Occam factors, spline priors, and model-independent learning of continuous distributions

> Ilya Nemenman ITP, UCSB

Joint work with: William Bialek, Princeton University

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

P(x)

$$P(x) \xrightarrow{\text{i.i.d.}} X = \{x_1 \cdots x_N\}$$

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

$$P(x) \xrightarrow{\text{i.i.d.}} X = \{x_1 \cdots x_N\}$$
unknown

Model family
$$A$$

 $Q_A(x|\boldsymbol{\alpha})$
 $\dim \boldsymbol{\alpha} = K_A$
 $\mathcal{P}_A(\boldsymbol{\alpha}), Pr(A)$

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

$$P(x) \xrightarrow{\text{i.i.d.}} X = \{x_1 \cdots x_N\}$$

Model family A $Q_A(x|\boldsymbol{\alpha})$ $\dim \boldsymbol{\alpha} = K_A$ $\mathcal{P}_A(\boldsymbol{\alpha}), Pr(A)$ Model family B $Q_B(x|\beta)$ $\dim\beta = K_B$ $\mathcal{P}_B(\beta), Pr(B)$

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

Find the model with maximum posterior probability!

Find the model with maximum posterior probability! For example, for model *A*:

$$P(A|X) = \frac{P(X|A)Pr(A)}{P(X)} \xrightarrow{P(X|A)Pr(A) + P(X|B)Pr(B) \equiv Z}$$
$$P(X|A) = \int d\boldsymbol{\alpha} \mathcal{P}_A(\boldsymbol{\alpha}) P(X|\boldsymbol{\alpha}) \sim P(X|\boldsymbol{\alpha}_{\mathrm{ML}}) \,\delta\boldsymbol{\alpha}_{\mathrm{ML}}$$

Find the model with maximum posterior probability! For example, for model *A*:

$$P(A|X) = \frac{P(X|A)Pr(A)}{P(X)} \xrightarrow{P(X|A)Pr(A) + P(X|B)Pr(B) \equiv Z}$$
$$P(X|A) = \int d\alpha \mathcal{P}_A(\alpha) P(X|\alpha) \sim P(X|\alpha_{\rm ML}) \,\delta\alpha_{\rm ML}$$

For large K_A , $\delta \alpha_{\rm ML}$ (region of "good" α) decreases. More complicated models are penalized!

Find the model with maximum posterior probability! For example, for model *A*:

$$P(A|X) = \frac{P(X|A)Pr(A)}{P(X)} \xrightarrow{P(X|A)Pr(A) + P(X|B)Pr(B) \equiv Z}$$
$$P(X|A) = \int d\alpha \mathcal{P}_A(\alpha) P(X|\alpha) \sim P(X|\alpha_{\rm ML}) \,\delta\alpha_{\rm ML}$$

For large K_A , $\delta \alpha_{\rm ML}$ (region of "good" α) decreases. More complicated models are penalized! (See: Bayes factors, Occam factors; Jaynes 1968, 1979)

4

Saddle point (large N) expansion is almost always valid.

(See: Schwartz 1978, MacKay 1992, Balasubramanian 1996)

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

Saddle point (large N) expansion is almost always valid.

$$\log P(A|X) \rightarrow \sum_{i} \log Q_A(x_i | \boldsymbol{\alpha}_{\mathrm{ML}})$$

(See: Schwartz 1978, MacKay 1992, Balasubramanian 1996)

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

Saddle point (large N) expansion is almost always valid.

$$\log P(A|X) \rightarrow \sum_{i} \underbrace{\log Q_A(x_i | \boldsymbol{\alpha}_{\mathrm{ML}})}_{i} - \frac{K_A}{2} \log N - \log \det \partial^2_{\boldsymbol{\alpha}_{\mathrm{ML}}} \frac{\sum_{i} \log Q(x_i | \boldsymbol{\alpha}_{\mathrm{ML}})}{N}$$

(See: Schwartz 1978, MacKay 1992, Balasubramanian 1996)

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

Saddle point (large N) expansion is almost always valid.

$$\log P(A|X) \rightarrow \sum_{i} \underbrace{\log Q_A(x_i | \boldsymbol{\alpha}_{\mathrm{ML}})}_{i}$$
$$- \frac{K_A}{2} \log N - \log \det \partial^2_{\boldsymbol{\alpha}_{\mathrm{ML}}} \frac{\sum_{i} \log Q(x_i | \boldsymbol{\alpha}_{\mathrm{ML}})}{N}$$
$$+ \log \mathcal{P}(\boldsymbol{\alpha}_{\mathrm{ML}}) + o(N^0)$$

