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Advances in statistical learning theory leave us with many
possible designs of learning machines. But which of
them are implemented by brains, metabolic and genetic
networks, and other biological information processors?
We analyze how abstract Bayesian learners would per-
form on different data and discuss possible experiments
that can determine which learning–theoretic computa-
tion is performed by a particular organism.
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Determining a model. . .

. . . used by an animal to represent the world may, in prin-
ciple, be done by measuring the speed of approach of
some behavioral property to its asymptotic value. But. . .

(Gallistel et al., 2001)

A rat learns the distribution of
rewards at two different tar-
gets and adjusts its visita-
tion rates as the reward rates
change. The reward rates
and the ratio of the cumulative
visit durations is shown for a
specific subject as a function
of time. Note the speed with
which the animal responds,
and also note the fluctuations.

• learning is often too fast to observe transients

• learning is often too noisy to estimate asymptotic
values [such noise may manifest the stochastic na-
ture of learning in animals (Seung, 2003)]

So what can we do? Remember the Fluctuation–Dissi-
pation theorem: transient response (dissipation) is re-
lated to steady state properties (r.m.s. fluctuations).

To derive similar relations, we first need to understand. . .
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Part 1. . . . Different learning scenarios

Bayesian learning

(MacKay, 1992; Balasubramanian, 1997; Bialek, IN, & Tishby, 2001)

P (x)
i.i.d.−→ {xi}Ni=1

???−→ Q(x|α̂)|α∈A,P(α)

α̂ = arg min
α∈A,P(α)

DKL[P ||Q(x|α)]

= arg min
α∈A,P(α)

DKL(ᾱ||α̂)

Properties of learning of α̂ depend on model density

ρ(ε; ᾱ) =
∫

dαP(α) δ [DKL(ᾱ||α)− ε]

D (   ) α

Ar

α r α

ε

r

• large ρ(ε → 0) =⇒
higher probability to
be correct

• consistency? ⇐⇒
ρ(ε → 0) 6= 0

• does the learning
speed depend on ρ?
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Characterizing learning performance

(Bialek, IN, & Tishby, 2001)
Generalization error, fluctuation determinant:

D(ᾱ;N) = − log
∫

dε ρ(ε; ᾱ)e−Nε

Universal learning curve:

Λ(ᾱ;N) = 〈DKL(ᾱ||α̂)〉N =
dD(ᾱ;N)

dN

Λ(N) =
∫

dᾱP(ᾱ)Λ(ᾱ;N)

Remember for panel (6):

lim
α̂→ᾱ

DKL(ᾱ||α̂) =
1

2
(ᾱ− α̂)TF(ᾱ− α̂)

(F — Fisher information matrix)

Learning a model P(α) with wrong (atypical) assump-
tions R(α):

Λ(N ;P,R) =
∫

dᾱP(ᾱ)ΛR(ᾱ;N)
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Examples

Finite states, P =
∑M

i=1Pi δ(ai), Q(x|ai)

Λ(ai;N) ≈ ci exp[−Ndi]

K < ∞ continuous parameters, P(α), Q(x|α)

Λ(ᾱ;N) ≈
K

2N

Complete models, able to represent and learn any prob-
ability distribution:

Nested (n) QFT (q)
Λ(q,n) ∝(
logN
N`

)1−1/2η
target typical in
PQFT

Λ(q,q) ∝(
1

N`

)1−1/2η

Λ(n,n) ∝ K∗
N target typical in

Pnest

Λ(n,q) ∝(
1

N`

)1−1/2η

Remark: nested model is never much worse than the
QFT one, and sometimes it is much better if the environ-
ment has well defined “important” directions, to which
the animal is tuned, not necessarily precisely (this is char-

acteristic of natural signals; e.g., the most important parameter in

statistics of visual scenes is the light intensity).
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Part 2. Determining the model

For a fixed target asymptotically: ∂Λ
∂N = −ζNΛν

ν model
1 finite states
2 finite parameter or nested

> 2 QFT

If target changes and

• the animal is fast in noticing the change (Fairhall et
al., 2001; Gallistel et al., 2001), and changes are
small then the equation still holds.

• changes happen mostly along direction α1 (e.g., only

reward rates change, but not the functional forms of distribu-

tions), then Λ ∝ (α̂1 − ᾱ1)
2 ≡ ∆2 (easy to gener-

alize for more directions).

• animal does fixed number of observations per unit
time, then dN ∝ dt.

