Modeling genetic regulation at different levels: framework, algorithms, applications

Ilya Nemenman
(JCSB, Columbia → CCS3/LANL & SFI)
Thanks

- Columbia: Andrea Califano (PI), Adam Margolin (ARACNE, MI estimation), Kai Wang (Modulators 1 and 2, MI estimation), Nila Banerjee (TF signature), Omar Antar (ARACNE on yeast), Riccardo Dalla-Favera (experimental PI), Katia Basso (in-vivo validation), Chris Wiggins (simulations), AMDeC (computer support)
- IBM: Gustavo Stolovitzky (simulations)
- Jerusalem: Naftali Tishby (framework)
- LANL: Michael Wall (RBC network)
Reconstructing interaction models

Holy Grail?!
Reconstruction algorithms: The curse of “percent correct”

Small data requirements
Robustness to fluct.
Computational complexity
Conditional interactions
Reparam inv., non-param.
Irreducibility

<table>
<thead>
<tr>
<th>Stat</th>
<th>Co</th>
<th>GM</th>
<th>Biochem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>×✓</td>
<td>✓</td>
<td>×✓</td>
<td>×</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>×✓</td>
<td>×</td>
</tr>
<tr>
<td>×</td>
<td>✓</td>
<td>×</td>
<td>×✓</td>
</tr>
<tr>
<td>✓✓</td>
<td>×✓</td>
<td>✓</td>
<td>×✓</td>
</tr>
<tr>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>
Influenciomics (steady state)

\[I(A,C) \leq \min[I(A,B), I(B,C)] \]

What is \(I \) (influence)? Influence vs. interaction?
Two separate influenciomics problems

- What is a (statistical, biological) interaction?
 - What does an arrow mean?
 - Higher order dependencies

- Realistic algorithms to uncover them
 - Controlled approximations
 - Biologically sound approximations
 - Performance guarantees
 - Complexity, Robustness, Data requirements...
Defining influence: Variances and Correlations

\[\sigma^2(x) \]
\[\rho(x, x^2) = 0 \]
\[\rho(f(x), g(y)) \neq \rho(x, y) \]

One-to-one transformations of microarray expression data may destroy the ranking of the correlations. Even the sign of the correlations may change.

normal
linear
not invariant
Entropy (unique measure of randomness, in bits)

\[S[X] = -\sum_{x=1}^{K} p_x \log p_x = -\langle \log p_x \rangle \]

\[0 \leq S[X] \leq \log K \quad \text{(number of “bins”)} \]

\[N(x_0, \sigma^2) \Rightarrow S[X] = \frac{1}{2} \log(2\pi e\sigma^2) \]
Defining influence: Mutual Information

\[
I[X;Y] = \log \frac{p_{xy}}{p_x p_y}
\]

\[
= S[X] + S[Y] - S[X,Y]
\]

\[
0 \leq I[X;Y] \leq \min(S[X], S[Y])
\]

\[
N[(x_0, y_0), \Sigma] \Rightarrow I[X;Y] = -\frac{1}{2} \log(1 - \rho_{xy}^2)
\]
Why MI as influence measure?

- Captures all dependencies (zero iff joint probabilities factorize)
- Reparameterization invariant
- Unique metric-independent measure of “how related”

For 2 variables:

Influence \((I>0)\) **is interaction.**

(Nemenman and Tishby, in prep.)
Kullback-Leibler divergence

\[D_{KL}[P \parallel Q] = \sum_x p_x \log \frac{p_x}{q_x} \]

\[0 \leq D_{KL} \]

How easy it is to mistake \(P \) for \(Q \)?