(See: Schwartz 1978, MacKay 1992, Balasubramanian 1996)

Saddle point (large N) expansion is almost always valid.

$$\log P(A|X) \rightarrow \sum_{i} \underbrace{\log Q_A(x_i | \boldsymbol{\alpha}_{\mathrm{ML}})}_{\text{goodness of fit}} \\ - \frac{K_A}{2} \log N - \log \det \partial^2_{\boldsymbol{\alpha}_{\mathrm{ML}}} \frac{\sum_{i} \log Q(x_i | \boldsymbol{\alpha}_{\mathrm{ML}})}{N} \\ + \log \mathcal{P}(\boldsymbol{\alpha}_{\mathrm{ML}}) + o(N^0)$$

108 /

Saddle point (large N) expansion is almost always valid.

$$\log P(A|X) \rightarrow \sum_{i} \underbrace{\log Q_A(x_i | \boldsymbol{\alpha}_{\mathrm{ML}})}_{\text{goodness of fit}} - \frac{K_A}{2} \log N - \log \det \partial^2_{\boldsymbol{\alpha}_{\mathrm{ML}}} \frac{\sum_{i} \log Q(x_i | \boldsymbol{\alpha}_{\mathrm{ML}})}{N}$$

generalization error, fluctuations, complexity; weak dependence on priors

$$+\log \mathcal{P}(oldsymbol{lpha}_{ ext{ML}}) + o(N^0)$$

(See: Schwartz 1978, MacKay 1992, Balasubramanian 1996)

Saddle point (large N) expansion is almost always valid.

$$\log P(A|X) \rightarrow \sum_{i} \underbrace{\log Q_A(x_i | \boldsymbol{\alpha}_{\mathrm{ML}})}_{\text{goodness of fit}} - \frac{K_A}{2} \log N - \log \det \partial^2_{\boldsymbol{\alpha}_{\mathrm{ML}}} \frac{\sum_{i} \log Q(x_i | \boldsymbol{\alpha}_{\mathrm{ML}})}{N}$$

generalization error, fluctuations, complexity; weak dependence on priors

$$+\log \mathcal{P}(oldsymbol{lpha}_{ ext{ML}}) + o(N^0)$$

(See: Schwartz 1978, MacKay 1992, Balasubramanian 1996)

7

• Bayesian inference penalizes for complexity (large K)

7

• Bayesian inference penalizes for complexity (large K)

• Fight between the goodness of fit and the complexity selects an optimal model family.

- Bayesian inference penalizes for complexity (large K)
- Fight between the goodness of fit and the complexity selects an optimal model family.
- This is a Bayesian analogue of the MDL principle.

• Bayesian inference penalizes for complexity (large K)

- Fight between the goodness of fit and the complexity selects an optimal model family.
- This is a Bayesian analogue of the MDL principle.

Does this generalize to infinite-dimensional models?

Finite Infinite	
-----------------	--

Finite	Infinite
α	$\phi(x) = -\log \ell_0 Q(x)$

8

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

(See: Bialek, Callan, Strong, 1996)

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

Quantum Field Theory analogy Fix ℓ and η :

$$= \frac{\langle Q(x)Q(x_1)\cdots Q(x_N)\rangle^0}{\langle Q(x_1)\cdots Q(x_N)\rangle^0}$$

Correlation function in a QFT defined by $\mathcal{P}[Q]$

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

Quantum Field Theory analogy Fix ℓ and η :

 $P[Q|X] = \frac{P(X|Q)\mathcal{P}[Q]}{P(X)}$

$$= \frac{\langle Q(x)Q(x_1)\cdots Q(x_N)\rangle^0}{\langle Q(x_1)\cdots Q(x_N)\rangle^0}$$

Correlation function in a QFT defined by $\mathcal{P}[Q]$

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

9

Quantum Field Theory analogy Fix ℓ and η :

 $P[Q|X] = \frac{P(X|Q)\mathcal{P}[Q]}{P(X)}$ $\langle Q \rangle = \frac{\int [dQ] \mathcal{P}[Q] Q(x) \prod_{i=1}^{N} Q(x_i)}{\int [dQ] P[Q] \prod_{i=1}^{N} Q(x_i)}$ $= \frac{\langle Q(x)Q(x_1)\cdots Q(x_N)\rangle^0}{\langle Q(x_1)\cdots Q(x_N)\rangle^0}$

