Occam factors, spline priors, and model-independent learning of continuous distributions

Ilya Nemenman
ITP, UCSB

Joint work with:
William Bialek, Princeton University

Bayesian model selection for finitely parameterizable distributions

Bayesian model selection for finitely parameterizable distributions

$$
P(x)
$$

Bayesian model selection for finitely parameterizable distributions

$$
P(x) \xrightarrow{\text { i.i.d. }} X=\left\{x_{1} \cdots x_{N}\right\}
$$

Bayesian model selection for finitely parameterizable distributions

$$
P(x) \xrightarrow{\text { i.i.d. }} X=\left\{x_{1} \cdots x_{N}\right\}
$$

Model family A

$$
\begin{gathered}
Q_{A}(x \mid \boldsymbol{\alpha}) \\
\operatorname{dim} \boldsymbol{\alpha}=K_{A} \\
\mathcal{P}_{A}(\boldsymbol{\alpha}), \operatorname{Pr}(A)
\end{gathered}
$$

Bayesian model selection for finitely parameterizable distributions

$$
P(x) \xrightarrow{\text { i.i.d. }} X=\left\{x_{1} \cdots x_{N}\right\}
$$

Model family A

$$
\begin{gathered}
Q_{A}(x \mid \boldsymbol{\alpha}) \\
\operatorname{dim} \alpha=K_{A} \\
\mathcal{P}_{A}(\alpha), \operatorname{Pr}(A)
\end{gathered}
$$

Model family B

$$
\begin{gathered}
Q_{B}(x \mid \boldsymbol{\beta}) \\
\operatorname{dim} \boldsymbol{\beta}=K_{B} \\
\mathcal{P}_{B}(\boldsymbol{\beta}), \operatorname{Pr}(B)
\end{gathered}
$$

Bayesian model selection for finitely parameterizable distributions

$$
P(x) \xrightarrow{\text { i.i.d. }} X=\left\{x_{1} \cdots x_{N}\right\}
$$

unknown

Model family A

$$
\begin{gathered}
Q_{A}(x \mid \boldsymbol{\alpha}) \\
\operatorname{dim} \alpha=K_{A} \\
\mathcal{P}_{A}(\boldsymbol{\alpha}), \operatorname{Pr}(A)
\end{gathered}
$$

Model family B

$$
\begin{gathered}
Q_{B}(x \mid \boldsymbol{\beta}) \\
\operatorname{dim} \boldsymbol{\beta}=K_{B} \\
\mathcal{P}_{B}(\boldsymbol{\beta}), \operatorname{Pr}(B)
\end{gathered}
$$

Solution

Find the model with maximum posterior probability!

Solution

Find the model with maximum posterior probability!

For example, for model A :

$$
\begin{aligned}
& P(A \mid X)=\frac{P(X \mid A) \operatorname{Pr}(A)}{P(X)} P(X \mid A) \operatorname{Pr}(A)+P(X \mid B) \operatorname{Pr}(B) \equiv Z \\
& P(X \mid A)=\int d \boldsymbol{\alpha} \mathcal{P}_{A}(\boldsymbol{\alpha}) P(X \mid \boldsymbol{\alpha}) \sim P\left(X \mid \boldsymbol{\alpha}_{\mathrm{ML}}\right) \delta \boldsymbol{\alpha}_{\mathrm{ML}}
\end{aligned}
$$

Solution

Find the model with maximum posterior probability!

For example, for model A :

$$
\begin{aligned}
& P(A \mid X)=\frac{P(X \mid A) \operatorname{Pr}(A)}{P(X)} P(X \mid A) \operatorname{Pr}(A)+P(X \mid B) \operatorname{Pr}(B)=Z \\
& P(X \mid A)=\int d \boldsymbol{\alpha} \mathcal{P}_{A}(\boldsymbol{\alpha}) P(X \mid \boldsymbol{\alpha}) \sim P\left(X \mid \boldsymbol{\alpha}_{\mathrm{ML}}\right) \delta \boldsymbol{\alpha}_{\mathrm{ML}}
\end{aligned}
$$

For large $K_{A}, \delta \alpha_{\mathrm{ML}}$ (region of "good" α) decreases.