Then for dᾱ1/dt ≡ vᾱ,

d∆

dt
= −ζ sign(∆) |∆|2ν−1 − vᾱ
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Examples. . .

. . . of various slow changes of one parameter for small
Λ. If animal does not extrapolate:

vᾱ = A = const:

lim
t→∞

∆(t) ≡→ ∆∞ = −
(
A
ζ

)1/(2ν−1)

vᾱ = Aω cosωt:

lim
t→∞

〈|∆|4ν−2〉 =
(Aω)2

2ζ2

Animal may anticipate changes in ᾱ1. To remove this
possibility, take 〈vᾱ(t)vᾱ(t′)〉 = Ω δ(t− t′):

lim
t→∞

∆rms =

ν1/ν
Γ
(

3
2ν

)
Γ
(

1
2ν

)


1/2(
Ω

ζ

)1/(2ν)

.

Remark: This is an analog of FDT.
Remark: If learning in animals is intrinsically stochas-
tic, similar fluctuations will be present even for stationary
targets. However, since the distribution of intrinsic fluc-
tuations is unknown, they cannot be used to distinguish
learning models.
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To distinguish the model

1. Select a class of targets learnable by the animal and
a response that signifies the animal’s current guess.

(Fairhall et al., 2001)

A fly is subjected to the
angular velocity signal
with a variable standard
deviation. Instantaneous
firing rate is a good
measure of the instan-
taneous standard devia-
tion.

2. Estimate intrinsic fluctuations and change the target
within the class (deterministically and/or stochasti-
cally) so that ∆ � ∆intrinsic.

3. Vary change parameters and estimate ν from the
relation between them and statistics of ∆.

4. If ν > 2, animal uses QFT-type models.

5. If ν = 2, add “dimensions” to the target class. If at
some point the animal fails to learn — animal uses
finite parameter models; otherwise nested models.

6. If ν = 1, finite state model is used.

7. Exotic, in-between, values of ν are also possible.
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Part 3. Appendix

Finite parameter models

ρ(ε; ᾱ) ≈ P(ᾱ|r)
2πK/2

Γ(K/2)

ε(K−2)/2
√

detFK

Nested models

{Ar}Rr=1, Pnest(r), K(r), P(α|r), Q(x|α):

Pnest(r) ∝ r−γ , γ > 1, R →∞

P(α|r) =
R∏

µ=1

P(αµ|r)

P(αµ|r) =

{
p(αµ) , µ ≤ K(r)
δ(αµ) , µ > K(r)

p(αµ) = N (0, σ2
µ)

σµ = cr−β
µ , β ≥ 0

〈δα2
µ〉 = σ2

µ

∑
r≥rµ

P(r) ∼ µ−β
∞∑

r=µ
r−γ ∼ µ−β−γ+1
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ρ(ε; ᾱ) =
∑

r:Dr(ᾱ)≤ε

P(r)P(α̂r|r)
2πK(r)/2

Γ[K(r)/2]

[ε2 −D2
r (ᾱ)][K(r)−2]/4√
detFK(r)

Bayesian model selection finds a posteriori dominant r∗,
models with r > r∗ exponentially inhibited.

Example: x ∈ [0,1). Ar ∪ φ(x|α) ≡ − logQ(x|α)

φ = α0 +
r∑

µ=1

(
α+

µ cos 2πµx + α−µ sin 2πµx
)

α0 = log
∫

dx e
−
∑r

µ=1

(
α+

µ cos 2πµx+α−µ sin 2πµx
)

Always consistent for β ≥ 0, γ > 1; r∗ . N/ logN , and
Fourier[Q∗r] ≈ Fourier[ 1

N

∑
δ(x− xi)].
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QFT models

(Bialek et al, 1996; Nemenman and Bialek, 2002)

PQFT[φ(x)] =
1

Z
exp

−`2η−1

2

∫
dx

(
∂ηφ

∂xη

)2


δ

[
1

l0

∫
dx e−φ(x) − 1

]

ρ(ε; φ̄) ≈ A[φ̄] εξ exp

[
−

B[φ̄]

`ε1/(2η−1)

]

〈(δα±µ )2〉 =
2

`2η−1

1

(2πµ)2η
, µ > 0

η → 1/2 – the most complex learning problem.

Bayesian model selection: “nesting” of QFT models, in-
tegrate over `. Produces correct dominant ` even for
some incorrect η.

Focus on correct η, `.
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