Correlation function in a QFT defined by $\mathcal{D}[O]$

Explicit form of correlation functions

Large N approximation for $\eta = 1$ ML (classical, saddle point) solution dominates

Large N approximation for $\eta = 1$ ML (classical, saddle point) solution dominates

$$\ell \partial_x^2 \phi_{\rm cl}(x) + \frac{N}{\ell_0} \mathrm{e}^{-\phi_{\rm cl}(x)} = \sum_j \delta(x - x_j)$$

Large N approximation for $\eta = 1$ ML (classical, saddle point) solution dominates

changes on scale converges to changes on scale $\delta x \sim \sqrt{\ell/NP(x)}$

 $\frac{1}{\ell \partial_x^2 \phi_{\rm cl}(x)} + \frac{N}{\ell_0} e^{-\phi_{\rm cl}(x)} = \sum_j \delta(x - x_j)$

Large N approximation for $\eta = 1$ ML (classical, saddle point) solution dominates

 $-\log \ell_0 P(x)$ $\delta x \sim \sqrt{\ell/NP(x)}$

 $\ell \partial_x^2 \phi_{\rm cl}(x) + \frac{N}{\ell_0} \mathrm{e}^{-\phi_{\rm cl}(x)} = \sum_j \delta(x - x_j)$

changes on scale

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

converges to

|C. F. $\approx (1/\ell_0)^N e^{-S_{\text{eff}}[\phi_{\text{cl}}(x)]}$

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

back to start

C. F.
$$\approx (1/\ell_0)^N e^{-S_{\text{eff}}[\phi_{\text{cl}}(x)]}$$

 $S_{\text{eff}}[\phi_{\text{cl}}] = \frac{\ell}{2} \int dx (\partial \phi_{\text{cl}})^2 + \sum \phi_{\text{cl}}(x_i)$
 $+ \frac{1}{2} \sqrt{\frac{N}{\ell \ell_0}} \int dx e^{-\phi_{\text{cl}}(x)/2}$

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

back to start

C. F.
$$\approx (1/\ell_0)^N e^{-S_{\text{eff}}[\phi_{\text{cl}}(x)]}$$

$$S_{\text{eff}}[\phi_{\text{cl}}] = \frac{\ell}{2} \int dx (\partial \phi_{\text{cl}})^2 + \sum_{\text{goodness of fit}} \phi_{\text{cl}}(x_i)$$

$$+ \frac{1}{2} \sqrt{\frac{N}{\ell \ell_0}} \int dx e^{-\phi_{\text{cl}}(x)/2}$$
fluctuations, complexity, error

How do we measure performance?

How do we measure performance? For $x \in [0, L)$ the *universal* learning curve is $\Lambda(N) \rightarrow \langle D_{\mathrm{KL}}(P||Q_{\mathrm{cl}}) \rangle_{\{x_i\}}^0 \sim \sqrt{\frac{L}{\ell N}}$ How do we measure performance? For $x \in [0, L)$ the *universal* learning curve is $\Lambda(N) \rightarrow \langle D_{\mathrm{KL}}(P||Q_{\mathrm{cl}}) \rangle_{\{x_i\}}^0 \sim \sqrt{\frac{L}{\ell N}}$

For a different η :

$$\Lambda(N) \sim \left(\frac{L}{\ell}\right)^{1/2\eta} N^{1/2\eta-1}$$

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

back to start

Learner's assumptions $\mathcal{P}_{\ell,\eta=1}[Q]$

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

back to start

Learner's assumptions Actual target distribution

$$\mathcal{P}_{\ell,\eta=1}[Q] \\ \mathcal{P}'_{\ell_a,\eta_a}[Q]$$

16

Learner's assumptions $\mathcal{P}_{\ell,\eta=1}[Q]$ Actual target distribution $\mathcal{P}'_{\ell_a,\eta_a}[Q]$ $\eta = \underline{\eta}_a, \ \ell = \ell_a$ learning typical cases, $\mathcal{P} = \mathcal{P}'$

Learner's assumptions $\mathcal{P}_{\ell,\eta=1}[Q]$ Actual target distribution $\mathcal{P}'_{\ell_a,\eta_a}[Q]$

 $\eta = \eta_a$, $\ell = \ell_a$ learning typical cases, $\mathcal{P} = \mathcal{P}'$ $\eta = \eta_a$, $\ell \neq \ell_a$ marginal outliers of \mathcal{P}

