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Abstract We consider a fixed size population that undergoes an evolutionary adaptation in
the weak mutation rate limit, which we model as a biased Langevin process in the genotype
space. We show analytically and numerically that, if the fitness landscape has a small highly
epistatic (rough) and time-varying component, then the population genotype exhibits a high
effective diffusion in the genotype space and is able to escape local fitness minima with a
large probability. We argue that our principal finding that even very small time-dependent
fluctuations of fitness can substantially speed up evolution is valid for a wide class of models.

Keywords Stochastic process · Nonequilibrium · Barrier crossing · Fixation

1 Introduction

Organisms adapt to their environment by sequential fixation of beneficial mutations. This
process is often visualized as motion of a population, specified by multi-dimensional ge-
nomic variables corresponding to the dominant genotype in the population, in the fitness
landscape, where the height of the landscape corresponds to the reproductive fitness of an
average individual in the population [1]. Fitness landscapes are believed to be rough with
many local maxima, and a population may get stuck in one, so that every plausible mutation
is deleterious [2–5]. In such cases adaptation to a global fitness maximum requires the rare
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fixation of deleterious mutations. Even when there is a path of only neutral or weakly selec-
tive mutations to the global optimum, it may be difficult to find it, and navigating such paths
can be slow due to the low fixation probability (≈ 1/N for a neutral mutation in a population
of N individuals [6]). In view of this, one of the central questions of evolutionary biology
is how the current diversity of the living world has emerged in a short few billion years
since the life on Earth has started, especially since thousands of generations of laboratory
evolutionary experiments lead to only a few dozen fixated mutations [7].

It has been recognized that temporal fluctuations in the fitness landscape can drive the
population out of a local fitness maximum, thereby accelerating evolutionary processes. For
example, the maximum of fitness at one time may be on a fitness slope at another time, allow-
ing the population to leave the area. The effects of fluctuating selective pressure on mutation
accumulation dynamics have been studied extensively [8, 9], starting with the introduction
of the concept of adaptive topography by Wright [1]. More recently the evolutionary dy-
namics of density regulated populations in fluctuating environments have been elucidated in
more ecologically realistic models [10–12], bridging the gap between the classical popula-
tion dynamics [13, 14] and population genetics models.

In a recent pioneering numerical evolution experiment [15], these ideas were further
developed to show that certain types of fluctuating environmental pressures may speed up
evolution many times. However, it remains unknown to what extent these results generalize.
Is the speedup a general property? How does it depend on the spatiotemporal structure of
the fluctuating environment? Can a population escape any local maximum? How does the
motion in the genotype space depend on time? Do fitness fluctuations have to be dramatic,
as in Ref. [15], or can small fluctuations still speed the evolution up?

In this article, we answer some of these questions in the context of a model of evolution-
ary dynamics that is simple enough to allow a thorough analytical and numerical treatment,
but is at the same time general enough so that at least some of our predictions hold for a
wide class of evolutionary models. We consider the limit of a weak mutation rate, when
the time scales are well separated. The time between successive mutations is longer that
the typical fixation time, and the characteristic time scale of the fitness landscape changes
is the longest. Such a situation is relevant for microbial populations under seasonal envi-
ronmental changes, or for host-pathogen interactions, where environmental changes may
correspond to phases of transmission, unhindered growth in a new host, and activation of
the host immune response. Further, we assume that the total population size is independent
of the genotype (though not necessarily fixed), so that the evolutionary dynamics depends
only on the relative fitness differences between the genotypes. We consider adaptation in a
highly epistatic genotypic space, such that the evolution takes place on a one-dimensional
pathway with large, local fitness differences. Under these assumptions, we show that the
evolutionary search can be sped up substantially when only a small component of the fitness
landscape undergoes temporal variations.