Solution

Find the model with maximum posterior probability!

For example, for model A :

$$
\begin{aligned}
& P(A \mid X)=\frac{P(X \mid A) \operatorname{Pr}(A)}{P(X)} P(X \mid A) \operatorname{Pr}(A)+P(X \mid B) \operatorname{Pr}(B)=Z \\
& P(X \mid A)=\int d \boldsymbol{\alpha} \mathcal{P}_{A}(\boldsymbol{\alpha}) P(X \mid \boldsymbol{\alpha}) \sim P\left(X \mid \boldsymbol{\alpha}_{\mathrm{ML}}\right) \delta \boldsymbol{\alpha}_{\mathrm{ML}}
\end{aligned}
$$

For large $K_{A}, \delta \alpha_{\mathrm{ML}}$ (region of "good" α) decreases.
(See: Bayes factors, Occam factors; Jaynes 1968, 1979)

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

Large N expansion

Saddle point (large N) expansion is almost always valid.

Large N expansion

Saddle point (large N) expansion is almost always valid.

$$
\log P(A \mid X) \rightarrow \sum_{i} \underbrace{\log Q_{A}\left(x_{i} \mid \boldsymbol{\alpha}_{\mathrm{ML}}\right)}
$$

Large N expansion

Saddle point (large N) expansion is almost always valid.

$$
\begin{aligned}
& \log P(A \mid X) \rightarrow \sum_{i} \underbrace{\log Q_{A}\left(x_{i} \mid \alpha_{\mathrm{ML}}\right)} \\
&-\underbrace{\frac{K_{A}}{2} \log N-\log \operatorname{det} \partial^{2}{ }_{\alpha_{\mathrm{ML}}} \frac{\sum_{i} \log Q\left(x_{i} \mid \boldsymbol{\alpha}_{\mathrm{ML}}\right)}{N}}
\end{aligned}
$$

(See: Schwartz 1978, MacKay 1992, Balasubramanian 1996)

Large N expansion

Saddle point (large N) expansion is almost always valid.

$$
\begin{aligned}
& \log P(A \mid X) \rightarrow \sum_{i} \underbrace{\log Q_{A}\left(x_{i} \mid \boldsymbol{\alpha}_{\mathrm{ML}}\right)} \\
& -\underbrace{\frac{K_{A}}{2} \log N-\log \operatorname{det} \partial^{2} \alpha_{\alpha_{\mathrm{ML}}} \frac{\sum_{i} \log Q\left(x_{i} \mid \boldsymbol{\alpha}_{\mathrm{ML}}\right)}{N}} \\
& +\log \mathcal{P}\left(\boldsymbol{\alpha}_{\mathrm{ML}}\right)+o\left(N^{0}\right)
\end{aligned}
$$

(See: Schwartz 1978, MacKay 1992, Balasubramanian 1996)

Large N expansion

Saddle point (large N) expansion is almost always valid.

$$
\log P(A \mid X) \rightarrow \sum_{i} \underbrace{\log Q_{A}\left(x_{i} \mid \boldsymbol{\alpha}_{\mathrm{ML}}\right)}_{\text {goodness of fit }}
$$

$$
-\underbrace{\frac{K_{A}}{2} \log N-\log \operatorname{det} \partial^{2}{ }_{\alpha_{\mathrm{ML}}} \frac{\sum_{i} \log Q\left(x_{i} \mid \boldsymbol{\alpha}_{\mathrm{ML}}\right)}{N}}
$$

$$
+\log \mathcal{P}\left(\boldsymbol{\alpha}_{\mathrm{ML}}\right)+o\left(N^{0}\right)
$$

(See: Schwartz 1978, MacKay 1992, Balasubramanian 1996)

Large N expansion

Saddle point (large N) expansion is almost always valid.