Learner's assumptions $\mathcal{P}_{\ell,\eta=1}[Q]$ Actual target distribution $\mathcal{P}'_{\ell_a,\eta_a}[Q]$

$$\begin{split} \eta &= \eta_a, \ \ell = \ell_a & \text{learning typical cases, } \mathcal{P} = \mathcal{P}' \\ \eta &= \eta_a, \ \ell \neq \ell_a & \text{marginal outliers of } \mathcal{P} \\ \eta &> \eta_a & \text{extremely rough outliers} \end{split}$$

Learner's assumptions $\mathcal{P}_{\ell,\eta=1}[Q]$ Actual target distribution $\mathcal{P}'_{\ell_a,\eta_a}[Q]$

$\eta=\eta_a$, $\ell=\ell_a$	learning typical cases, $\mathcal{P} = \mathcal{P}'$
$\eta=\eta_a$, $\ell eq\ell_a$	marginal outliers of ${\cal P}$
$\eta > \eta_a$	extremely rough outliers
$\eta < \eta_a$	extremely smooth outliers

Learner's assumptions $\mathcal{P}_{\ell,\eta=1}[Q]$ Actual target distribution $\mathcal{P}'_{\ell_a,\eta_a}[Q]$

$$\begin{split} \eta &= \eta_a, \ \ell = \ell_a & \text{learning typical cases, } \mathcal{P} = \mathcal{P}' \\ \eta &= \eta_a, \ \ell \neq \ell_a & \text{marginal outliers of } \mathcal{P} \\ \eta &> \eta_a & \text{extremely rough outliers} \\ \eta &< \eta_a & \text{extremely smooth outliers} \end{split}$$

Note: we must have $\eta > 1/2$ for convergence of the integrals.

Learning typical cases

$$\begin{split} \ell &= 0.4, \quad \Lambda = (0.54 \pm 0.07) N^{-0.483 \pm 0.014} \\ \ell &= 0.2, \quad \Lambda = (0.83 \pm 0.08) N^{-0.493 \pm 0.09} \\ \ell &= 0.05, \quad \Lambda = (1.64 \pm 0.16) N^{-0.507 \pm 0.09} \end{split}$$

Learning marginal outliers

Learning at $\ell = 0.2$.

Learning strong outliers

 $\ell = 0.1$ for $\eta_a = 0$ and $\ell = 0.2$ otherwise

Conclusions for fixed η and ℓ

Conclusions for fixed η and ℓ

• No overfits!

Conclusions for fixed η and ℓ

• No overfits!

but suboptimal performance for learning outliers

Allow a prior over ℓ , but keep $\eta = 1$

C. F. $\rightarrow \langle C. F. \rangle_{\ell}$

Allow a prior over ℓ , but keep $\eta = 1$

C. F.
$$\rightarrow \langle C. F. \rangle_{\ell} = \int d\ell \ Pr(\ell) \ e^{-S_{\text{eff}}[\phi_{\text{cl}}(\phi,\ell)]}$$

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

24

Allow a prior over ℓ , but keep $\eta = 1$

C. F.
$$\rightarrow \langle C. F. \rangle_{\ell} = \int d\ell \ Pr(\ell) \ e^{-S_{\text{eff}}[\phi_{\text{cl}}(\phi,\ell)]}$$

 $S_{\rm eff}[\phi_{\rm cl}] =$ smoothing + data + fluctuations

Allow a prior over ℓ , but keep $\eta = 1$

C. F.
$$\rightarrow \langle C. F. \rangle_{\ell} = \int d\ell Pr(\ell) e^{-S_{\text{eff}}[\phi_{\text{cl}}(\phi, \ell)]}$$

$$S_{
m eff}[\phi_{
m cl}] = {
m smoothing} + {
m data}_{
m data} + {
m fluctuations}_{
m grows \ {
m with} \ \ell} \qquad {
m grows \ {
m with} \ 1/\ell}$$

Smoothness scale selection

Allow a prior over ℓ , but keep $\eta = 1$

C. F.
$$\rightarrow \langle C. F. \rangle_{\ell} = \int d\ell \ Pr(\ell) \ e^{-S_{\text{eff}}[\phi_{\text{cl}}(\phi,\ell)]}$$

$$S_{
m eff}[\phi_{
m cl}] = {
m smoothing + data}_{
m grows with \ell} + {
m fluctuations}_{
m grows with 1/\ell}$$

Some ℓ^* always dominates the C. F. and $\langle Q \rangle$!

