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What to expect

• A few dozen really exciting talks.  

• Each one sounds more important, more interesting than the 
previous one. 

• Each one seems like this is the problem you absolutely 
must switch to and work on. 

• So: are they worth switching?
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Paraphrasing Hamming…

1. What are the most important problems in your field? 
– (let’s write them on the blackboard) 

2. What are the problems that you are working on? 
– (let’s write them on the blackboard) 

3. Why are the answers to (1) and (2) different?
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We all want to do something great

• But you cannot do something great when you are working 
to answer a so-so problem. 
– You won’t find gold if you are digging in a place where there isn’t one. 

• So where do great problems come from?
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A word of caution

• Never take seriously any advice that anyone gives you, 
including this one. 

• So this whole talk is just an opinion of one man, and 
probably won’t apply to you. But I wish someone discussed  
some of this with me when I was a student. 

• And maybe one should do simply what s/he finds exciting: 
because how else can you do something for 30+ years and 
still not get bored? 
– But this is also an advice.
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How to maximize chances  
of finding gold in science?

• Science is collective. There are few “lone wolves”. The needle 
is moved no by “I” but by “all of us”. 
– 90% (or 99%) of science is stamp collecting, and it’s OK.  
– You wont find gold if you disregard what the others are doing. 
– Reality check: Gold is not common. You likely won’t be the one finding it 

even if you are doing all the right things. 

• But it’s important to be idiosyncratic. 
– You won’t be the one finding gold if you are digging where everyone else 

is digging. 
– You won’t find gold if you are not the first, and you try to do better what 

others have already done. 

• Dreaming, and dreaming big. 
– “When I examined myself and my methods of thought, I came to the 

conclusion that the gift of fantasy has meant more to me than my talent 
for absorbing positive knowledge.” (A. Einstein)
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How to maximize chances  
of finding gold in science?

• Science is not math. It’s experimental. It studies the world as it is, 
but not the world as it could have been. 
– “If simple perfect laws uniquely rule the universe, should not pure thought be 

capable of uncovering this perfect set of laws without having to lean on the 
crutches of tenuously assembled observations? True, the laws to be 
discovered may be perfect, but the human brain is not. Left on it’s own, it’s 
prone to stray, as many past examples sadly prove. In fact, we have missed 
few chances to err until new data freshly gleaned from nature set us right for 
the next steps. Thus pillars rather than crutches are the observations on 
which we base our theories…” (K. Schwarzchild) 

– Never solve an approximate problem exactly. 

• “Science is only worthy of the name to the extent that 
mathematics finds a place in it” (I. Kant) 
– Is the “effectiveness of mathematics in natural sciences” so “unreasonable”? 
– Probably not, since the only things we know how to compare are numbers.
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So where could gold be?
• Kuhnian revolution: 

– Normal science — development by accumulation, or returning to Rutherford and 
his stamp collection. 

– Episodic revolutions, anomalies — isn’t this where the gold is? 

• Weisskopf, extensive vs. intensive research: 
– Extensive: goes for explanation of phenomena in terms of known fundamental 

laws. 
– Intensive: goes for fundamental laws. Presumably, this is where revolutions are. 

• Modern biology is ridiculously extensive, connecting everything on 
organismal and even ecological scales back to molecules. 

– No place for intensive research — there cannot be new fundamental laws away 
from elementary particles and cosmology. 

– No place for Kuhnian revolution. 
– No place for fantasy and big dreams. 

• Modern biology is extensive to the extent that it is becoming not a 
Western science anymore.
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What do I mean by this?

• Western tradition: 
– There are laws (of nature, of god, whatever). A rock is a rock 

everywhere. It falls the same in Pisa and in Atlanta. 
– There’re causes and there are effects. 
– There is “useless information” (Oscar Wilde). 
– But this belief requires closing one’s eyes to minor discrepancies 

– Two balls dropped from the Leaning Tower didn’t land at the same time. 
– “If we had the STM in the 1920s, there wouldn’t be the Debye theory of solids.” 