(KS test, etc.)
MI as MaxEnt

Find least constrained (highest entropy, no interaction) approximation q to p_{xy}, s.t.

$$p_x = q_x$$

$$p_y = q_y$$

$$q_{xy} = \frac{1}{Z} \exp[-\varphi_x - \varphi_y] = p_x p_y$$

$$I[X;Y] = D_{KL}[P \parallel Q] > 0 \implies \text{interaction}$$
By analogy:
Example of irreducibility

\[I > 0 \]

\[P_{ABC} = \frac{P_{AB}P_{AC}}{P_A} = \frac{1}{Z} f_{AB}f_{BC} \]

MaxEnt approximation without BC:

\[Q_{ABC} = \frac{1}{Z} \exp(-\varphi_{AB} - \varphi_{AC}) \Rightarrow D_{KL}[P_{ABC} \parallel Q_{ABC}] = 0 \]

No irreducible interaction!

For AB:

\[Q_{ABC} = \frac{1}{Z} \exp(-\varphi_{AC} - \varphi_{BC}) \]

\[D_{KL}[P_{ABC} \parallel Q_{ABC}] > 0 \]

Irreducible interaction.
Higher order influences

\[I_{XYZ} = \log \frac{p_{xyz}}{p_x p_y p_z} \]

(Axiomatically) Amount of \textit{all} influences (in bits) among variables.

But these are not irreducible.

(Nemenman and Tishby, in prep.)
Higher order irreducible dependencies

How much dependency is there in a set of nodes that is not present in any other subset?

(Schneidman et al. 2003, Nemenman 2004)
MaxEnt approximations

\[P_{12345} \]
MaxEnt approximations
MaxEnt approximations

P_{12456}
MaxEnt approximations

\[Q = \frac{1}{Z} \exp[-\varphi_{12345} - \varphi_{12346} - \varphi_{12456}] \]
MaxEnt approximations

\[Q = \frac{1}{Z} \exp[-\varphi_{12345} - \varphi_{12346} - \varphi_{12456}] \]

\[Q' = \frac{1}{Z} \exp[-\varphi_{12345} - \varphi_{12346} - \varphi_{12456} - \varphi_{356}] \]
MaxEnt approximations

\[I'_{356} = D_{KL}[Q' \parallel Q] \]

\[I'_{356} > 0 \implies \text{Irreducible interaction present} \]
MaxEnt factorization of PDFs

\[P(x_1, \ldots x_M) = \]

\[= \exp \left[- \sum_i \varphi_i (x_i) - \sum_{ij} \varphi_{ij} (x_i, x_j) - \sum_{ijk} \varphi_{ijk} (x_i, x_j, x_k) - \cdots \right] \]

- N-particle potentials
- Spin models -- inverse problem (for discrete variables)
- Random lattices
- Message passing
- Markov Networks
Two separate influenciomics problems

- What is an interaction?
 - What does an arrow mean?
 - Higher order dependencies

- Realistic algorithms to uncover them
 - Controlled approximations (e.g., know the order)
 - Biologically sound assumptions (new knowledge from their verification)
 - Performance guarantees (focus on low false positives for irredicibility)
 - Complexity, Robustness, Data requirements…
Interaction network

(Basso et al. 2005, Margolin et al. 2005)
Disregard high orders (undersampling)
Locally tree-like approximation

\[I_{34} \]
Locally tree-like approximation
Locally tree-like: signals decorrelate fast

\begin{align*}
I_{34} & \quad I'_{34} \\
1 & \quad 2 & \quad 3 & \quad 4 & \quad 5 & \quad 6
\end{align*}
ARACNE: remove the weakest link in every triplet

$I(A, C) \leq \min[I(A, B), I(B, C)]$

More care needed for loops of size 3

Techniques for MI estimation needed!
Theorem 1. If MIs can be estimated with no errors, then ARACNE reconstructs the underlying interaction network exactly, provided this network is a tree and has only pairwise interactions.

Theorem 2. The Chow-Liu maximum mutual information tree is a subnetwork of the network reconstructed by ARACNE.

