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Efficient estimation as a

i biological design principle

= Berg and Purcell (1977). Chemosensing
precision and reliability is limited by physical
noise sources.

= Since then: single photon responses,
transcription, chemotaxis run length, motion
estimation,... - all are at physical limits to
sensing.

= [he second arrow? (estimation of and
reaction to a dynamical environment).



In time learning/prediction:
necessary for active response

Statistics of
enwronment




Mathematics of prediction:

i A limited form of prediction

= Estimation of dynamical signal “right now”
(t=0) from observations of its past (f<0).

= Need to know time statistics of the signal.



Mathematics of prediction:

i A limited form of prediction

For a signal ¢ sampled at rate r and with C(t)———o” (1—(5) )
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A note on optimal information

i transmission
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Matching mean and variance maximizes

information transmission.
(Laughlin, 1981)



Turtle cone background light

i iIntensity adaptation
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i Response time adaptation
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ERY Adapting to integrated flux.
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:| What should 7 be?
. (Detweiler et al., 2000)
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Linear due to Ca feedback!



Solution

i (for signal-limited precision)
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Note that this is not same as
T/2

I[o@t):; v(t)] = hm— j —10g(1+SNR(a)))
—T/2
which is the channel capacity.



Solution

i (for signal-limited precision)
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Can also maximize total predictive information:
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Finding 7

Maximize I, w.r.t T log S | |
signal
For:
g signal=noise
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Best possible matched filter
(limited by biochemical mechanisms)

Also predicted by variance balance argument.



A problem

N O = 1/k%¢ spatial spectrum

) ! = ~10 phoreceptors/fixation
" | drift

\‘-\% _ = 1/a*~€ temporal spectrum
. | = Should have 7~ I,

Logl0(Spatial Frequency (cycles/degree))

(Ruderman & Bialek, 1994) Wrong! But...



i Structural constraint

Rh* is the signal (for the adapting rest of the

circuit), its temporal response is uncontrollable
(and badly known - Rieke & Baylor, 1998)
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Given this signal, the rest of the biochemistry
should adapt in agreement with experiment
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i Rat matching experiments

(with Gallistel)

Poisson deposition
of rewards

Rewards do not
accumulate

Possibly variable
rate

Changeover delay
Rat matches



Rat matching experiments

= Poisson deposition

5 e L 25 of rewards
20+ .,s = Rewards do not
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(Gallistel et al 2001)



But: Time scales are history
dependent. Can we explain?
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(also note imperfect matching)



Optimal estimation:

i Bayes theorem
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/Z

Plo(r) | data] =

[ )
P[¢(t)] %GXP|:—§J(BZ¢) dt:|9 (b(t):lOgl"(t)



i Sampling

Sampling from a target 0(r) — ¢, at t,
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Evolution in a random (time and space) potential



i Examples of log-likelihoods

Poisson process:

YV =[die =Y o) - [die’”~[die" g(o)
Learning a fluctuating mean of a Gaussian:

1
ZV Z —¢) - e Jdt rt)(¢p—6)°

In general, for fast sampling rate:

YV, o [dir)v(p-60) - r[dtv(p-6)




A better solution (WKB):

i Learning a Poisson variable

Bialek, Callan, &
Strong, 1996,
Nemenman and Bialek,
2002




i Time scales

Correlation time: TocAl/r

For stable period (7, ~1hr):
[=3-10°s, r=1/10s"", 7~5-10°s=1.5hrs

For variable schedule (7, ~ 1 min):
[=~1800s, r=1/10s", 7~130s=2min

For monkeys (Sugrue et al, 2004) (7, ~ 17 samples):
[=300/r, r, T~15samples

Importantly, estimate starts to
change immediately in both cases



i Self-consistent estimation of /

Averaging over P[[/] leads to correct estimation of
the smoothness scale for fixed | (Nemenman and
Bialek, 2002).

Can do the same for dynamic /.



Phenomenology:

i Abrupt changes
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Phenomenology:

i Abrupt changes

45 = Only after a few
35 changes have

1. been experienced

1?? = Common during
1o fast changes
1° epochs

ag m (Metastable states)?
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Phenomenology:
Reversal to status quo ante
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Caused by memory

s Overestimation of
rate immediately

ol | leads to higher
rate and persists

oAy <€—= Power spectrum of
! reward histories
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Abruptness, two time scales,

i and non-Gaussianity
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Critical periods?



Modeling memory: two scales

i and rapid readjustments

= Need memory scale (long), and adaptation
scale (short)

= Signal changes on long time scale, while
effects of self-perpetuation of rate are on
shorter scales
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[ 2
-5 [ dt 2,0 - Z V(g — oz, ))}



Non-Gaussianity of rate

i distribution
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i Dynamics of fast field

The field undergoes small fluctuations (zero point
and due to irregular sampling) near the minimum
of the energy

ld2¢0 — 0= 89 aV(¢o B 6) n aw(% B l//)
dt’ 0, 0,




i Two minima

For long-tailed distributions, will have two minima

(()1) :I//+81(9_1//)

¥ =0+¢,(y—0)

Barrier depends on the shape and vanishes
as

v —0

Jumps possible from a metastable state near yto
new minimum near 6.



Adiabatic dynamics of the

i slow field

Py | data] o< exp [— % [dr @) - [arw @)~ t//(t))}

Either self-perpetuates, or approached the
true solution (depending on which minima the
fast field is in).

Critical periods?



Modeling reversals: long

Bialek & Zee, 1990 - Best

estimate of ¢ is
approximated by
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Optimal F(t) for a Gaussian process with C~t2 for a
range near t=0 and t=78hrs (normalized within the

window).



Long-tailed filters

i explain reversal

s At the end of the session, rate estimates are
effected mostly by the last (post-change)
observation

= After a long delay, pre-change and post-
change observations are almost equally
weighed, but there are much more of the
former.

= Wouldn't work for exponential filters as used
by Sugrue et al, 2004.

= Experiments to measure C(t) are now done.



i Why matching?

= Matching is almost optimal for maximizing
reward.

= Matching is almost optimal for tracking rate
changes.

= Can it be that the bit value of a reward is
higher than its food value? (Rats are
curious!)

= Preliminary report: matching for
accumulating rewards. Planning experiments
to test matching to neutral stimuli.



i Take home message:

= Optimal estimation of dynamic world seems
to explain phenomenology from molecular
scales, to cognitive psychology scales.

= Preliminary experimental comparisons.

= Better experiments are being done / are
sought.

s For molecular networks, relation of
phenomenology to structure waits to be
analyzed.