2 The Model

Our model of a fluctuating environment is based on an overdamped particle in a potential.
The position x is some generalized coordinate that describes the dominant genotype in the
population, and hence a change in x is a fixation event. This genotype changes according to
an equivalent Langevin dynamics given by

dx

dt
= − 1

γ

∂U(x, t)

∂x
+ η, (1)
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where U is the potential, γ is the “friction”-like scale factor, η is a white Gaussian noise
with variance 2D, where D is the intrinsic diffusivity, presumably related in the population
biology context to the population size [8]. Notice that in the usual physics language, the
process will minimize the potential so that U is the negative fitness. Motion to minimize
U represents fixation of beneficial mutations, while Langevin noise allows low probability
fixation of neutral and deleterious mutations. The first phenomenon is called natural selec-
tion/drift in evolutionary/physics languages, and the second is unfortunately referred to as
drift/diffusion, respectively. To avoid confusion, in the remainder of the article we use the
physics terminology.

We write the potential as

U(x, t) = U0(x) + �(x)S(t), (2)

and we focus on the following range of parameters:

varS(t) ∼ 1, (3)

max[�(x)] − min[�(x)] � max[U0(x)] − min[U0(x)]. (4)

This models the emergence of novel functions in a population. Namely, the fitness is largely
independent of time, as described by U0. However, small temporal changes in fitness are
allowed. For example, acquiring a new enzyme is generically advantageous if its substrate
is present, but deleterious if it is absent due to generic costs associated with protein overpro-
duction [16, 17]. We model this by adding a small fitness component �(x) that fluctuates as
S(t), representing, for example, changes in the availability of the metabolite due to seasonal
or geological variations. Finally, we choose to separate the global, almost non-epistatic, fit-
ness from the local, possibly highly-epistatic (but small) effects by making the gradient of
U0 smaller than that of �, even though the scale of � itself is smaller than that of U0. For
example, this agrees with the observation that the ability of proteins to bind to DNA or to
metabolic substrates is highly sensitive to the details of the protein sequence [2–5].

With the conditions above, we can redefine U0, �, and S without much loss of gener-
ality, so that 〈S〉t = 0. We then consider the simplest form of �(x) and S(t) that satisfies
these conditions, and we will discuss how our results generalize to some other forms of the
functions in Sect. 5. Namely, we choose � to be a zero-mean periodic saw-tooth potential,
and S to be a zero-mean periodic telegraph signal. These considerations allow us to write
near a particular point x in the genotype space

1

γ

∂U

∂x
= −v + φ(x)s(t), (5)

φ(x) ≡ h

L
sign

[
sin

πx

L

]
, (6)

s(t) ≡ sign

[
sin

πt

T

]
, (7)

where v is the intrinsic drift (in physics terms) or bias, defined as positive for the drift to the
right, see Fig. 1. We always assume that |h|/L > |v|, so that the fluctuating component of
the potential can actually create local maxima and minima on top of the global landscape
U0(x). In what follows, we denote by T the time between subsequent potential flips (the
half-period of the fluctuations), and L is half of the spatial period.
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Fig. 1 The potential U(x, t) at a
fixed time. An oscillatory,
symmetric, sawtooth perturbation
is added on top of the average
linear potential that creates a drift
velocity of v

This model is similar to various stochastic ratchets considered in the literature [18–21].
Thus, the question of whether the fitness fluctuations can speed up the evolutionary search
is a question similar to whether a rectified or a high-variance motion can appear due to
ratcheting. We know from prior analysis [22] that any unbiased spatially variable but tem-
porally constant potential cannot give rise to rectified motion, and it will always slow down
diffusion. Hence temporal fluctuations are an essential component of the model.

2.1 Rescaling of the Equation of Motion

Using the choices above, we can rewrite the equation of motion, (1) as

dx

dt
= [−φ(x)s(t) + v] + √

2Dη, (8)

where η is a Gaussian white noise of unit variance. In (8), the dynamics explicitly depends
on five different parameters L, T , v, h, and D. Nevertheless, by rescaling the time, the
space, and the potential as x/L → x, t/T → t , L

h
φ → φ, L

h
v → v, we can reduce the

number of parameters to only three: the ratio of the typical diffusion time over half the
spatial period to half of the temporal period, ω = L2

2DT
, the height of the fluctuating barriers

in diffusivity (temperature) units, β = h
D

, and the ratio between the slope of the average,
large scale potential to the slope of the fluctuating perturbation, v. In physical terms, if ω is
large, the particle has time to explore the entire valley of φ before the potential flips. Further,
β measures the difficulty of crossing the peaks by diffusion. Finally, the condition that the
perturbation induces local optima is |v| < 1.

