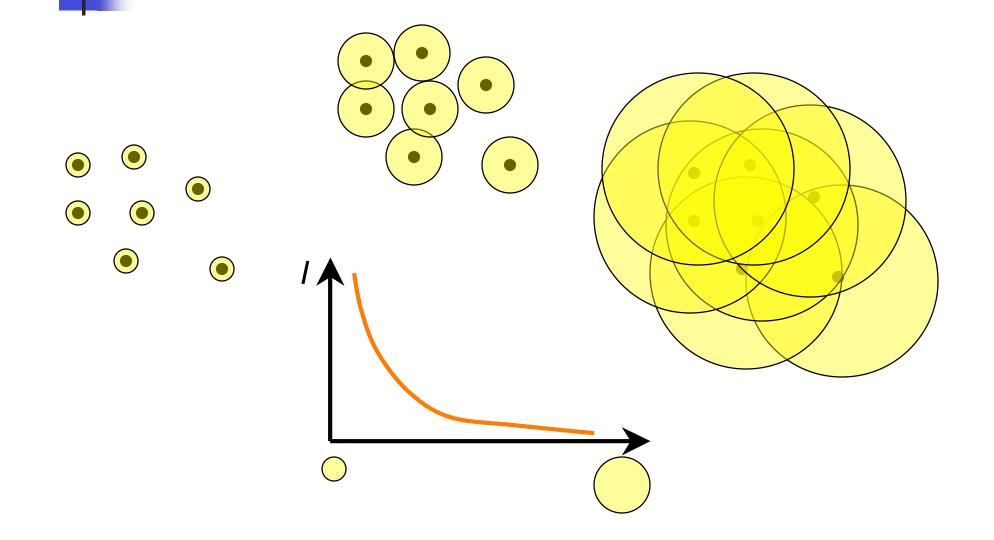
 $I(A,C) \le \min \left[I(A,B), I(B,C) \right]$ More care needed for loops of size 3 **Techniques for MI estimation needed!** No false positives Where 2-way -- it's 2-way

<u>Theorem 1.</u> If MIs can be estimated with no errors, then ARACNE reconstructs the underlying interaction network exactly, provided this network is a tree and has only pairwise interactions.

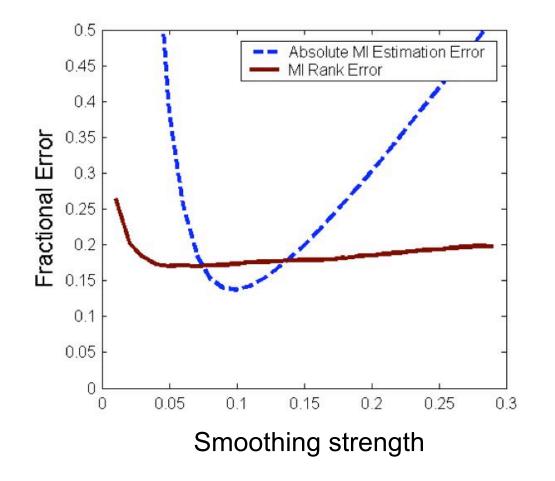
<u>Theorem 2.</u> The Chow-Liu maximum mutual information tree is a subnetwork of the network reconstructed by ARACNE.

<u>Theorem 3.</u> Locally tree-like -- no false positives (no false negatives under stronger conditions).

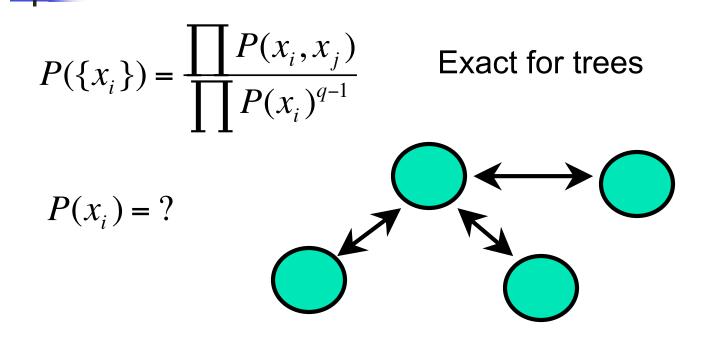
Estimating *I*: smoothing (e.g., Gaussian Kernels)