Theorem 3. Locally tree-like -- no false positives (no false negatives under stronger conditions).
Estimating I: stability of ranks

Also:
- NSB
- copula
Aside: Bethe approximation, Message passing (MP)

\[P(\{x_i\}) = \prod \frac{P(x_i, x_j)}{P(x_i)^q} \]

Exact for trees

\[P(x_i) = ? \]

MP (belief propagation, transf. matrix) works for trees and sometimes for loopy networks. But when exactly?
Conjecture

Locally tree like assumption is what makes MP work!
Biological soundness

- Higher order interactions project to lower orders
- Fast decorrelation: $l(gene,gene) \gg l(gene,second\ best)$
- Small loops often transient
Why is IT not common in statistics?

Maximum likelihood estimation:

\[p_i, \ i = 1 \ldots K \]

\(K \) - # of bins

\[p_i^{ML} = \frac{n_i}{N} \]

\(N \) - sample size

\[S_{ML} = - \sum_i \frac{n_i}{N} \log \frac{n_i}{N} \]

\[\langle S_{ML} \rangle \leq - \sum_i \frac{\langle n_i \rangle}{N} \log \frac{\langle n_i \rangle}{N} = S \]
Why is IT not common in statistics?

\[
\langle S_{ML} \rangle \leq - \sum_i \frac{\langle n_i \rangle}{N} \log \frac{\langle n_i \rangle}{N} = S
\]

\[
\text{bias} \propto \frac{2^S}{N} \quad \text{(variance)}^{1/2} \propto \frac{1}{\sqrt{N}}
\]

Fluctuations underestimate entropies and overestimate mutual informations.

(Need smoothing.)
Correct smoothing possible

\[S \leq \log N \]

(often not enough)

Incorrect smoothing = over- or underestimation.

Developed for problems ranging from mathematical finance to computational biology.

For estimation of entropy at \(K / N \leq 1 \) see:
What if $S > \log N$?

But there is hope (Ma, 1981):

For uniform K-bin distribution the first coincidence occurs for

$$N_c \sqrt{K} = \sqrt{2^S}$$

$$S \quad 2 \log N_c$$

Can make estimates for square-root-fewer samples!

Can this be extended to nonuniform cases?

- Assumptions needed (won’t work always)
- Estimate entropies without estimating distributions.
What is unknown?

Binomial distribution:

\[S = -p \log p - (1 - p) \log(1 - p) \]

Assume (Bayes)

uniform (no assumptions)

\[p \quad S \]
What is unknown?

Selection of wrong “unknown” biases the estimation.

(Even worse for large K.)

$$\varepsilon = \left\langle \frac{S_{\text{est}} - S_{\text{true}}}{\delta S_{\text{est}}} \right\rangle$$
One possible uniformization strategy for S (NSB)

- Posterior variance scales as $1 / \sqrt{N}$
- Little bias, except in some known cases.
- Counts coincidences and works in Ma regime (if works).
- Is guaranteed correct for large N.
- Allows infinite # of bins.

$$\frac{dx_i}{dt} = a_i \prod_j \frac{I_{\nu,j}^{\nu_j}}{I_j^{\nu_j} + I_{0,j}^{\nu_j}} \prod_j \left(1 + \frac{A_{\nu,j}^{\nu_j}}{A_j^{\nu_j} + A_{0,j}^{\nu_j}} \right) - b_i x_i$$
Synthetic networks benchmarks ($N=1000$)

Graceful decay for smaller N
Half of all loops kept.
Complete B-cell network
(400 arrays)

~129000 interactions
c-MYC subnetwork

- Protooncogene,
- 12% background binding,
- one of top 5% hubs
- significant MI with 2000 genes

Total interactions: 56
Pre-known: 22
New Ch-IP validated: 11/12
Also validated in...