$$
\log P(A \mid X) \rightarrow \sum_{i} \underbrace{\log Q_{A}\left(x_{i} \mid \alpha_{M L}\right)}_{\text {goodness of fit }}
$$

$$
-\underbrace{\frac{K_{A}}{2} \log N-\log \operatorname{det} \partial^{2}{ }_{\alpha_{\mathrm{ML}}} \frac{\sum_{i} \log Q\left(x_{i} \mid \boldsymbol{\alpha}_{\mathrm{ML}}\right)}{N}}
$$

generalization error, fluctuations, complexity; weak dependence on priors

$$
+\log \mathcal{P}\left(\alpha_{\mathrm{ML}}\right)+o\left(N^{0}\right)
$$

(See: Schwartz 1978, MacKay 1992, Balasubramanian 1996)

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

Large N expansion

Saddle point (large N) expansion is almost always valid.

$$
\log P(A \mid X) \rightarrow \sum_{i} \underbrace{\log Q_{A}\left(x_{i} \mid \alpha_{M L}\right)}_{\text {goodness of fit }}
$$

$$
-\underbrace{\frac{K_{A}}{2} \log N-\log \operatorname{det} \partial^{2}{ }_{\alpha_{\mathrm{ML}}} \frac{\sum_{i} \log Q\left(x_{i} \mid \boldsymbol{\alpha}_{\mathrm{ML}}\right)}{N}}
$$

generalization error, fluctuations, complexity; weak dependence on priors

$$
+\log \mathcal{P}\left(\alpha_{\mathrm{ML}}\right)+o\left(N^{0}\right)
$$

(See: Schwartz 1978, MacKay 1992, Balasubramanian 1996)

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

Conclusions

Conclusions

Bayesian inference penalizes for complexity (large K)

Conclusions

Bayesian inference penalizes for complexity (large K)
Fight between the goodness of fit and the complexity selects an optimal model family.

Conclusions

Bayesian inference penalizes for complexity (large K)
Fight between the goodness of fit and the complexity selects an optimal model family.

This is a Bayesian analogue of the MDL principle.

Conclusions

Bayesian inference penalizes for complexity (large K)
Fight between the goodness of fit and the complexity selects an optimal model family.

This is a Bayesian analogue of the MDL principle.

Does this generalize to infinite-dimensional models?

Bayesian learning for $K \rightarrow \infty$

Finite

Infinite

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

Bayesian learning for $K \rightarrow \infty$

Finite	Infinite
α	$\phi(x)=-\log \ell_{0} Q(x)$

Bayesian learning for $K \rightarrow \infty$

Finite	Infinite
$\boldsymbol{\alpha}$	$\phi(x)=-\log \ell_{0} Q(x)$
$\mathcal{P}(\boldsymbol{\alpha})$	$\mathcal{P}[Q] \propto \exp [-\frac{\ell^{2 \eta-1}}{2} \underbrace{\int d x\left(\partial_{x}^{\eta} \phi\right)^{2}}$

Bayesian learning for $K \rightarrow \infty$

Finite	Infinite
α	$\phi(x)=-\log \ell_{0} Q(x)$
$\mathcal{P}(\boldsymbol{\alpha})$	$\mathcal{P}[Q] \propto \underbrace{\exp [-\frac{\ell^{2 \eta-1}}{2} \underbrace{\int d x\left(\partial_{x}^{\eta} \phi\right)^{2}}]}_{\text {smoothness penalty }}$

Bayesian learning for $K \rightarrow \infty$

Finite	Infinite
α	$\phi(x)=-\log \ell_{0} Q(x)$
$\mathcal{P}(\alpha)$	$\mathcal{P}[Q] \propto \underbrace{\exp [-\frac{\ell^{2 \eta-1}}{2} \underbrace{\int d x\left(\partial_{x}^{\eta} \phi\right)^{2}}_{\text {smoothe pen }}}_{\text {spline prior of order } 2 \eta-1}]$

Bayesian learning for $K \rightarrow \infty$

Finite	Infinite
α	$\phi(x)=-\log \ell_{0} Q(x)$
$\mathcal{P}(\alpha)$	$\mathcal{P}[Q] \propto \underbrace{\exp [-\frac{\ell^{2 \eta-1}}{2} \underbrace{\int d d x\left(\partial_{x}^{\eta} \phi\right)^{2}}_{\text {smoothnes penalty }}}_{\text {spline prior of order } 2 \eta-1}]$
$\left\{A, K_{A}\right\}$	$\{\ell, \eta(?)\}$ - index continuum of families