Using the rescaled variables, the dynamics becomes

dx

dt
= β

2ω
[−φ(x)s(t) + v] +

√
1

ω
η. (9)

We will use these rescaled variables in the rest of the article, unless noted otherwise. From
this equation, it is easy to recover the dynamics in the original, non-scaled units by simple
multiplications. In what follows we present simulation results obtained using first order
Euler integration scheme of the dynamics defined in rescaled variables, (9).

3 Fluctuating Potentials Enhances Diffusion and Drift

Numerical simulations suggest that the behavior of x(t) at large times is diffusive, and
anomalous scaling is not seen [23–26]. This is consistent with general analytical results ob-
tained by multiscale techniques [22]. We can characterize the genotype coordinate motion by
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Fig. 2 Enhancement of diffusion, rD = Deff
D

(circles) and drift, rv = veff
v (pluses) as a function of the relative

flipping frequency ω = L2

2DT
, with β = 10 and v = 1/10. At low ω, the particle has time to reach the minima,

and Deff ≈ L2

2T
, or rD ≈ ω. Simulations are averaged over 1000 trajectories and 1000 time steps. Solid line

indicates rD = ω. Error bars are smaller than the symbols

effective drift and diffusion constants, which depend on the spatial and the temporal periods
of the fluctuations and the barrier height. To quantify the enhancement or the suppression of
the motion at long spatial and temporal scales compared to the intrinsic diffusivity and drift,
we define

rD ≡ Deff

D
= vart (x)

2t

L2

DT
= vart (x)

t
ω, (10)

rv ≡ veff

v
= 〈x(t)〉

t

L

vT
= 〈x(t)〉

t

2ω

vβ
, (11)

where the time-dependent mean and variance of the trajectories x(t) are obtained numer-
ically. As seen in the Fig. 2, both the effective drift and the effective diffusion can be en-
hanced with respect to the intrinsic values, this enhancement having a maximum for fluctu-
ation periods comparable to the average time to travel between two extrema.

3.1 Building Intuition

When β � 1, the sawtooth peaks are very small, and the diffusion has no trouble crossing
them. When β is large, the behavior is more interesting. For ω → 0, the particle has ample
time to fall into a minimum of φ before s(t) flips. When the potential flips, the particle can
now go either left or right, with unequal but comparable probabilities, which creates a biased
random walk behavior with the effective diffusion coefficient ≈ L2/(2T ), or, equivalently,
rD ≈ ω. The fluctuating potential allows the particle to diffuse against the drift, so that the
speed of the evolutionary search is strongly enhanced when the environment oscillates.

For low ω, rD ≈ ω is also small, so the diffusion is suppressed compared to the internal
value. However, for h 
 1 and without the changing sign of s(t), the particle would get
stuck at a minimum of φ almost immediately, and the overall diffusion would be essentially
zero. It is hard to exit a deep potential well only with the help of diffusion. Whether rD is
greater or less than 1, the fact that oscillations make it non-zero in the long term is our most
important finding, suggesting that temporal fluctuations can make fixation of rare-to-fixate
mutations a much more common process. Figure 2 demonstrates these findings for different
values of ω and for β = 10 and v = 1/10.

When the flipping is fast compared to the diffusion time (large ω in the figure), the
fluctuating potential averages out to zero. The only motion is due to the internal diffusion,
and D and rD go to one.
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3.2 Analytical Treatment at β → ∞

In the limit β 
 1, the fluctuating peaks are very high, the particle almost never crosses
them due to noise, and analytical progress can be made. First consider a particle that starts
close to a local minimum x0 of the sawtooth. After some time ∼ D/v2, which goes to zero
as β → ∞, the particle equilibrates near x0 with a probability density

p(x|x ≷ x0) ∝ e−(1∓v)|x−x0|. (12)

Then the ratio between the probability, k>, that a particle is located to the right of x0 and
will move to the right after the potential flips to the probability, k<, that it is to the left of x0

and will move to the left is

k>

k<

= 1 − v

1 + v
. (13)

When s(t) changes sign, for a small D the particle then glides down with a constant velocity
in its chosen direction, reaching the next minimum to the right (>) or to the left (<) in time

τ≷ = 2ω

β

1

(1 ∓ v)
. (14)

