Modeling genetic regulation at different levels: framework, algorithms, applications

Ilya Nemenman

(JCSB, Columbia \rightarrow CCS3/LANL \& SFI)

Thanks

- Columbia: Andrea Califano (PI), Adam Margolin (ARACNE, MI estimation), Kai Wang (Modulators 1 and 2, MI estimation), Nila Banerjee (TF signature), Omar Antar (ARACNE on yeast), Riccardo Dalla-Favera (experimental PI), Katia Basso (in-vivo validation), Chris Wiggins (simulations), AMDeC (computer support)
- IBM: Gustavo Stolovitzky (simulations)
- Jerusalem: Naftali Tishby (framework)
- LANL: Michael Wall (RBC network)

Reconstructing interaction models

Reconstruction algorithms: The curse of "percent correct"

Influenciomics (steady state)

Two separate influenciomics problems

- What is a (statistical, biological) interaction?
- What does an arrow mean?
- Higher order dependencies
- Realistic algorithms to uncover them
- Controlled approximations
- Biologically sound approximations
- Performance guarantees
- Complexity, Robustness, Data requirements...

Defining influence: Variances and Correlations

$\sigma^{2}(x)$
$\rho\left(x, x^{2}\right)=0$
normal
linear
$\rho(f(x), g(y)) \neq \rho(x, y)$ not invariant

One-to-one transformations of microarray expression data may destroy the ranking of the correlations. Even the sign of the correlations may change.

Entropy (unique measure of randomness, in bits)

$$
\begin{gathered}
S[X]=-\sum_{x=1}^{K} p_{x} \log p_{x}=-\left\langle\log p_{x}\right\rangle \\
0 \leq S[X] \leq \log K \quad \text { (number of "bins") } \\
N\left(x_{0}, \sigma^{2}\right) \Rightarrow S[X]=\frac{1}{2} \log \left(2 \pi e \sigma^{2}\right)
\end{gathered}
$$

Defining influence: Mutual Information

$$
\begin{aligned}
& I[X ; Y]=\left\langle\log \frac{p_{x y}}{p_{x} p_{y}}\right\rangle \\
&=S[X]+S[Y]-S[X, Y] \\
& 0 \leq I[X ; Y] \leq \min (S[X], S[Y]) \\
& N\left[\left(x_{0}, y_{0}\right), \Sigma\right] \Rightarrow I[X ; Y]=-\frac{1}{2} \log \left(1-\rho_{x y}^{2}\right)
\end{aligned}
$$

Why MI as influence measure?

- Captures all dependencies (zero iff joint probabilities factorize)
- Reparameterization invariant
- Unique metric-independent measure of "how related"

For 2 variables:
Influence ($/>0$) is interaction.

Kullback-Leibler divergence

$$
\begin{aligned}
& D_{K L}[P \| Q]=\sum_{x} p_{x} \log \frac{p_{x}}{q_{x}} \\
& 0 \leq D_{K L}
\end{aligned}
$$

How easy it is to mistake P for Q ?
(KS test, etc.)

MI as MaxEnt

Find least constrained (highest entropy, no interaction) approximation q to $p_{x y}$, s.t.

$$
\begin{gathered}
p_{x}=q_{x} \\
p_{y}=q_{y} \\
q_{x y}=\frac{1}{Z} \exp \left[-\varphi_{x}-\varphi_{y}\right]=p_{x} p_{y} \\
I[X ; Y]=D_{K L}[P \| Q]>0 \Longrightarrow \text { interaction }
\end{gathered}
$$

By analogy: Example of irreducibility

$$
P_{A B C}=\frac{P_{A B} P_{A C}}{P_{A}}=\frac{1}{Z} f_{A B} f_{B C}
$$

MaxEnt approximation without BC:

$$
Q_{A B C}=\frac{1}{Z} \exp \left(-\varphi_{A B}-\varphi_{A C}\right) \quad \Rightarrow \quad D_{K L}\left[P_{A B C} \| Q_{A B C}\right]=0
$$

For AB: $Q_{A B C}=\frac{1}{Z} \exp \left(-\varphi_{A C}-\varphi_{B C}\right) \quad D_{K L}\left[P_{A B C} \| Q_{A B C}\right]>0$

Higher order influences

$$
I_{X Y Z}=\left\langle\log \frac{p_{x y z}}{p_{x} p_{y} p_{z}}\right\rangle
$$

(Axiomatically) Amount of all influeneces (in bits) among variables.
But these are not irreducible.
(Nemenman and Tishby, in prep.)