Bayesian learning for $K \rightarrow \infty$

Finite	Infinite
α	$\phi(x)=-\log \ell_{0} Q(x)$
$\mathcal{P}(\boldsymbol{\alpha})$	$\mathcal{P}[Q] \propto \exp [-\frac{\ell^{2 \eta-1}}{2} \underbrace{\int d x\left(\partial_{x}^{\eta} \phi\right)^{2}}_{\text {smoothness penalty }}]$
$\begin{gathered} \left\{A, K_{A}\right\} \\ \operatorname{Pr}(A) \end{gathered}$	spline prior of order $2 \eta-1$ $\{\ell, \eta(?)\}$ - index continuum of families $\operatorname{Pr}(\ell, \eta(?))$

Bayesian learning for $K \rightarrow \infty$

Finite	Infinite
α	$\phi(x)=-\log \ell_{0} Q(x)$
$\mathcal{P}(\boldsymbol{\alpha})$	$\mathcal{P}[Q] \propto \exp [-\frac{\ell^{2 \eta-1}}{2} \underbrace{\int d x\left(\partial_{x}^{\eta} \phi\right)^{2}}_{\text {smoothness penalty }}]$
$\begin{gathered} \left\{A, K_{A}\right\} \\ \operatorname{Pr}(A) \end{gathered}$	spline prior of order $2 \eta-1$ $\{\ell, \eta(?)\}$ - index continuum of families $\operatorname{Pr}(\ell, \eta(?))$

(See: Bialek, Callan, Strong, 1996)

Quantum Field Theory analogy

Fix ℓ and η :

$$
=\frac{\left\langle Q(x) Q\left(x_{1}\right) \cdots Q\left(x_{N}\right)\right\rangle^{0}}{\underbrace{\left\langle Q\left(x_{1}\right) \cdots Q\left(x_{N}\right)\right\rangle^{0}}}
$$

Correlation function in a QFT
defined by $\mathcal{P}[Q]$

Quantum Field Theory analogy

Fix ℓ and η :

$$
P[Q \mid X]=\frac{P(X \mid Q) \mathcal{P}[Q]}{P(X)}
$$

$$
=\frac{\left\langle Q(x) Q\left(x_{1}\right) \cdots Q\left(x_{N}\right)\right\rangle^{0}}{\underbrace{\left\langle Q\left(x_{1}\right) \cdots Q\left(x_{N}\right)\right\rangle^{0}}}
$$

Correlation function in a QFT
defined by $P[Q]$

Quantum Field Theory analogy

Fix ℓ and η :

$$
\begin{aligned}
P[Q \mid X] & =\frac{P(X \mid Q) \mathcal{P}[Q]}{P(X)} \\
\langle Q\rangle & =\frac{\int[d Q] \mathcal{P}[Q] Q(x) \prod_{i=1}^{N} Q\left(x_{i}\right)}{\int[d Q] P[Q] \prod_{i=1}^{N} Q\left(x_{i}\right)} \\
& =\frac{\underbrace{\left\langle Q(x) Q\left(x_{1}\right) \cdots Q\left(x_{N}\right)\right\rangle^{0}}}{\left\langle Q\left(x_{1}\right) \cdots Q\left(x_{N}\right)\right\rangle^{0}}
\end{aligned}
$$

Correlation function in a QFT
defined by $\mathcal{P}[Q]$

Explicit form of correlation functions

$$
\begin{aligned}
\text { C. F. } & \equiv \int[d Q] \mathcal{P}[Q] \prod_{i=1}^{N} Q\left(x_{i}\right) \\
& =\int[d \phi] \frac{1}{\ell_{0}^{N}} \mathrm{e}^{-S[\phi]} \delta\left[\int d x \frac{1}{\ell_{0}} \mathrm{e}^{-\phi}-1\right] \\
\underbrace{S[\phi]}_{\text {action }} & =\underbrace{\frac{\ell}{2} \int d x\left(\partial_{x}^{n} \phi\right)^{2}}_{\text {knetc term }}+\underbrace{\sum_{i} \phi\left(x_{i}\right)}_{\text {random potential }}
\end{aligned}
$$