- Other hubs
- Various yeast data sets
- RBC metabolic network (synthetic)

~80% precision
20-80% recall (depending on N)
3rd order interactions (modulated, conditional)

Nontranscriptional modulators from expression data!
Numerical case study: Non-transcriptional modulation
Large hubs, global (discrete) modulators

1 2 3 4 5 6

hub

modulator
Large hubs, global (discrete) modulators

- Focus on important hubs (c-MYC)
- Pre-filter candidate modulators by dynamic range and other conditions.
- Find modulators whose expression inflicts significant changes on topology of the ARACNE hubs’ interactions
- No guarantee of irreducibility
- Validate in GO w.r.t. to transcription factors and kinases among modulators

\[|N^+ - N^-| > 0 \]
c-MYC modulators

- 1117 candidate modulators (825 with known molecular function in GO)
- 82 (69) candidate modulators identified
- Kinases: 10/69 (backgr. 42/825), \(p=1e^{-3} \)
- TFs: 15/69 (backgr. 56/825), \(p=1e^{-6} \) (validated -- see below).
- Total: 25/69 (backgr. 98/825), \(p=3e^{-8} \)
- Large scale modulators: ubiquitin conjugating enzyme, mRNA stability, DNA/chromatin modification, etc.
Example: TF co-factor modulator
Many correlated modulators

|expression| change in interactions

Over 70% cluster overlap
Reducibility: modulating pathways

CD22 → BCR

LYN → HCK → FYN → BTK → BLNK

AKT → GSK3

PKC → DAG → IP3 → Ca^{2+}

IKK → ERK → JNK → MAPK → NFAT

NFκB

MYC

predicted modulators
not in the candidate list
TF’s not predicted
Protein complex
Targets
Large hubs, local modulator (MI change, transistor)
Large hubs, local modulators

- Focus on important hubs (c-MYC)
- Pre-filter candidate modulators by dynamic range and other conditions.
- Find modulators whose expression inflicts significant conditional MI changes for an ARACNE target in at least one conditional topology
- No guarantee of irreducibility
- Validate in GO w.r.t. to transcription factors and kinases among modulators

\[
\Delta I(g_{TF}, g_t \mid g_m) =
= \left| I(g_{TF}, g_t \mid g_m^+) - I(g_{TF}, g_t \mid g_m^-) \right| > 0
\]
ARACNE helps
c-MYC modulators

- 1117 candidate modulators
- 100 (69) candidate modulators identified, modulating 205 interactions with 130 targets
- Modulators enriched in: kinases, acyltransferases, TFs (all at p<5%); correspond to known MYC modulation pathways.
- TFs: 15/69 (backgr. 56/825), p=1e-6; binding signature for co-TFs (E2F5, MEF2B) found.
- Modulators with largest number of effected targets are not-target-specific (proteolysis, upstream signaling components, receptor signaling molecules); overlap with global modulators.
- Modulators with small number of effected targets are mostly co-TFs, are interaction-specific; no overlap with global modulators.
- About one third of modulators are literature-validated.
- 4 out of 5 TF modulators with TRANSFAC signatures have binding sites in modulated targets promoter regions.
Currently

- Biochemical validation
- Search for irreducible modulators
- Dealing with small loops
Summary

- IT quantities good measures of dependency
- Defined irreducible interactions
- Proposed a set of simplifying assumptions and a corresponding algorithm for second order interactions
- Bootstrapped the algorithm to identify certain third order dependencies
- Validated algorithms in-silico
- Analyzed interaction network of c-MYC, validated in-vivo and through literature
Thanks

- Columbia: Andrea Califano (PI), Adam Margolin (ARACNE, MI estimation), Kai Wang (Modulators 1 and 2, MI estimation), Nila Banerjee (TF signature), Omar Antar (ARACNE on yeast), Riccardo Dalla-Favera (experimental PI), Katia Basso (in-vivo validation), Chris Wiggins (simulations), AMDeC (computer support)
- IBM: Gustavo Stolovitzky (simulations)
- Jerusalem: Naftali Tishby (framework)
- LANL: Michael Wall (RBC network)