(H. Levine) 

• Non-western tradition, e.g., buddhism 
– Pratityasamutpada: dependent origination: “Pratitya samutpada is sometimes 

called the teaching of cause and effect, but that can be misleading, because we 
usually think of cause and effect as separate entities, with cause always 
preceding effect, and one cause leading to one effect. According to the teaching 
of Interdependent Co-Arising, cause and effect co-arise (samutpada) and 
everything is a result of multiple causes and conditions... “ — Thich Nhat Hanh
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The end of Western science: 
The -omics revolution in biology

• Breaking life into ever more accurate 
“fundamental” parts lists 
– Sequences: genomics, metagenomincs, 

epigenomics,… 
– Activities: gene expression, metabolic profiling, 

phosphoproteomics, electrophysiology … 
– From zoology to zoology of molecules. 

• Putting it all back into a network of 
interactions 
– Metabolic, transcriptional, protein signaling, 

neural, ecological… 
– Which things go together? 
– Number of possible interactions is 

astronomically large. 
– Towards zoology of circuits/networks. Califano et al., Nat Gen 2005;  

BMC Bioinf 2006
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Is this program feasible?
• To predict dynamics, we will need to measure details of many 

interactions with excruciating details. 
• The number of interaction details is combinatorially large! 

• Where do we stop? Chemical kinetics? MD simulations? QFT?…  
• Can we do better if we only need the macroscopic dynamics, but 

not the microscopic accuracy per se?

354 species / 3680 reactions 
(2954 for trimers) 

Goldstein, Hlavacek,  
Faeder, et al., 2000-2009
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Of exactitude in science
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...In that Empire, the craft of  Cartography attained such Perfection that 
the Map of  a Single province covered the space of  an entire City, and the 
Map of  the Empire itself  an entire Province. In the course of  Time, these 
Extensive maps were found somehow wanting, and so the College of  
Cartographers evolved a Map of  the Empire that was of  the same Scale as 
the Empire and that coincided with it point for point. Less attentive to the 
Study of  Cartography, succeeding Generations came to judge a map of  
such Magnitude cumbersome, and, not without Irreverence, they 
abandoned it to the Rigours of  sun and Rain. In the western Deserts, 
tattered Fragments of  the Map are still to be found, Sheltering an 
occasional Beast or beggar; in the whole Nation, no other relic is left of  the 
Discipline of  Geography.  

From Travels of  Praiseworthy Men (1658) by J. A. Suarez Miranda (a fictional reference).  
 By Jorge Luis Borges and Adolfo Bioy Casares.  

English translation quoted from J. L. Borges, A Universal History of  Infamy,  
Penguin Books, London, 1975.
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At a recent meeting...
• Many have expressed an opinion that: “The final theory of 

biological systems will be a large multiscale computational model. 
We need more and more experimental data to specify details of 
these models.” 
 
 

• There’s something wrong with this statement. 
– The “final” theory? 
– Do we need the theory of  

“everything” in any biological  
(or physical) system? 

• The best material model of a cat is  
another, or preferably the same, cat.  
(Philosophy of Science, Wiener and Rosenblueth, 1945)
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Physics analogy

• What is the final, complete theory of the chair you are sitting in? 
– How does it fall from the second floor? 
– How does the cloth seat age and tear? 
– How much weight would the chair hold before it breaks? 
– How does it conduct electricity? 
– How much food can I cook when I burn it? 
– … 

• There’s no such thing as “the full theory of the chair”.  
– We build models tailored to answer specific questions.  
– The complete theory that answers every question would need to 

include quarks, superstrings… 

• Models must loose details. Otherwise, just use the same 
cat…
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Where would new laws come from?
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• More is different! (PW Anderson) 
– The law of large numbers produces universalities if the right questions are asked 

(e.g., about large-scale quantities). 

• Intensive science is in putting things together, not just breaking apart. 
– Coarse-graining: Each modeling level needs its own effective degrees of freedom. 
– “Don’t model bulldozers with quarks.” (Goldenfeld and Kadanoff, 1999) 

• This is already common in your every-day life, not just physics 
– Which level of description is better for driving to a local school?
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So where is gold in systems biology? 
(according to IN)

• It’s in the more, but only if one tries to make it different, to 
compress it 
– Rissanen (paraphrasing): good theories compress data. 
– Good theories (unlike even a good model) compress representation of 

multiple systems at the same time. 
– The information bottleneck/rate distortion curve (sketch on the board). 