Large N approximation for $\eta=1$

ML (classical, saddle point) solution dominates

Large N approximation for $\eta=1$

ML (classical, saddle point) solution dominates

$$
\ell \partial_{x}^{2} \phi_{\mathrm{cl}}(x)+\frac{N}{\ell_{0}} \mathrm{e}^{-\phi_{\mathrm{cl}}(x)}=\sum_{j} \delta\left(x-x_{j}\right)
$$

Large N approximation for $\eta=1$

ML (classical, saddle point) solution dominates

$$
\begin{array}{cc}
\begin{array}{c}
\text { converges to } \\
-\log \ell_{0} P(x)
\end{array} & \begin{array}{c}
\text { changes on scale } \\
\end{array} \\
\ell \partial_{x}^{2} \phi_{\mathrm{cl}}(x)+\frac{N}{\ell_{0}} \mathrm{e}^{-\phi_{\mathrm{cl}}(x)}=\sum_{j} \delta\left(x-x_{j}\right)
\end{array}
$$

Large N approximation for $\eta=1$

ML (classical, saddle point) solution dominates

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

Large N approximation for $\eta=1$, continued

Large N approximation for $\eta=1$, continued

$$
\text { C. } \mathrm{F} . \approx\left(1 / \ell_{0}\right)^{N} \mathrm{e}^{-S_{\mathrm{eff}}\left[\phi_{\mathrm{cl}}(x)\right]}
$$

Large N approximation for $\eta=1$, continued

$$
\begin{aligned}
\text { C. F. } & \approx\left(1 / \ell_{0}\right)^{N} \mathrm{e}^{-S_{\mathrm{eff}}\left[\phi_{\mathrm{c}}(x)\right]} \\
S_{\mathrm{eff}}\left[\phi_{\mathrm{cl}]}\right] & =\underbrace{\frac{\ell}{2} \int d x\left(\partial \phi_{\mathrm{cl}}\right)^{2}}+\underbrace{\sum \phi_{\mathrm{c}}\left(x_{i}\right)} \\
& +\underbrace{\frac{1}{2} \sqrt{\frac{N}{\ell \ell_{0}} \int d x \mathrm{e}^{-\phi_{\mathrm{cl}}(x) / 2}}}
\end{aligned}
$$

Large N approximation for $\eta=1$, continued

$$
\begin{aligned}
\text { C. F. } & \approx\left(1 / \ell_{0}\right)^{N} \mathrm{e}^{-S_{\mathrm{eff}}\left[\phi_{\mathrm{cl}}(x)\right]} \\
S_{\mathrm{eff}}\left[\phi_{\mathrm{cl}}\right] & =\underbrace{\frac{\ell}{2} \int d x\left(\partial \phi_{\mathrm{cl}}\right)^{2}}_{\text {prior, smoothness }}+\underbrace{\sum \phi_{\mathrm{cl}}\left(x_{i}\right)}_{\text {goodness of fit }} \\
& +\underbrace{\frac{1}{2} \sqrt{\frac{N}{\ell \ell_{0}} \int d x \mathrm{e}^{-\phi_{\mathrm{cl}}(x) / 2}}}_{\text {fluctuations, complexity, error }}
\end{aligned}
$$

How do we measure performance?

How do we measure performance?

For $x \in[0, L)$ the universal learning curve is

$$
\Lambda(N) \rightarrow\left\langle D_{\mathrm{KL}}\left(P \| Q_{\mathrm{cl}}\right)\right\rangle_{\left\{x_{i}\right\}}^{0} \sim \sqrt{\frac{L}{\ell N}}
$$

How do we measure performance?

