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NFL for learning

Universal learning ≈ Bayesian learning with universal priors.

Pest(θ|~x) =
P (~x|θ)Pest(θ)

Pest(~x)

L(est|true) =
∫

dθPtrue(θ) log
Ptrue(θ)
Pest(θ)

• NFL: if the real prior and the prior used for estimation are

mismatched, one looses on average.

• NFL: if you are ignorant and indicate this by uniform prior,

then the best average performance is achieved by exhaustively

searching over all functions.

• No such statements for minimax analysis.
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NFL for learning: continuation

• Bayesian model selection and universal learning start with

well-defined, particular priors over functions, which is an

assumption.
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NFL for learning: continuation

• Bayesian model selection and universal learning start with

well-defined, particular priors over functions, which is an

assumption.

• Probabilities are (roughly) uniform over sets of functions, and

functions have nonuniform probabilities 1/||set||.
• For Bayesian model selection and for universal learning to

win, on average, the world must be simple (an assumption).

• But you won’t loose too much if it is not, and in this case you

are doomed anyway.

Ilya Nemenman, Universal learning workshop, NIPS’02, December 14, 2002
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NFL for optimization
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L(ym)P (L|f, a1) =
∑

f

L(ym)P (L|f, a2)

• Same holds for time–dependent optimization.

• Past performance is no guarantee of future performance.

• No similar minimax results.

For uniform prior over f , what is won on some f is lost

on the others.
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NFL for universal search

Example: Jürgen Schmidhuber’s OOPS. Spend half time searching

solutions that start with the solution to a simpler problem, and half

time on the rest.
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NFL for universal search

Example: Jürgen Schmidhuber’s OOPS. Spend half time searching

solutions that start with the solution to a simpler problem, and half

time on the rest.

Do not consider the interruption time, just the choice of the next

guess.

Compared to Universal prior Uniform prior

Worst case loss half the search time all of search time

Average loss equivalent equivalent

If the time till interrupt is also reweighted, things are more

complicated.
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NFL: discussion
• If prior is not incorporated into the algorithm, uniform prior is
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NFL: discussion
• If prior is not incorporated into the algorithm, uniform prior is

effectively chosen, and the results hold.

• Uniform prior is just one of many; not necessarily the best

choice to denote total ignorance.

• But from this perspective universal prior is also one of many.

• For average performance matching of algorithms to priors is

crucial.

• For minimax properties it is not crucial.

• Usually, one is interested in average performance for problems

that are “good” and minimax performance on “bad”

problems. NFL theorems do not say anything about

universal/Occam priors in this case.
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Universal learning and continuous variables

• World (presumably) is continuous.

• One has to quantize (discretize) it before supplying to a

digital computer for analysis.

• There are bounds on universal learner performance for each

discretization.

• How does learning depend on a choice of coordinates and/or

discretization?

• Are there performance bounds uniform over all

parameterizations and/or discretizations?
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First problem: singular discretizations and
coordinates

Uniform quantization
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First problem: singular discretizations and
coordinates

Uniform quantization Nonuniform quantization
P

1 2 3 4 5 6

x’1 2 3 4 5 6

P

x

x’

P

1 2 3 4 5 6

x’1 2 3 4 5 6

P

x

x’

One will learn perfectly

in the second case. But

so what?

The question may be

discretization

dependent (e. g.,

finding the shortest

path between two

points).
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Learning PDF’s: covariance problem

There is a problem learning PDF’s in a covariant way. Learning

(L : {xi} → P (x)) and reparameterization (Rz : x → z(x)) do not

commute

[L,Rz] 6= 0
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Learning PDF’s: covariance problem

There is a problem learning PDF’s in a covariant way. Learning

(L : {xi} → P (x)) and reparameterization (Rz : x → z(x)) do not

commute

[L,Rz] 6= 0
Example: z(xi) = xi, and z(x 6= xi) 6= x.

Similarly, quantization and learning do not commute.