• Are there examples of this approach in well-established 
biology?
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Has theory been useful in biology? 
A poll:

• What are the most important biology (or rather physiology/
medicine) Nobel prizes?  
– One per branch of biology (Mol/cell, Neuro, Evo) 

• My prediction is that most of you answered 
– Watson and Crick 
– Luria and Delbruck 
– Hodgkin and Huxley
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Hodgkin-Huxley

• A good theory! (and only roughly correct)
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Luria and Delbruck

• And this theory throws a lot of details out - e.g., it uses 
discrete generations.

19

P. Nelson, 2014

20 1 3 4 5 6+11+21+ 100+
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Watson and Crick

20

Watson and Crick, 1953

Crick, 1958
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Theory in biology

• “He who loves practice without theory is like the sailor who 
boards ship without a rudder and compass and never 
knows where he may cast.” 

• And it’s been like this since Leonardo, in physics and in 
biology.
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Can we do more?

• Are there other examples of where functionally accurate 
representations of biological processes emerge in a large N 
limit, or are we forever doomed to every detail mattering? 
– Can you give me some examples? 
– Can we derive theories top down rather than bottom up? (Refine rather 

than coarse-grain) 
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Let’s look at dynamics in systems biology

• Macroscopic dynamics are often simpler than the network 
structure! 

• Relation of phenomenological to mechanistic parameters often unclear.

23

Cheong et al., Science, 2011 
NF-kB dynamics

Golstein et al.,  
Nat Rev Immun, 2004 

TCR dynamics
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First steps…

• Can we automatically fit these functions fi  from data? 
– How do we enumerate the set of all possible multivariate functions? 
– How do we search through this list? 
– How do we not overfit?

24

8
<

:

dx1
dt

= f1(x1, x2, . . . , xn

)
· · ·
dxn
dt

= f

n

(x1, x2, . . . , xn

)

• We will assume that dynamics of cellular networks is given 
by local ordinary differential equations. 
• Do not fit curves; fit dynamics. 

• We will neglect stochasticity, and spatial structure for now
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Prior art

25

• The full search approach for an exact model 
• Small systems dynamics — search for all possible models using S-systems 

formalism (Voit et al, Theor Biol Med Model 2006). 
• Searching for a control model from a (small) set of a priori allowed models 

(Lillacci and Khammash, PLoS CB 2010). 
• Searching for a stochastic model from a (small) set of a priori allowed models 

(Munsky, et al., MSB 2009, Science 2013). 
• Eureqa: exhaustive genetic algorithm search through all possible elementary 

function combinations, with selection of new experiments to optimize 
discriminability among models (Lipson et al., Science 2009, Phys Biol 2011). 

• Phenomenological search (Crutchfield and McNamara, Compl Syst 1987). 
• Problems (limiting the analysis to only a few variables) 

• data/computing demands explode with the number of variables; 
• cannot handle unobserved variables. 
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Testing Model:  
Yeast Glycolytic Oscillator

26

Ruoff et al., 2003

• 7 species, 28 parameters 

• Complex rational dynamical 
laws
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Testing Model:  
Yeast Glycolytic Oscillator
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Schmidt et al., Phys Biol 2011

Amazing accuracy!
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But at the same time…

28

• Astronomical computation times -- exhaustive search. 
– Overfitting -- need astronomical sample sizes. 

• Two exponential costs: selecting the best model family, fitting the best 
family with the model. Schmidt et al., Phys Biol 2011
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Can we avoid the exhaustive search?
• We don’t need to do an exhaustive search when fitting 1-

dimensional curves  

– Use nested, complete model families, e.g., Taylor series. 
– Use Bayesian model selection to limit the complexity of the search 

space (the value of maximum K). 
– Consistency guaranteed iff nested!

29

yK(x) =

KX

k=1

Akx
k
+ noise

Schwartz, Ann Stat 1978; MacKay, Neural Comp, 1992 
 Balasubramanian, Neural Comp1996; Nemenman, Neural Comp, 2005
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Why is fitting dynamics so hard?

• Hidden degrees of freedom and nonlinearities breaks nestedness -- no 
consistency. 