For $x \in[0, L)$ the universal learning curve is

$$
\Lambda(N) \rightarrow\left\langle D_{\mathrm{KL}}\left(P \| Q_{\mathrm{cl}}\right)\right\rangle_{\left\{x_{i}\right\}}^{0} \sim \sqrt{\frac{L}{\ell N}}
$$

For a different η :

$$
\Lambda(N) \sim\left(\frac{L}{\ell}\right)^{1 / 2 \eta} N^{1 / 2 \eta-1}
$$

Learning curves for fixed $\ell, \eta=1$

Learning curves for fixed $\ell, \eta=1$

Learner's assumptions $\quad \mathcal{P}_{\ell, \eta=1}[Q]$

Learning curves for fixed $\ell, \eta=1$

Learner's assumptions
$\mathcal{P}_{\ell, \eta=1}[Q]$
Actual target distribution $\mathcal{P}_{\ell_{a}, \eta_{a}}^{\prime}[Q]$

Learning curves for fixed $\ell, \eta=1$

Learner's assumptions $\quad \mathcal{P}_{\ell, \eta=1}[Q]$
Actual target distribution $\mathcal{P}_{\ell_{a}, \eta_{a}}^{\prime}[Q]$
$\eta=\eta_{a}, \ell=\ell_{a} \quad$ learning typical cases, $\mathcal{P}=\mathcal{P}^{\prime}$

Learning curves for fixed $\ell, \eta=1$

Learner's assumptions $\quad \mathcal{P}_{\ell, \eta=1}[Q]$
Actual target distribution $\mathcal{P}_{\ell_{a}, \eta_{a}}^{\prime}[Q]$
$\eta=\eta_{a}, \ell=\ell_{a} \quad$ learning typical cases, $\mathcal{P}=\mathcal{P}^{\prime}$
$\eta=\eta_{a}, \ell \neq \ell_{a} \quad$ marginal outliers of \mathcal{P}

Learning curves for fixed $\ell, \eta=1$

Learner's assumptions $\quad \mathcal{P}_{\ell, \eta=1}[Q]$
Actual target distribution $\mathcal{P}_{\ell_{a}, \eta_{a}}^{\prime}[Q]$
$\eta=\eta_{a}, \ell=\ell_{a} \quad$ learning typical cases, $\mathcal{P}=\mathcal{P}^{\prime}$
$\eta=\eta_{a}, \ell \neq \ell_{a} \quad$ marginal outliers of \mathcal{P}
$\eta>\eta_{a}$ extremely rough outliers

Learning curves for fixed $\ell, \eta=1$

Learner's assumptions
$\mathcal{P}_{\ell, \eta=1}[Q]$
Actual target distribution $\mathcal{P}_{\ell_{a}, \eta_{a}}^{\prime}[Q]$
$\eta=\eta_{a}, \ell=\ell_{a} \quad$ learning typical cases, $\mathcal{P}=\mathcal{P}^{\prime}$
$\eta=\eta_{a}, \ell \neq \ell_{a} \quad$ marginal outliers of \mathcal{P}
$\eta>\eta_{a}$
$\eta<\eta_{a}$ extremely rough outliers extremely smooth outliers

Learning curves for fixed $\ell, \eta=1$

Learner's assumptions
$\mathcal{P}_{\ell, \eta=1}[Q]$
Actual target distribution $\mathcal{P}_{\ell_{a}, \eta_{a}}^{\prime}[Q]$
$\eta=\eta_{a}, \ell=\ell_{a} \quad$ learning typical cases, $\mathcal{P}=\mathcal{P}^{\prime}$
$\eta=\eta_{a}, \ell \neq \ell_{a} \quad$ marginal outliers of \mathcal{P}
$\eta>\eta_{a} \quad$ extremely rough outliers
$\eta<\eta_{a}$ extremely smooth outliers

Note: we must have $\eta>1 / 2$ for convergence of the integrals.

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

Learning typical cases

$$
\begin{array}{ll}
\ell=0.4, & \Lambda=(0.54 \pm 0.07) N^{-0.483 \pm 0.014} \\
\ell=0.2, & \Lambda=(0.83 \pm 0.08) N^{-0.493 \pm 0.09} \\
\ell=0.05, & \Lambda=(1.64 \pm 0.16) N^{-0.507} \pm 0.09
\end{array}
$$

Learning marginal outliers

Learning at $\ell=0.2$.