Estimating I: stability of ranks

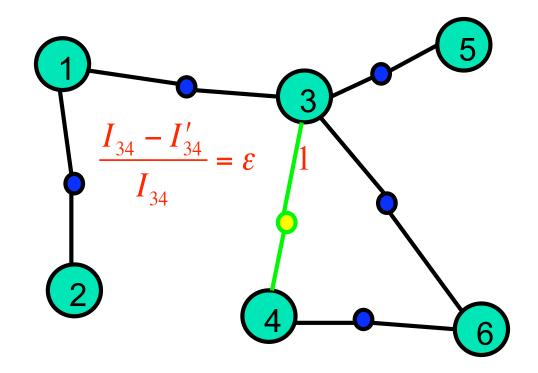


Aside: Bethe approximation, Message passing (MP)



MP (belief propagation, transf. matrix) works for trees and *sometimes* for loopy networks. But when exactly?

Locally tree like assumption is what makes MP work!

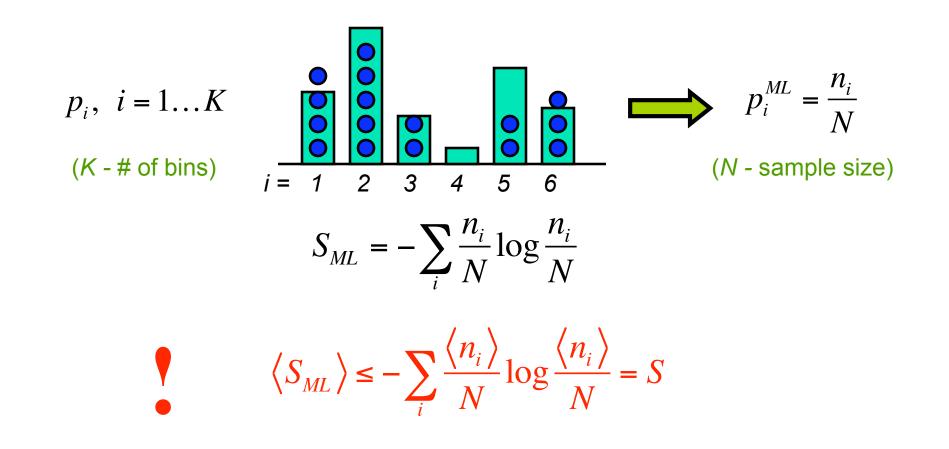


Biological soundness

- Higher order interactions project to lower orders
- Fast decorrelation, sparseness:
 /(gene,copy)>> /(gene,second best)
- Small loops often transient

Why is IT not common in statistics?

Maximum likelihood estimation:



Why is IT not common in statistics?

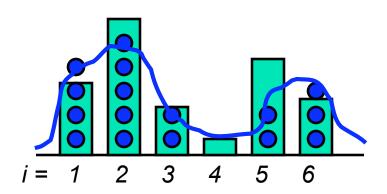
$$\langle S_{ML} \rangle \leq -\sum_{i} \frac{\langle n_i \rangle}{N} \log \frac{\langle n_i \rangle}{N} = S$$

log K
bias $\propto -\frac{2^{S}}{N}$ (variance)^{1/2} $\propto \frac{1}{\sqrt{N}}$

Fluctuations underestimate entropies and overestimate mutual informations.

(Need smoothing.)

Correct smoothing possible



 $S \le \log N$

(often not enough)

Incorrect smoothing = over- or underestimation.

Developed for problems ranging from mathematical finance to computational biology.

For estimation of entropy at $K / N \le 1$ see: Grassberger 1989, 2003, Antos and Kontoyiannins 2002, Wyner and Foster 2003, Batu et al. 2002, Paninski 2003, Panzeri and Treves 1996, Strong et al. 1998 What if S>logN?