• Choose any (reasonable) complete path through the model space 
– Good choice — good fits with few data; Bad choice — not worse than exhaustive search.
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Two types of model families
• Both nested and complete. 

• Account for nonlinearities and hidden variables. 

• Biochemically reasonable.
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FIG. 2:

One natural choice is the s-system power-law formalism. [? ] The general form of the s-system representation
consists of J dynamical variables and K inputs, with each dynamical variable governed by an ordinary di↵erential
equation of the form [? ]
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gij
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hij
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In a process called “recasting,” any set of di↵erential equations written in terms of elementary functions can be
rewritten in the power-law form by defining new dynamical variables in the correct way [? ]. Thus a power-law
network of su�cient size can describe any such deterministic dynamical system to arbitrary accuracy (XXX caveats?).

An advantage of the s-system representation is the existence of a natural scheme for creating a one-dimensional
hierarchy: simply adding dynamical variables xi. The most general power-law network is fully connected, such that
every “node” xi can a↵ect every other xj through gij and hij . A simple hierarchy would start with a fully-connected
network consisting of the necessary number of input and output nodes, and simply add fully-connected “hidden”
nodes [extra xi in Eq. (??)] to add complexity. Since this adds many [1 + 2(J + K + 1)] parameters at every step
(perhaps unnecessarily), we prefer to take a more fine-grained approach, adding parameters as slowly as possible (see
FIG. ?? and Methods). (XXX We expect the specific form of this hierarchy to be not all that important...)

Finally, we may use the fact that the interactions among biological components often takes the form of a sigmoidal
function to create another similar model class, defined as

dxi

dt
= �xi/⌧i +

JX

j=1

Wij ⇠(xj + ✓j) +
KX

k=1

VikIk, (5)

where the sigmoidal function ⇠(y) = 1/(1 + e�y). This class of models has also been shown to approximate any
smooth dynamics arbitrarily well with a su�cient number of dynamical variables [? ]. We use the same method as
the s-system models to create a one-dimensional nested hierarchy.
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Finding laws that we already know: 
An automated Sir Isaac (SirIsaac on GitHub)  

• Finds the hidden variable needed to account for the Newton’s laws. 

• Accounts for different classes of trajectories.
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The yeast glycolytic oscillations: 
Complex dynamics needing complex structure

• Observe only 3/7 of variables; add 
10% noise. 

• Data: N samples of structure 
– Initial condition of the 3 species; 
– Some random time later; 
– The value of these 3 species at that 

time.
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Results

34

Daniels and Nemenman, arXiv and in review, 2014; PLoS ONE 2015

• ~100x fewer evaluations 
for the same accuracy 
compared to full search. 

• ~1000x fewer data 
points than full search.  

• Better accuracy than 
curve fitting. 

• Linear scaling with the 
amount of data and with 
the number of variables.



Ilya Nemenman, q-bio School 07/2016 

Calcium-PKA oscillatory dynamics in beta cells

35

Experiment
Mechanistic model: 

11 ODEs, 78+ parameters, 
fits all cells with parameter adjustments

Ni et al, NCB, 2010
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Calcium-PKA oscillatory dynamics in beta cells: 
automatic inference

36

6 ODEs 
<40 parameters Daniels, IN, Levchenko, in prep.
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Modeling C. elegans escape response

37

http://www.physics.utoronto.ca/~wryu/ryulab/movies/
BJ02_044_run2_LS_NS_v1.mpg
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Data and fits

38
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And the same model also explains treads worms

39
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We are not alone

• Sparse regression for automated model inference (Brunton 
et al., PNAS 2016)

40
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We are not alone

• Sparse regression for automated model inference (Brunton 
et al., PNAS 2016) 

• Evolutionary search for network models (Francois et al., 
PNAS 2014) 

• Dynamical systems approaches for characterization of 
attractors (Sugihara et al., Science 2012) 

• Come to APS in New Orleans for more of this.
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Conclusions
• Maybe gold in biology is in theories? 

– coarse-grain, refine — but loose details! Don’t model a cat by a cat. 

• Search for phenomenological dynamics instead of exact. 

• Why do this? 
– Find new phenomenological laws of nature  

– Repeat Hookean approach in biology: build effective models of similar systems 
and look for patterns (e.g., chemotaxis in C. elegans and E. coli).

42