Learning strong outliers

$$
\begin{array}{ll}
\eta_{a}=2, \ell_{a}=0.1, & \Lambda=(0.40 \pm 0.05) N^{-0.493 \pm 0.013} \\
\eta_{a}=0.8, \ell_{a}=0.1, & \Lambda=(1.06 \pm 0.08) N^{-0.355 \pm 0.008}
\end{array}
$$

$\ell=0.1$ for $\eta_{a}=0$ and $\ell=0.2$ otherwise

Conclusions for fixed η and ℓ

Conclusions for fixed η and ℓ

No overfits!

Conclusions for fixed η and ℓ

No overfits!

but suboptimal performance for learning outliers

Smoothness scale selection

Smoothness scale selection

Allow a prior over ℓ, but keep $\eta=1$
C. F. $\rightarrow\langle\mathrm{C} . \mathrm{F} .\rangle_{\ell}$

Smoothness scale selection

Allow a prior over ℓ, but keep $\eta=1$

$$
\text { C. F. } \rightarrow\langle\mathrm{C} \cdot \mathrm{~F} \cdot\rangle_{\ell}=\int d \ell \operatorname{Pr}(\ell) \mathrm{e}^{-S_{\mathrm{eff}}\left[\phi_{\mathrm{cl}}(\phi, \ell)\right]}
$$

Smoothness scale selection

Allow a prior over ℓ, but keep $\eta=1$

$$
\text { C. F. } \rightarrow\langle\mathrm{C} \cdot \mathrm{~F} \cdot\rangle_{\ell}=\int d \ell \operatorname{Pr}(\ell) \mathrm{e}^{-S_{\mathrm{eff}}\left[\phi_{\mathrm{cl}}(\phi, \ell)\right]}
$$

$$
S_{\mathrm{eff}}\left[\phi_{\mathrm{cl}}\right]=\underbrace{\text { smoothing }+ \text { data }}+\underbrace{\text { fluctuations }}
$$

Smoothness scale selection

Allow a prior over ℓ, but keep $\eta=1$

$$
\begin{gathered}
\text { C. F. } \rightarrow\langle\text { C. F. }\rangle_{\ell}=\int d \ell \operatorname{Pr}(\ell) \mathrm{e}^{-S_{\mathrm{eff}}\left[\phi_{\mathrm{cl}}(\phi, \ell)\right]} \\
S_{\text {eff }}\left[\phi_{\mathrm{cl}}\right]=\underbrace{\text { smoothing }+ \text { data }}_{\text {grows with } \ell}+\underbrace{\text { fluctuations }}_{\text {grows with } 1 / \ell}
\end{gathered}
$$

Smoothness scale selection

Allow a prior over ℓ, but keep $\eta=1$

$$
\text { C. F. } \rightarrow\langle\mathrm{C} \cdot \mathrm{~F} \cdot\rangle_{\ell}=\int d \ell \operatorname{Pr}(\ell) \mathrm{e}^{-S_{\mathrm{eff}}\left[\phi_{\mathrm{cl}}(\phi, \ell)\right]}
$$

$$
S_{\mathrm{eff}}\left[\phi_{\mathrm{cl}}\right]=\underbrace{\text { smoothing }+ \text { data }}_{\text {grows with } \ell}+\underbrace{\text { fluctuations }}_{\text {grows with } 1 / \ell}
$$

Some ℓ^{*} always dominates the C. F. and

Calculations: What is ℓ^{*} for η_{a} and ℓ_{a} ?

Calculations: What is ℓ^{*} for η_{a} and ℓ_{a} ?

$$
\text { If } \eta=\eta_{a} \text {, then } \ell^{*}=\ell_{a} \text {. }
$$

Calculations: What is ℓ^{*} for η_{a} and ℓ_{a} ?

If $\eta=\eta_{a}$, then $\ell^{*}=\ell_{a}$. Otherwise:

$$
\begin{array}{|c|c}
\hline 0.5<\eta_{a} \leq 1.5 & 1.5<\eta_{a} \\
\hline
\end{array}
$$

Calculations: What is ℓ^{*} for η_{a} and ℓ_{a} ?