But there is hope (Ma, 1981):

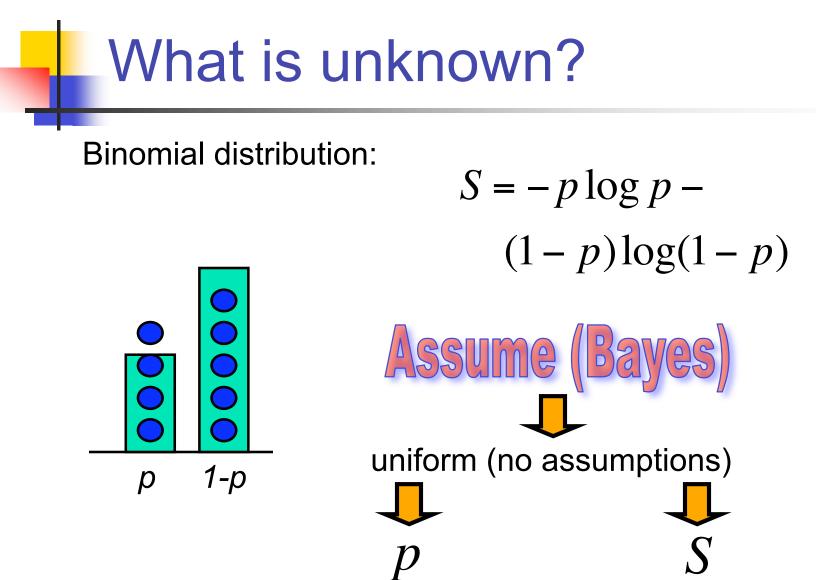
For uniform *K*-bin distribution the first coincidence occurs for

$$N_c \quad \sqrt{K} = \sqrt{2^S}$$

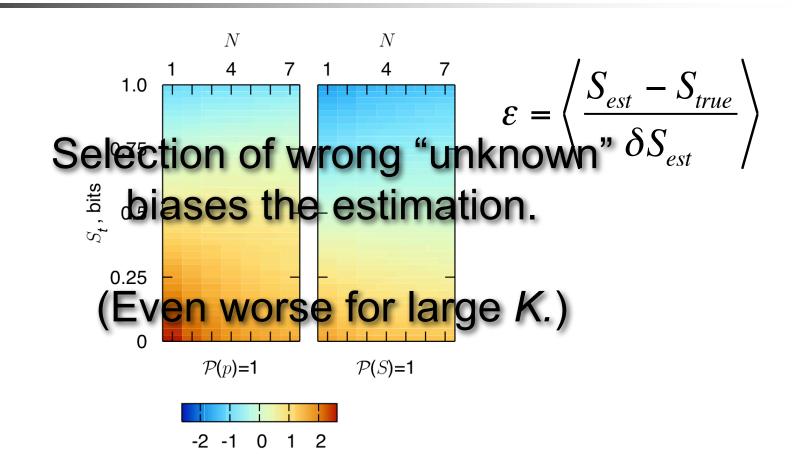
 $S \quad 2 \log N_c$ Time of first coincidence

Can make estimates for square-root-fewer samples! Can this be extended to nonuniform cases?

- Assumptions needed (won't work always)
- Estimate entropies without estimating distributions.



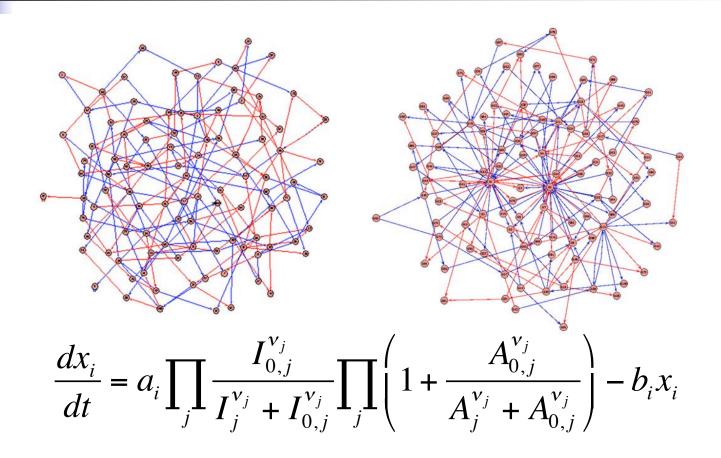
What is unknown?