If τ≷ < 1, then the particle has the time to reach the minimum on either the left or the
right hand side (assuming, as always, that the sawtooth actually forms the local minima, i.e.,
0 < v < 1). Then when the potential flips the next time, the process repeats. This results in
a discrete random walk between the extrema of the sawtooth, and (in unscaled variables)

Deff = [
(k> + k<) − (k> − k<)2

] L2

2T
, (15)

veff = (k> − k<)
L

T
. (16)

In dimensionless units,

rD = [
(k> + k<) − (k> − k<)2

]
ω, (17)

rv = (k> − k<)
2ω

vβ
. (18)

Using (13) results in:

rD = (
1 − v2

)
ω, (19)

rv = 2ω

β
. (20)

Notably, rD ∝ 1
D

→ ∞ when D → 0, but rD/β = Deff/h is finite.
In Fig. 3, we compare the analytical results to the numerically estimated rD and rv (here

rD is normalized by β/2). As β → ∞, the agreement is clearly seen for small ω, that is, for
an infrequently flipping potential.

When the potential changes faster, and τ> > 1 > τ<, the particle fails to make it to the
minimum to the right and, after a subsequent flip, always comes back to where it started
from. However, it always reaches the left minimum before the flip. When τ> > τ< > 1, it
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Fig. 3 Effective diffusion (left) and effective drift (right) versus the period of the fluctuations. Notice that rD
is normalized by 2/β , and it remains finite even if D → 0 and β → ∞. The data are obtained for v = 1/10
and (in decreasing order of noise strength) β = 100 (squares), β = 1000 (crosses), β = 10,000 (circles),
β → ∞ (solid line, analytical result). In the small noise case, the behavior of the diffusing particle is markedly
different between Region 1 and Region 2. Region 1 corresponds to small ω when a particle can always travel
between two extrema of the potential, performing an effective biased random walk. Region 2 corresponds
to large ω, when the particle spends most of the time traveling between minima but rarely reaching them.
Simulations are averaged over 1000 trajectories and 1000 time steps

does not reach the left minimum either, but goes the distance β

2ω
(1 + v) to the left, then

reverses and travels β

2ω
(1 − v) to the right, reverses again and repeats until it reaches the left

minimum. After one flip, it moves β

2ω
(1 + v), after three flips it moves β

2ω
(1 + 3v), and so

on. Eventually, when β/(2ω)[(2n + 1)v + 1] > 1, the particle reaches the next minimum.
Thus every time 2ω/(βv) crosses an odd integer, more periods are needed to travel between
the nearby extrema, and the diffusive behavior changes, resulting in the discontinuities in
Fig. 3. These dynamics can be described by a master equation

Pi(t + 1) = (1 − k>)Pi+1(t − 2n) + k>Pi(t − 1), (21)

where Pi(t) stands for being at an extremum i at the end of the flip t , and exactly 2n + 1
flips are needed to travel between the i + 1’th and the i’th extrema. Solving this for the drift
and the diffusion (see Appendix) gives

rv = 1 − v

3 + v + 2n(1 − v)

2ω

vβ
, (22)

rD = 8(1 − v2)

(3 + v + 2n(1 − v))3
ω. (23)

The analytical results and the numerical simulations verifying them are shown in Fig. 3 with
ω normalized by β/2.

4 Fluctuating Potential Shortens the Fitness Barrier Crossing Time

We have shown that the typical diffusive/drift behavior of the system is enhanced by the fluc-
tuating component of the potential. However, what kind of an effect does this enhancement
have on the probability of rare, atypical events, such as escape from a suboptimal fitness
maximum? To model a barrier in fitness, we place the overdamped particle in a flipping
sawtooth potential and a constant drift v, and we observe the mean first passage time for the
particle to reach an unscaled distance M = LM, against the drift, with a reflecting boundary
at x = 0, see Fig. 1.
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Fig. 4 Mean first passage times for crossing a barrier of width M in our model (simulation, circles) and
in the corresponding continuous diffusion coarse-grained model (solid line, (24)) with effective parameters
obtained from simulation. The parameters are β = 104, ω = 2.5, v = −0.1, and they correspond to the
leftmost point in Fig. 3. The small discrepancy between simulation and analytical approximation is due the
continuous nature of the coarse-grained model. A better approximation has been obtained with a model of
discrete jumps between minima, which we don’t show here