If $\eta=\eta_{a}$, then $\ell^{*}=\ell_{a}$. Otherwise:

$0.5<\eta_{a} \leq 1.5$	$1.5<\eta_{a}$
data $>$ smoothing	smoothing $>$ data

Calculations: What is ℓ^{*} for η_{a} and ℓ_{a} ?

If $\eta=\eta_{a}$, then $\ell^{*}=\ell_{a}$. Otherwise:

$0.5<\eta_{a} \leq 1.5$	$1.5<\eta_{a}$
data $>$ smoothing	smoothing $>$ data
$\ell^{*} \sim N^{\left(\eta_{a}-1\right) / \eta_{a}}$	$\ell^{*} \sim N^{1 / 3}$

Calculations: What is ℓ^{*} for η_{a} and ℓ_{a} ?

If $\eta=\eta_{a}$, then $\ell^{*}=\ell_{a}$. Otherwise:

$0.5<\eta_{a} \leq 1.5$	$1.5<\eta_{a}$
data $>$ smoothing	smoothing $>$ data
$\ell^{*} \sim N^{\left(\eta_{a}-1\right) / \eta_{a}}$	$\ell^{*} \sim N^{1 / 3}$
$\Lambda \sim N^{1 / 2 \eta_{a}-1}$	$\Lambda \sim N^{-2 / 3}$

Calculations: What is ℓ^{*} for η_{a} and ℓ_{a} ?

If $\eta=\eta_{a}$, then $\ell^{*}=\ell_{a}$. Otherwise:

$0.5<\eta_{a} \leq 1.5$	$1.5<\eta_{a}$

data $>$ smoothing	smoothing $>$ data
$\ell^{*} \sim N^{\left(\eta_{a}-1\right) / \eta_{a}}$	$\ell^{*} \sim N^{1 / 3}$

$\Lambda \sim N^{1 / 2 \eta_{a}-1}$
$\Lambda \sim N^{-2 / 3}$
best possible better, but not performance best performance

qualitatively wrong smoothness $\eta_{a} \neq 1$!

Numerics: What is ℓ^{*} for η_{a} and ℓ_{a} ?

Numerics: What is ℓ^{*} for η_{a} and ℓ_{a} ?

Note: just single runs shown.

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

Numerics: What is ℓ^{*} for η_{a} and ℓ_{a} ?

Note: just single runs shown.

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

Numerics: What is ℓ^{*} for η_{a} and ℓ_{a} ?

Note: just single runs shown.

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

Approaching model-independend optimal inference!

Analogies

Analogies

choosing ℓ^{*} corresponds to selection of a structure element with $d_{\mathrm{VC}}=\sqrt{N L / \ell^{*}}$ in Vapnik's SRM theory

Analogies

choosing ℓ^{*} corresponds to selection of a structure element with $d_{\mathrm{VC}}=\sqrt{N L / \ell^{*}}$ in Vapnik's SRM theory maximizing P over model families (ℓ 's) asymptotically corresponds to searching for MDL

Analogies

choosing ℓ^{*} corresponds to selection of a structure element with $d_{\mathrm{VC}}=\sqrt{N L / \ell^{*}}$ in Vapnik's SRM theory maximizing P over model families (ℓ 's) asymptotically corresponds to searching for MDL
a lot in common with the Gaussian Processes theory; however normalization constraint is important

Summary

Bayesian smoothness (model) selection works for nonparametric spline priors!

Open questions

Open questions

constant factor or constant summand?

Open questions

constant factor or constant summand?
what to do with $\eta_{a}>1.5$?

Open questions

constant factor or constant summand?
what to do with $\eta_{a}>1.5$?
reparameterization invariance

Open questions

constant factor or constant summand?
what to do with $\eta_{a}>1.5$?
reparameterization invariance information theoretic meaningful priors

Open questions

constant factor or constant summand?
what to do with $\eta_{a}>1.5$?
reparameterization invariance information theoretic meaningful priors higher dimensions

Open questions

constant factor or constant summand?
what to do with $\eta_{a}>1.5$?
reparameterization invariance information theoretic meaningful priors higher dimensions

There is hope that all of this problems are resolvable in a single formulation.