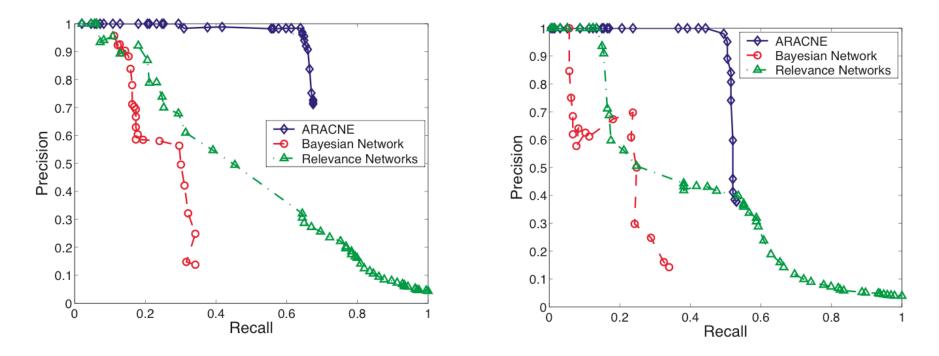
One possible uniformization strategy for *S* (NSB)

- Posterior variance scales as $1/\sqrt{N}$
- Little bias, except in some known cases.
- Counts coincidences and works in Ma regime (if works).
- Is guaranteed correct for large *N*.
- Allows infinite # of bins.

Synthetic networks



Synthetic networks (*N*=1000): Biological vs. Statistical Interactions

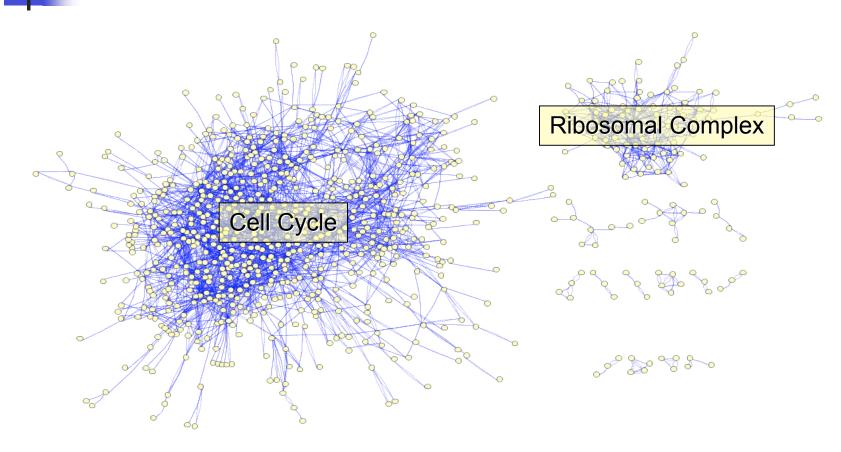


Graceful decay for smaller *N* Half of all loops kept.

B-cell dataset

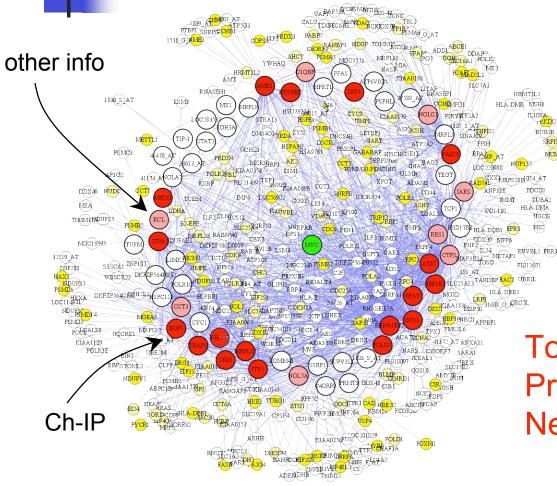
- ~400 arrays
- No dynamics
- ~250 naturally occurring, ~150 perturbed
- ~25 phenotypes (normal, tumors, experimental perturbations)
- Expression range due to differential expression in different phenotypes