Higher order irreducible dependencies

(Schneidman et al. 2003, Nemenman 2004)

MaxEnt approximations

MaxEnt approximations

$$
I_{356}^{\prime}=D_{K L}\left[Q^{\prime} \| Q\right]
$$

$I_{356}^{\prime}>0 \Rightarrow \quad$ Irreducible interaction present

MaxEnt factorization of PDFs

$$
\begin{aligned}
& P\left(x_{1}, \ldots x_{M}\right)= \\
& \quad=\exp \left[-\sum_{i} \varphi_{i}\left(x_{i}\right)-\sum_{i j} \varphi_{i j}\left(x_{i}, x_{j}\right)-\sum_{i j k} \varphi_{i j k}\left(x_{i}, x_{j}, x_{k}\right)-\cdots\right]
\end{aligned}
$$

- N-particle potentials
- Spin models -- inverse problem (for discrete variables)
- Random lattices
- Message passing
- Markov Networks

Two separate influenciomics problems

- What is an interaction?
- What does an arrow mean?
- Higher order dependencies
- Realistic algorithms to uncover them
- Controlled approximations (e.g., know the order)
- Biologically sound assumptions (new knowledge from their verification)
- Performance guarantees (focus on low false positives for irredicibility)
- Complexity, Robustness, Data requirements...

Interaction network

(Basso et al. 2005, Margolin et al. 2005)

Disregard high orders (undersampling)

Locally tree-like approximation

Locally tree-like approximation

Locally tree-like: signals decorrelate fast

ARACNE: remove the weakest link in every triplet

More care needed for loops of size 3

Techniques for MI estimation needed!

No false positives Where 2-way -- it's 2-way

Theorem 1. If MIs can be estimated with no errors, then ARACNE reconstructs the underlying interaction network exactly, provided this network is a tree and has only pairwise interactions.

Theorem 2. The Chow-Liu maximum mutual information tree is a subnetwork of the network reconstructed by ARACNE.

Theorem 3. Locally tree-like -- no false positives (no false negatives under stronger conditions).

Estimating l: stability of ranks

Also:

- NSB
- copula

Smoothing strength

Aside: Bethe approximation, Message passing (MP)

$$
P\left(\left\{x_{i}\right\}\right)=\frac{\prod P\left(x_{i}, x_{j}\right)}{\prod P\left(x_{i}\right)^{q-1}} \quad \text { Exact for trees }
$$

$$
P\left(x_{i}\right)=?
$$

MP (belief propagation, transf. matrix) works for trees and sometimes for loopy networks. But when exactly?

Conjecture

Locally tree like assumption is what makes MP work!

Biological soundness

- Higher order interactions project to lower orders
- Fast decorrelation: I(gene,gene)>> I(gene,second best)
- Small loops often transient

Why is IT not common in statistics?

Maximum likelihood estimation:

$$
\begin{aligned}
& \longmapsto p_{i}^{M L}=\frac{n_{i}}{N} \\
& \text { (} \mathrm{K} \text { - \# of bins) } \\
& S_{M L}=-\sum_{i} \frac{n_{i}}{N} \log \frac{n_{i}}{N} \\
& \left\langle S_{M L}\right\rangle \leq-\sum_{i} \frac{\left\langle n_{i}\right\rangle}{N} \log \frac{\left\langle n_{i}\right\rangle}{N}=S
\end{aligned}
$$

Why is IT not common in statistics?

$$
\left\langle S_{M L}\right\rangle \leq-\sum_{i} \frac{\left\langle n_{i}\right\rangle}{N} \log \frac{\left\langle n_{i}\right\rangle}{N}=S
$$

$$
\left(\text { variance) }{ }^{1 / 2} \propto \frac{1}{\sqrt{N}}\right.
$$

Fluctuations underestimate entropies and overestimate mutual informations.
(Need smoothing.)

Correct smoothing possible

$S \leq \log N$

(often not enough)

Incorrect smoothing = over- or underestimation.
Developed for problems ranging from mathematical finance to computational biology.

For estimation of entropy at $K / N \leq 1$ see:
Grassberger 1989, 2003, Antos and Kontoyiannins 2002, Wyner and
Foster 2003, Batu et al. 2002, Paninski 2003, Panzeri and Treves
1996, Strong et al. 1998

What if $S>\log N$?

But there is hope (Ma, 1981):
For uniform K-bin distribution the first coincidence occurs for

$$
\begin{array}{ll}
N_{c} & \sqrt{K}=\sqrt{2^{s}} \\
S & 2 \log N_{c}
\end{array} \quad \text { Time of first coincidence }
$$

Can make estimates for square-root-fewer samples! Can this be extended to nonuniform cases?

- Assumptions needed (won't work always)
- Estimate entropies without estimating distributions.

What is unknown?

Binomial distribution:

$$
\begin{aligned}
& S=-p \log p- \\
& \quad(1-p) \log (1-p)
\end{aligned}
$$

What is unknown?

 $\frac{0_{0}^{2}}{0^{2}}$ daiases the estimation.