4.1 Fluctuation-Activated Escape from the Minimum is Possible Even at Zero Internal
Diffusion

If during one half-period the particle is able to travel between the two extrema (independent
of the direction and without the help of the noise) then τ≷ < 1, and the probability that the
particle travels over multiple periods against the (effective) drift is finite even at a very low
noise. As seen in Fig. 4, the escape time over the average barrier in U0 depends on the length
of the barrier M. In order to understand this dependence, we consider our model in the limit
of zero fluctuating potential, which allows us to use an analytical expression for the escape
time [27]

〈t〉D = M2

D

[
1

2Pe
− 1

4Pe2

(
1 − e−2Pe

)]
, (24)

where Pe is the Péclet number

Pe =
∣∣∣∣vLM

2D

∣∣∣∣ . (25)

In Fig. 4, we show the simulation results of the exit time for slow fluctuations. We com-
pare the results to what we would have expected under a continuous diffusion with the drift
and the diffusion constant given by the values of the effective parameters as obtained in the
previous section. We observe that the escape times are well approximated with the “effec-
tive” continuous diffusion model. The conclusion is valid even for a very small intrinsic
noise D → 0, which implies that the average time to escape over the global barrier is fluc-
tuation activated (as opposed to noise activated), and is much faster.

We emphasize again that the fact that even rare escape events in the fluctuating potential
are modeled well with the drift/diffusion approximation should not necessarily be expected
from our earlier observation that the typical behavior in this system is diffusive.

4.2 Fluctuations Enhance Escape Even for Steep Barriers

The qualitative behavior of particle trajectories changes if the fluctuating potential is fast
enough such that the particle can only move less than one period in one direction in the
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Fig. 5 Dependence of the effective Peclet number, Peeff = BM on the intrinsic noise. We simulate exit times
for systems of lengths M = 1,2,3,4,5 for different β . For each dataset with the same β , we performed a
weighted least squares fit for the average escape time of the form t = A[exp(BM) − 1 − BM], fitting for A

and B . The error bars indicate the confidence bounds of the fits. We show B/β versus β decreases sublinearly
and reaches a constant at β → ∞. Thus the mean exit time diverges, but much slower than for diffusion
without the fluctuating potential. For example, for the parameter values used here (2ω/β = 1, v = 0.1), we
have B/β = 0.1 with only the intrinsic diffusion, and it is ∼ 10−3 in the fluctuating potential model as seen
in the figure

absence of the noise. Even though, on average, the variance of the particle position grows
linearly, and one can define a proper effective diffusion coefficient, the particle never crosses
a barrier against drift in the absence of the intrinsic noise, β → ∞. Hence the probability
of rare excursions against the effective drift cannot be described using the same effective
drift/diffusion model.

Figure 5 reports results of numerical simulations at different values of the additive noise.
The escape time as a function of M still can be fitted well with a drift/diffusion model,
(24), with a noise dependent effective Péclet number Pe(β). We conclude that, for small
noises, the effective Péclet number is approximatively inversely proportional to the noise
strength (the plot seems to reach a constant for β → ∞). This implies that the escape times
will become infinite at zero noise. The dependence is consistent with a model without any
fluctuating potential, but with some effective parameters. The parameters are such that, with
the fluctuations, the escapes are significantly faster. Indeed as shown in Fig. 5, the effective
Péclet number, defined as Peeff = BM, is always smaller than the equivalent quantity in
(24), such that

B �
∣∣∣∣ vL

2D

∣∣∣∣. (26)

5 Discussion

Using a one-dimensional model of diffusion in the presence of a constant force perturbed by
small periodic fluctuations, we have shown that time dependent potentials can significantly
speed up the large scale drift, diffusion, and barrier escape times. This conclusion is valid
even for a very small intrinsic diffusivity, the long time statistics of the particle trajecto-
ries being mainly determined by the properties of the potential fluctuations, but not of the
Langevin noise.