Complete B-cell network



~129000 interactions

c-MYC subnetwork



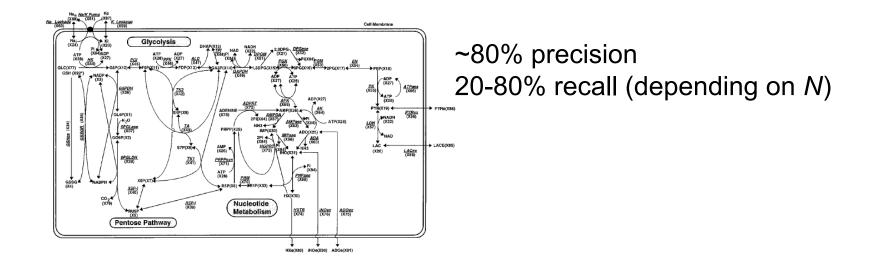
- Protooncogene,
- 12% background binding,
- one of top 5% hubs •
- significant MI with 2000 genes

SRPK)

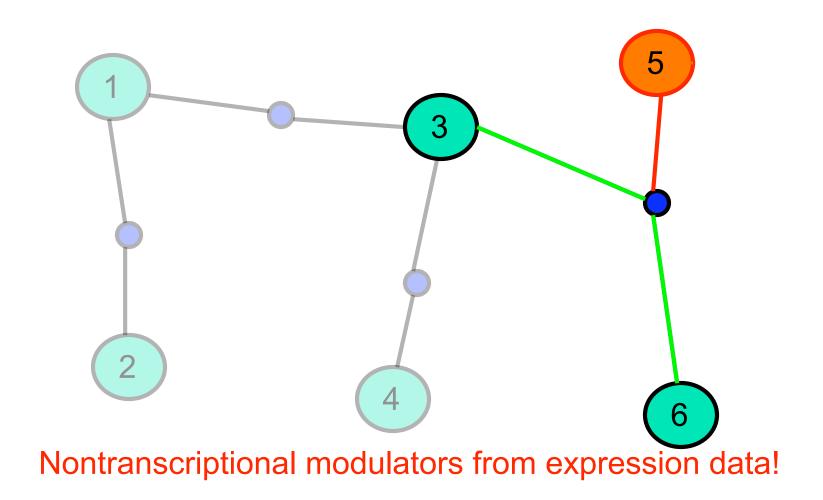
Total interactions: 56 Pre-known: 22 New Ch-IP validated: 11/12

Also validated in...

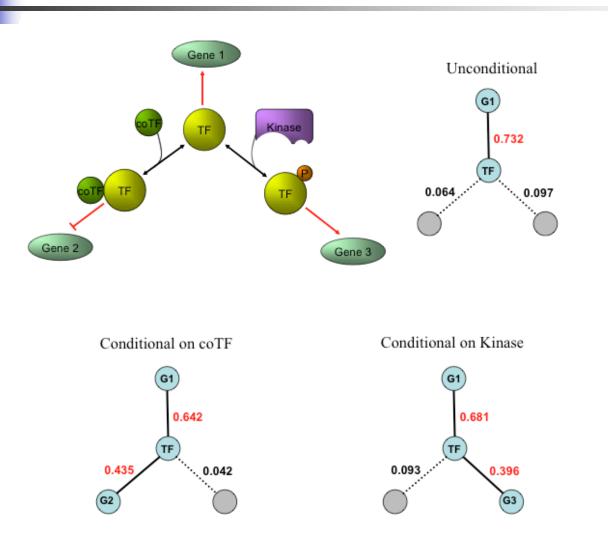
- Other hubs
- Various yeast data sets
- RBC metabolic network (synthetic)