Ilya Nemenman, Universal learning workshop, NIPS’02, December 14, 2002
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Second problem: simplicity in complex
coordinates

Coordinate system x z
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Second problem: simplicity in complex
coordinates

Coordinate system x z

PDF Px Pz = Px

∣∣dx
dz

∣∣
K-complexity

of coordinates Kz(x) huge Kx(z) � Kz(x) huge

K-complexity

of PDF’s Kx(Px) huge Kz(Pz) � 1

To overcome analogs of NFL theorems, we must assume that P has

small K-complexity in the coordinate system we have chosen.
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Complexity: strings or ensembles?
Average vs. particular cases
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Complexity: strings or ensembles?
Average vs. particular cases

• nothing to encode (predict, reconstruct, describe) if only one

string is possible

• atypical data is possible

• purely random string (gas in the room) is simple, and

meaningless.

Need to extract meaningful information.

Individual (Martin-Löf) randomness, typicalities, etc. still require

(possibly implicit) ensemble specification (or Bernoulli ensemble is

assumed – but why should one work with this worst case?)

Ilya Nemenman, Universal learning workshop, NIPS’02, December 14, 2002
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Example

Example: all pictures can be random, but we do not perceive them this way.
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Example: all pictures can be random, but we do not perceive them this way.

Ensemble of 
faces

   Particular face

For this ensemble the

face is a random

(typical) string.
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Example

Example: all pictures can be random, but we do not perceive them this way.

Ensemble of 
faces

   Particular face

For this ensemble the

face is a random

(typical) string.

Complexity is an ensemble (averaged) quantity, even if

the ensemble is only implicit.

Ilya Nemenman, Universal learning workshop, NIPS’02, December 14, 2002
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Quantifying averaged complexity
Shannon information theory: averaged meaningful information
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Quantifying averaged complexity
Shannon information theory: averaged meaningful information

-s
nowpast future

xT,N T ′, N ′0

Ipred(T, T ′) =

〈
log2

[
P (xfuture|xpast)

P (xfuture)

]〉
= S(T ) + S(T ′)− S(T + T ′)
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Quantifying averaged complexity
Shannon information theory: averaged meaningful information

-s
nowpast future

xT,N T ′, N ′0

Ipred(T, T ′) =

〈
log2

[
P (xfuture|xpast)

P (xfuture)

]〉
= S(T ) + S(T ′)− S(T + T ′)

S(T ) = S0 · T + S1(T )

Extensive component cancels in predictive information.

Predictability is a deviation from extensivity!

Ipred(T ) ≡ Ipred(T,∞) = S1(T )
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Complexity measure

• some kind of entropy (we proclaim Shannon’s postulates:

monotonicity, continuity, additivity)
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Complexity measure

• some kind of entropy (we proclaim Shannon’s postulates:

monotonicity, continuity, additivity)

• invariant under invertible temporally local transformations

(xk → xk + ξxk−1: measuring device with inertia, article with misprints, same book in

different languages – same universality class)

log P1(x) = log P2(x) + loc. oper. ⇒ C[P1(x)] = C[P2(x)]
This may present a problem in higher dimensions.
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• some kind of entropy (we proclaim Shannon’s postulates:

monotonicity, continuity, additivity)

• invariant under invertible temporally local transformations

(xk → xk + ξxk−1: measuring device with inertia, article with misprints, same book in

different languages – same universality class)

log P1(x) = log P2(x) + loc. oper. ⇒ C[P1(x)] = C[P2(x)]
This may present a problem in higher dimensions.

The divergent (in T or N) part of subextensive entropy

term measures complexity uniquely!
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• partition all allowed strings into equivalence classes

• define Kolmogorov complexity Kp(s) of a sequence s with

respect to the partition as a length of the shortest program

that can generate a sequence from the class s belongs to

• equivalence = indistinguishable conditional distributions of

futures

If sufficient statistics exist, then 〈Kp(s)〉 � Ipred. Otherwise

〈Kp(s)〉 � Ipred.

Kp(s) is basically the regular K(s) without the random part (i. e.

zero description cost for using a random number generator.)
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