Averaging over ℓ and allowing $\ell^* = \ell^*(N)$ deals with

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

If $\eta = \eta_a$, then $\ell^* = \ell_a$.

Averaging over ℓ and allowing $\ell^* = \ell^*(N)$ deals with

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

If $\eta = \eta_a$, then $\ell^* = \ell_a$. Otherwise:

$$0.5 < \eta_a \le 1.5 \qquad \qquad 1.5 < \eta_a$$

Averaging over ℓ and allowing $\ell^* = \ell^*(N)$ deals with

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

If $\eta = \eta_a$, then $\ell^* = \ell_a$. Otherwise:

$0.5 < \eta_a \le 1.5$	$1.5 < \eta_a$
data $>$ smoothing	smoothing > data

Averaging over ℓ and allowing $\ell^* = \ell^*(N)$ deals with

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

If $\eta = \eta_a$, then $\ell^* = \ell_a$. Otherwise:

$$\begin{array}{ll} 0.5 < \eta_a \leq 1.5 & 1.5 < \eta_a \\ \mbox{data} > \mbox{smoothing} & \mbox{smoothing} > \mbox{data} \\ \ell^* \sim N^{(\eta_a - 1)/\eta_a} & \ell^* \sim N^{1/3} \end{array}$$

Averaging over ℓ and allowing $\ell^* = \ell^*(N)$ deals with

Ilya Nemenman, UCSB Statistics seminar, August 26, 2003

If $\eta = \eta_a$, then $\ell^* = \ell_a$. Otherwise:

$0.5 < \eta_a \le 1.5$	$1.5 < \eta_a$
data > smoothing	smoothing > data
$\ell^* \sim N^{(\eta_a - 1)/\eta_a}$	$\ell^* \sim N^{1/3}$
$\Lambda \sim N^{1/2\eta_a-1}$	$\Lambda \sim N^{-2/3}$

Averaging over ℓ and allowing $\ell^* = \ell^*(N)$ deals with

If $\eta = \eta_a$, then $\ell^* = \ell_a$. Otherwise:

$0.5 < \eta_a \le 1.5$	$1.5 < \eta_a$
data > smoothing	smoothing $>$ data
$\ell^* \sim N^{(\eta_a - 1)/\eta_a}$	$\ell^* \sim N^{1/3}$
$\Lambda \sim N^{1/2\eta_a - 1}$	$\Lambda \sim N^{-2/3}$
best possible	better, but not
performance	best performance

Averaging over ℓ and allowing $\ell^* = \ell^*(N)$ deals with

qualitatively wrong smoothness $\eta_a \neq 1!$

Note: just single runs shown.

Note: just single runs shown.

Note: just single runs shown.

Approaching model-independend optimal inference!

- choosing ℓ^* corresponds to selection of a structure element with $d_{\rm VC}=\sqrt{NL/\ell^*}$ in Vapnik's SRM theory

- choosing ℓ^* corresponds to selection of a structure element with $d_{\rm VC} = \sqrt{NL/\ell^*}$ in Vapnik's SRM theory

• maximizing P over model families (ℓ 's) asymptotically corresponds to searching for MDL

- choosing ℓ^* corresponds to selection of a structure element with $d_{\rm VC} = \sqrt{NL/\ell^*}$ in Vapnik's SRM theory

• maximizing P over model families (ℓ 's) asymptotically corresponds to searching for MDL

 a lot in common with the Gaussian Processes theory; however normalization constraint is important 29

Summary

Bayesian smoothness (model) selection works for nonparametric spline priors!

30

• constant factor or constant summand?

- constant factor or constant summand?
- what to do with $\eta_a > 1.5$?

- constant factor or constant summand?
- what to do with $\eta_a > 1.5$?
- reparameterization invariance

- constant factor or constant summand?
- what to do with $\eta_a > 1.5$?
- reparameterization invariance
- information theoretic meaningful priors

- constant factor or constant summand?
- what to do with $\eta_a > 1.5$?
- reparameterization invariance
- information theoretic meaningful priors
- higher dimensions

- constant factor or constant summand?
- what to do with $\eta_a > 1.5$?
- reparameterization invariance
- information theoretic meaningful priors
- higher dimensions

There is hope that all of this problems are resolvable in a single formulation.