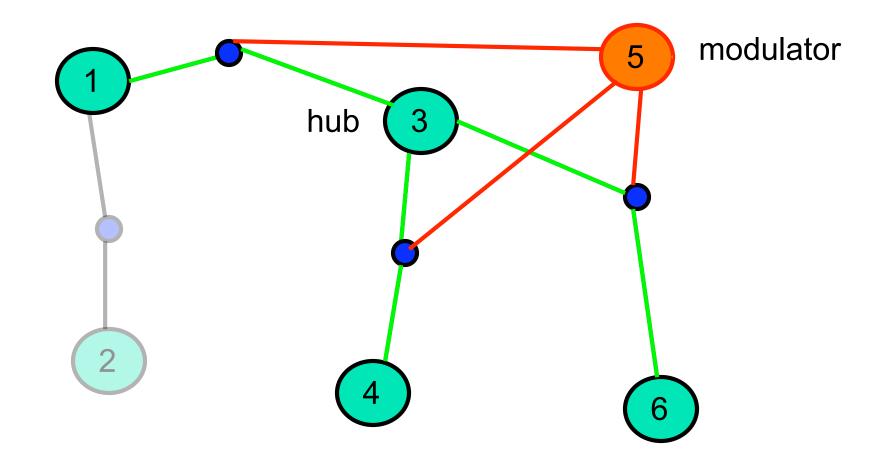
3rd order interactions (modulated, conditional, transistor)



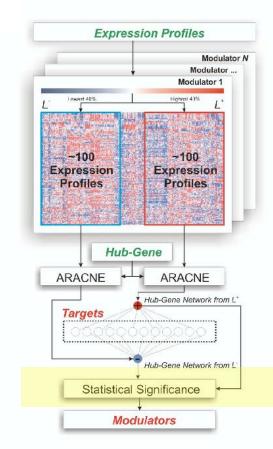
Numerical case study: Non-transcriptional modulation



Large hubs, global (discrete) modulators



Large hubs, global (discrete) modulators



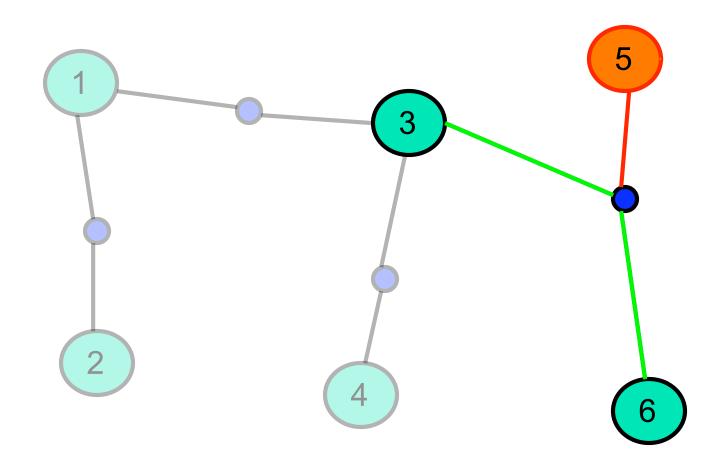
- Focus on important hubs (c-MYC)
- Pre-filter candidate modulators by dynamic range and other conditions.
- Find modulators whose expression inflicts significant changes on topology of the ARACNE hubs' interactions
- No guarantee of irreducibility
- Validate in GO w.r.t. to transcription factors and kinases among modulators

$$\left|N^{+}-N^{-}\right|>0$$

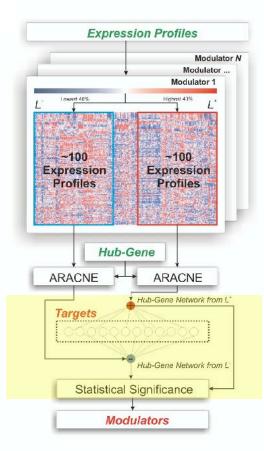
c-MYC modulators

- 1117 candidate modulators (825 with known molecular function in GO)
- 82 (69) candidate modulators identified
- Kinases: 10/69 (backgr. 42/825), p=1e-3
- TFs: 15/69 (backgr. 56/825), p=1e-6 (validated -- see below).
- Total: 25/69 (backgr. 98/825), p=3e-8
- Large scale modulators: ubiquitin conjugating enzyme, mRNA stability, DNA/chromatin modification, etc.