Our model is a caricature of evolutionary dynamics in the limit of low mutation rates and
constant population sizes. Even in this limit, there are several simplifying assumptions in
our model that can be relaxed.
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First, the periodicity of the potential time dependence is not crucial. Based on the similar-
ity with Brownian motor models [18, 19], we expect that our conclusions will still be valid
for a nonperiodic s(t): the nonperiodic flipping will mix together and average behaviors
from the different regions in Fig. 3. Further, Dubkov et al. [20] studied a randomly flip-
ping sawtooth with no drift. Their potential flipped with dichotomous Markovian noise with
rate v. They found an analytic expression for the diffusion enhancement rD which grows
slower than in our model for small ω, and the peak of rD is lower and at larger ω. This is
consistent with the averaging over different regions in Fig. 3. Similarly, if the potential is not
spatially periodic, this will introduce a quenched noise and is likely to result in emergence
of regions in x that are very hard to cross, similar to [23].

Our model is based on a piecewise linear periodic potential with discontinuous first
derivatives (sharp minima and maxima). We expect that our conclusions stay valid for
smoother perturbations as long as, upon a flip, a particle can leave the vicinity of a max-
imum in a time much faster than a typical travel time between the extrema.

The piecewise-constant perturbation in our model is symmetric with respect to reflection,
thus no mean rectified motion can be created [18, 19, 22]. Simply put, the system is not a
ratchet, and crossing of large scale barriers instead is achieved by creating a large effective
diffusion. Asymmetry of the perturbation may create additional rectification, but the results
in Fig. 3 suggest that the diffusive effects will not change qualitatively. This is crucial for
evolutionary modeling since crossing barriers by ratcheting requires tuning the ratchet in a
specific direction in the genotype space, while diffusion will explore the space isotropically.

The genomic space is expected to be high dimensional. For simplicity we have considered
a one-dimensional model of mutation accumulation, which could still be relevant for highly
epistatic genomic landscapes with a large proportion of highly deleterious or non-viable
genotypes. Moreover, we expect that systematic application of multiscale homogenization
methods [22], would allow one to extend the results to these more general formulations.

If the assumption of well separated time scales and constant population size are not sat-
isfied, the Langevin microscopic dynamics used here is not valid any more. Then different
fitnesses can give rise to different population sizes, and hence to varying fixation rates and
to a space dependent D in our language, which would require more complex models with
position and time dependent noise strengths. Such models would modify the probability of
individual trajectories [26, 28], and more work is needed in order to identify the regimes in
which such diffusion models and their predictions apply to population genetics dynamics.
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Appendix: Diffusion and Drift in the Very Small Noise Limit

In this Appendix we derive the effective drift and diffusion coefficients for the model of dis-
crete time jumps among discrete sites described by the master equation (21). In this model,
a particle at site i at time t can either start moving to the right (with probability b < 1),
in which case it returns to the site i after two potential flips (at time t + 2), or it can start



Speeding up Evolutionary Search by Small Fitness Fluctuations

moving to the left (with probability 1−b), in which case it reaches the site i −1 after 2n+1
flips. The corresponding discrete time master equation is:

Pi(t + 1) = (1 − b)Pi+1(t − 2n) + bPi(t − 1). (27)

Multiplying by i and summing over it, we get

〈i(t + 1)〉 = (1 − b)[〈i(t − 2n)〉 + 1] + b〈i(t − 1)〉. (28)

Assuming that the average can be written as

〈i(t)〉 = c + vefft, (29)

we obtain

veff = 1 − b

1 + 2n(1 − b) + b
. (30)

Now multiplying (27) by i2 and summing over i, we get

〈i2(t + 1)〉 = (1 − b)[〈i2(t − 2n)〉 + 2〈i(t − 2n)〉 + 1] + b〈i2(t − 1)〉. (31)

This allows to write for the variance of i at moment t + 1

σ 2(t + 1) = (1 − b) + (1 − b)σ 2(t − 2n) + bσ 2(t − 1) + 2(1 − b)〈i(t − 2n)〉
− (1 − b)[〈i(t − 2n)〉 + 〈i(t + 1)〉]v(2n + 1)

− 2bv[〈i(t − 2n)〉 + 〈i(t + 1)〉]. (32)

Now assuming

σ 2(t) = C + Defft, (33)

we get

Deff = 4(1 − b)b

(1 + b + (1 − b)2n)3 . (34)
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