One possible uniformization strategy for S (NSB)

- Posterior variance scales as $1 / \sqrt{N}$
- Little bias, except in some known cases.
- Counts coincidences and works in Ma regime (if works).
- Is guaranteed correct for large N.
- Allows infinite \# of bins.

Synthetic networks

$$
\frac{d x_{i}}{d t}=a_{i} \prod_{j} \frac{I_{0, j}^{v_{j}}}{I_{j}^{v_{j}}+I_{0, j}^{v_{j}}} \prod_{j}\left(1+\frac{A_{0, j}^{v_{j}}}{A_{j}^{v_{j}}+A_{0, j}^{v_{j}}}\right)-b_{i} x_{i}
$$

Synthetic networks benchmarks ($N=1000$)

Graceful decay for smaller N Half of all loops kept.

Complete B-cell network (400 arrays)

~129000 interactions

c-MYC subnetwork

Also validated in...

- Other hubs
- Various yeast data sets
- RBC metabolic network (synthetic)

3rd order interactions (modulated, conditional)

Nontranscriptional modulators from expression data!

Numerical case study: Non-transcriptional modulation

Conditional on coTF

Conditional on Kinase

Large hubs, global (discrete) modulators

Large hubs, global (discrete) modulators

- Focus on important hubs (c-MYC)

- Pre-filter candidate modulators by dynamic range and other conditions.
- Find modulators whose expression inflicts significant changes on topology of the ARACNE hubs' interactions
- No guarantee of irreducibility
- Validate in GO w.r.t. to transcription factors and kinases among modulators

$$
\left|N^{+}-N^{-}\right|>0
$$

c-MYC modulators

- 1117 candidate modulators (825 with known molecular function in GO)
- 82 (69) candidate modulators identified
- Kinases: 10/69 (backgr. 42/825), p=1e-3
- TFs: 15/69 (backgr. 56/825), p=1e-6 (validated -- see below).
- Total: 25/69 (backgr. 98/825), p=3e-8
- Large scale modulators: ubiquitin conjugating enzyme, mRNA stability, DNA/chromatin modification, etc.

Example:
 TF co-factor modulator

Many correlated modulators

Over 70\% cluster overlap

Reducibility: modulating pathways

predicted modulators
not in the candidate list
\square TF's not predicted
O Protein complex
Targets

Large hubs, local modulator (MI change, transistor)

Large hubs, local modulators

- Focus on important hubs (c-MYC)

- Pre-filter candidate modulators by dynamic range and other conditions.
- Find modulators whose expression inflicts significant conditional MI changes for an ARACNE target in at least one conditional topology
- No guarantee of irreducibility
- Validate in GO w.r.t. to transcription factors and kinases among modulators

$$
\begin{aligned}
& \Delta I\left(g_{T F}, g_{t} \mid g_{m}\right)= \\
& \quad=\left|I\left(g_{T F}, g_{t} \mid g_{m}^{+}\right)-I\left(g_{T F}, g_{t} \mid g_{m}^{-}\right)\right|>0
\end{aligned}
$$

ARACNE helps

c-MYC modulators

- 1117 candidate modulators
- 100 (69) candidate modulators identified, modulating 205 interactions with 130 targets
- Modulators enriched in: kinases, acyltransferases, TFs (all at p<5\%); correspond to known MYC modulation pathways.
- TFs: 15/69 (backgr. 56/825), p=1e-6; binding signature for co-TFs (E2F5, MEF2B) found.
- Modulators with largest number of effected targets are not-targetspecific (proteolisis, upstream signaling components, receptor signaling molecules); overlap with global modulators.
- Modulators with small number of effected targets are mostly co-TFs, are interaction-specific; no overlap with global modulators.
- About one third of modulators are literature-validated.
- 4 out of 5 TF modulators with TRANSFAC signatures have binding sites in modulated targets promoter regions.

Currently

- Biochemical validation
- Search for irreducible modulators
- Dealing with small loops

Summary

- IT quantities good measures of dependency
- Defined irreducible interactions
- Proposed a set of simplifying assumptions and a corresponding algorithm for second order interactions
- Bootstrapped the algorithm to identify certain third order dependencies
- Validated algorithms in-silico
- Analyzed interaction network of c-MYC, validated invivo and through literature

Thanks

- Columbia: Andrea Califano (PI), Adam Margolin (ARACNE, MI estimation), Kai Wang (Modulators 1 and 2, MI estimation), Nila Banerjee (TF signature), Omar Antar (ARACNE on yeast), Riccardo Dalla-Favera (experimental PI), Katia Basso (in-vivo validation), Chris Wiggins (simulations), AMDeC (computer support)
- IBM: Gustavo Stolovitzky (simulations)
- Jerusalem: Naftali Tishby (framework)
- LANL: Michael Wall (RBC network)