Large hubs, local modulator (MI change, transistor)

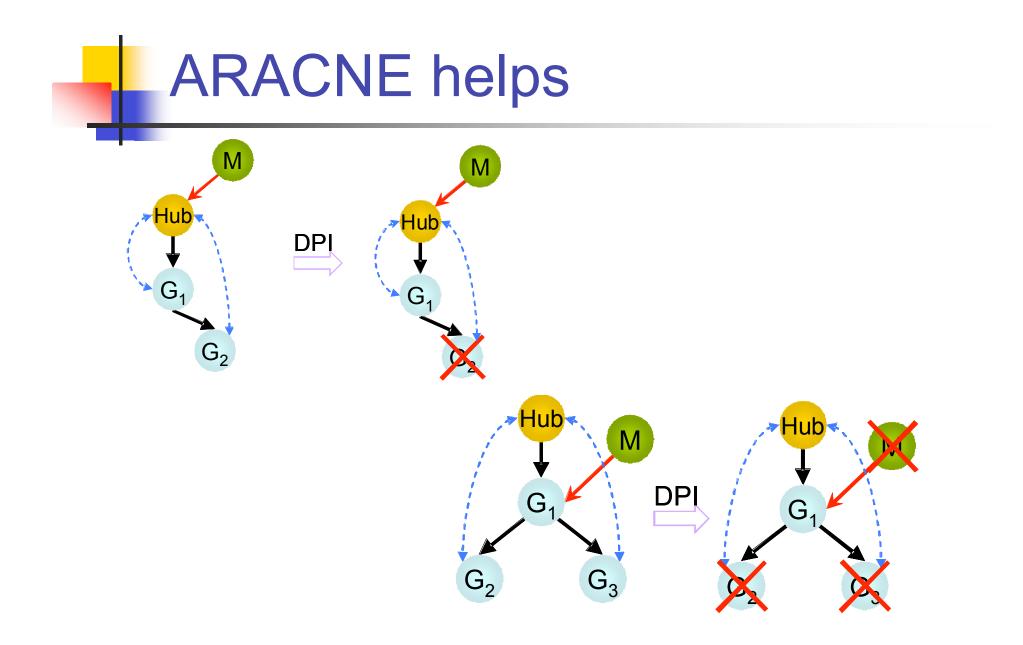


Large hubs, local modulators



- Focus on important hubs (c-MYC)
- Pre-filter candidate modulators by dynamic range and other conditions.
- Find modulators whose expression inflicts significant conditional MI changes for an ARACNE target in at least one conditional topology
- No guarantee of irreducibility
- Validate in GO w.r.t. to transcription factors and kinases among modulators

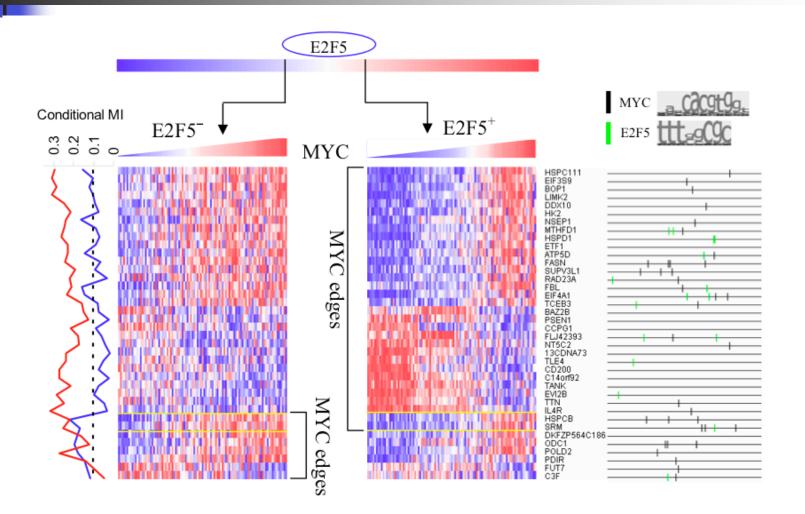
$$\Delta I(g_{TF}, g_t | g_m) = \\ = \left| I(g_{TF}, g_t | g_m^+) - I(g_{TF}, g_t | g_m^-) \right| > 0$$



