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Topic

• Animal learning, multiscale or power-law memory: world

is complex

• Predictability, complexity, and learning. NeCo 2001: what

is complexity (of a time series)?

• Coarse graining biochemical networks: how to deal with

complexity?
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Biochemical complexity:

Example - IgE receptor (From Faeder, Hlavacek, et al.)

354 species / 3680 reactions
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Why such complexity?

6 free states

354 chemical species (2954 for trimers)

300 dimer states
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10+ reactions/species
(an example with a relatively short RHS)

• XDOT(1)= (1.0*km1*X(8)*X(0)-2.0*kp1*X(7)*X(1))/1.0
+(1.0*km1*X(10)*X(0)-2.0*kp1*X(9)*X(1))/1.0
+(1.0*km1*X(28)*X(0)-2.0*kp1*X(33)*X(1))/1.0
+(1.0*km1*X(35)*X(0)-2.0*kp1*X(17)*X(1))/1.0
+(1.0*km1*X(40)*X(0)-2.0*kp1*X(36)*X(1))/1.0
+(1.0*km1*X(43)*X(0)-2.0*kp1*X(37)*X(1))/1.0
+(1.0*km1*X(46)*X(0)-2.0*kp1*X(38)*X(1))/1.0
+(1.0*km1*X(49)*X(0)-2.0*kp1*X(39)*X(1))/1.0
+(1.0*km1*X(56)*X(0)-2.0*kp1*X(55)*X(1))/1.0

 +(1.0*km1*X(60)*X(0)-2.0*kp1*X(117)*X(1))/1.0
+(1.0*km1*X(66)*X(0)-2.0*kp1*X(24)*X(1))/1.0
+(1.0*km1*X(67)*X(0)-2.0*kp1*X(77)*X(1))/1.0
+(1.0*km1*X(68)*X(0)-2.0*kp1*X(72)*X(1))/1.0
+(1.0*km1*X(69)*X(0)-2.0*kp1*X(78)*X(1))/1.0
+(1.0*km1*X(70)*X(0)-2.0*kp1*X(75)*X(1))/1.0
…



And, on top of this, everything is stochastic

and dynamic!
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What to do?

• Coarse graining!     out = f(in); xlast = f(xfirst)

• Already are doing this (in deterministic context)

• Is this legitimate?

– Is the functional form correct?

– Are these events Poisson?

• How can simulations be done?

– Simple SSA-Gillespie won’t work (though recall Golding’s talk)

DNAp
lacI lacZ,Y,A

promoter

d lacZ[ ]
dt

=
V0

K0
2

+ lacI[ ]
2
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Which coarse-graining method to use?

• Combining nodes
– how?

• Fast rates vs. slow rates
– Rates concentration dependent

– May couple very different species types

• Momentum space RG
– Does not decrease # of nodes

• Fast nodes vs. slow nodes
– All couples, all same speed

• High abundance (relatively slow) vs. Low abundance (relatively fast):
adiabatic approximation
– That’s what biochemists have been using

– Stochasticity?
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Why adiabaticity?
(Kozdon, Faeder)

10-3 10-2 10-1 10-0 101 102

Fc RI (trimer)

2954 states

Fc RI (dimer)

354 states

EGFR

356 states

Relaxation time scales 

of different species

Time (seconds)
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Michaelis-Menten reaction:

Deterministic coarse-graining

• Adiabatic approximation

– Many enzyme turnovers for small fractional

change in [P], [S]

• How to do coarse-graining with fluctuations?

 

S
k1

k 1
SE k2 P

d SE[ ]
dt

= k1 S[ ] E[ ] k 1 + k2( ) SE[ ] = 0

dP

dt
=

k1k2 E[ ] S[ ]
k2 + k 1 + k1 S[ ]

= Jcl

Slow modulation
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MM with fluctuations
(Hwa, Bundschuh, Vanden-Eijnden, Ehrenberg, Szabo, Arkin, et al.)

• Mean = deterministic

• Var = mean for linear regimes (one step dominated)

• Is first statement correct? What about the bend area for the second?

lin
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r

linear (const)
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Michaelis-Menten reaction (or a pore):

Stochastic coarse-graining

 

S
k1

k 1
SE

k2

k 2
P

Q = P T( ) P 0( )

(Simper version of Sinitsyn and Nemenman, 2007)

 
P Q( ) = d Q1 d Q2… d QT / t P Qi( ) Q Qi( )

4 Poisson processes

with (almost) constant rates ki

Functional integral over all paths - can get full MGF
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Adiabatic approximation

 
P Q( ) dN[ ] d[ ] exp i N + NE H

# enzymes

Saddle point solution (exact due to linearity of S) 

occupied 

enzymes

Lagrange 

multiplier

 

H N ,( )

cl

= iNcl = 0

Adiabatic solution
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Michaelis-Menten reaction:

Periodic modulation of two rates

k1[S]

k 2[P]

sc
MGF = MGFcl + dSdP F

sc

Berry curvature

As in adiabatic QM

J = Jcl + Jpump = Jcl + d 2k
sc

k2 + k 1

T0 k
i( )

3 Pump, ratchet

[P]

[S] Shielding
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Example 1:

Bulk fluxes

k1 = 1.5 + Rcos t; k 2 = 1.5 + Rsin t; k 1 = k2 = 1

equilibrium, on average: Jcl = 0

Pump current up to 10% for realistic enzymes



Slide 16

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Example 2:

Noise in single molecule experiments

 

k0

q
S

k1

k 1
SE k2 P Xie et al.

Bezrukov et al.
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Example 3:

Nonperiodic correction to MM rate

 
S

k1

k 1
SE

k2

k 2
P

 

N p = JS P
cl JP S

cl
+ k2 + k 1( )

k1NS + k 2NP( ) k2 + k 2NP( )

k1NS + k 1 + k2 + k 2NP( )
3
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Conclusions

• Adiabatic coarse-graining of stochastic biochemical

networks

• Nonzero mean corrections (pump effects) -- geometric

nature

• Nonpoisson statistics

• Developing symbolic package for coarse graining (to be

built into BioNetGen -- network simulation package from

LANL, NAU, and now Pitt)