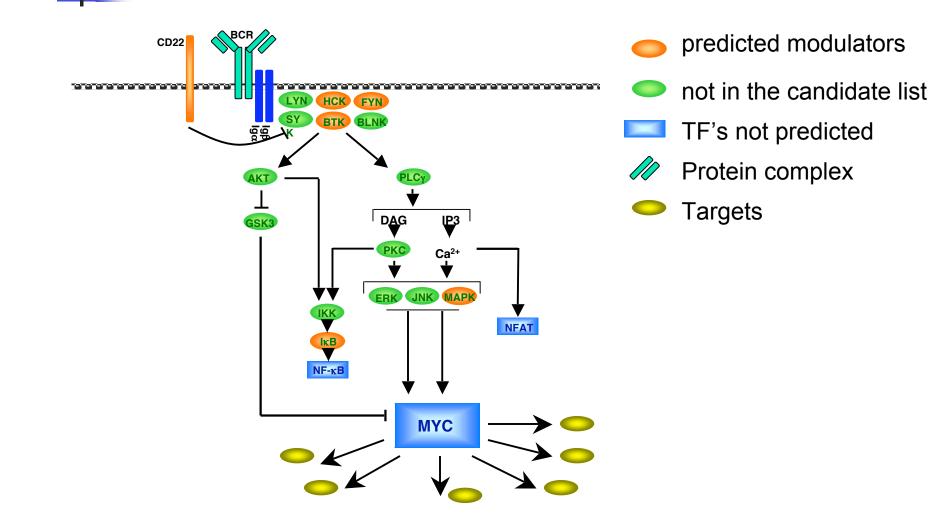
c-MYC modulators

- 1117 candidate modulators
- 100 modulators identified, modulating 205 interactions with 130 targets
- Modulators enriched in: kinases, acyltransferases, TFs (all at p<5%); correspond to known MYC modulation pathways.
- TFs: 15, p=1e-6.
- 4 out of 5 TF modulators (e.g., E2F5) with TRANSFAC signatures have binding sites in modulated targets promoter regions.
- Modulators with largest number of effected targets are not-targetspecific (proteolisis, upstream signaling components, receptor signaling molecules).
- Modulators with small number of effected targets are mostly co-TFs, are interaction-specific.
- About one third of modulators are literature-validated.

Example: TF co-factor modulator



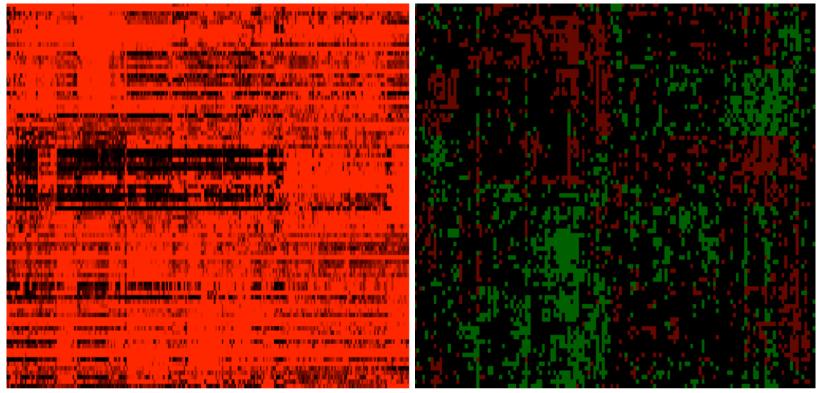
Reducibility: modulating pathways



Many correlated modulators

expression

change in interactions



Over 70% cluster overlap

Currently

- Biochemical validation
- Search for irreducible modulators
- Dealing with small loops

Summary

- IT quantities good measures of dependency
- Defined irreducible interactions
- Proposed a set of simplifying assumptions and a corresponding algorithm for second order interactions
- Bootstrapped the algorithm to identify certain third order dependencies
- Validated algorithms in-silico
- Analyzed interaction network of c-MYC, validated invivo and through literature