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We present a statistical-mechanical selection theory for the sequence analysis of a set of 
specific DNA regulatory sites that makes it possible to predict the relationship between 
individual base-pair choices in the site and specific activity (affinity). The theory is based 
on the assumption that specific DNA sequences have been selected to conform to some 
requirement for protein binding (or activity), and that all sequences that can fulfil this 
requirement are equally likely to occur. In most cases, the number of specific DNA 
sequences that are known for a certain DNA-binding protein is very small, and we discuss 
in detail the small-sainple uncertainties that this leads to. When applied to the binding sites 
for cro repressor in phage lambda, the theory can predict, from the sequence statistics 
alone, their rank order binding affinities in reasonable agreement with measured values. 
However, the statistical uncertainty generated by such a small sample (only 6 sites known) 
limits the result to order-of-magnitude comparisons. When applied to the much larger 
sample of Escherichia coli promoter sequences, the theory predicts the correlation between 
in vitro activity (k,KB values) and homology score (closeness to the consensus sequence) 
observed by Mulligan et al. (1984). The analysis of base-pair frequencies in the promoter 
sample is consistent with the assumption that base-pairs at different positions in the sites 
contribute independently to the specific activity, except in a few marginal cases that are 
discussed. When the promoter sites are ordered according to predicted activities, they seem 
t’o conform to the Gaussian distribution that results from a requirement for maximal 
sequence variability within the constraint of providing a certain average activity. The 
t’heory allows us to compare the number of specific sites with a certain activity to the 
number that would be expected from random occurrence in the genome. While st’rong 
promoters are “overspecified”, in the sense that their probability of random occurrence is 
very low, random sequences with weak promoter-like properties are expected to occur in 
very large numbers. This leads to the conclusion that functional specificity is based on other 
properties in addition to primary sequence recognition; some possibilities are discussed. 
Finally, we show that the sequence information, as defined by Schneider et al. (1986). can 
be used directly (at least in the case of equilibrium binding sites) to estimate the number of 
protein molecules that are specifically bound at random “pseudosites” in the genome. This 
provides the connection between base-pair sequence statistics and functional in vivo 
specificity as defined by von Hippel & Berg (1986). 

1. Introduction repressor-operator or RNA polymerase-promoter 

Genome-regulatory proteins recognize and bind 
interactions). Such binding &le&ion derides from 

to specific DNA sites among a vast excess of 
specific interactions between the active site of the 

strurturally similar non-specific sites (e.g. 
protein and the base-pairs in the DXA binding 
sequence. In a recent paper (von Hippel & Berg, 
1986) we discussed the molecular origins of this 

t Present address: Department of Molecular Biology, specificity, and also explored the requirements for 
The Biomedical Center, Box 590, S-75124 Uppsala, specific binding site selection in t’he living cell. 
Sweden. These requirements stem from the competition for 
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protein by non-specific sites that are close to the 
specific ones in sequence and/or in binding affinity 
(von Hippel, 1979). To quantify the extent of this 
non-specific competition, and thereby the magni- 
tude of the effective binding selection process, we 
need to know the magnitude of the reduction in 
specific binding affinity that accompanies the 
insertion of each of the “wrong” base-pairs that 
distinguish a particular non-specific site from the 
specific site. One way of doing this is to isolate or 
create sites with various degrees of homology to the 
specific sites and to measure the resulting binding 
constants (e.g. see Jobe et al., 1974; Mossing &, 
Record, 1985). 

In the absence of exhaustive binding data, one 
can still make some inferences about the relative 
importance of specific base-pair interactions at 
different positions within the binding site. Positions 
in the site where the base-pairs vary greatly 
between the specific sequences can be expected to 
contribute little to the binding specificity, while 
conserved or nearly conserved base-pairs doubtless 
contribute a great deal. Thus, Schneider et al. (1986) 
have used information theory to quantify the 
importance of particular base-pairs, based on their 
variability in the specific sequences. However, this 
measure of information is not directly related to the 
relative binding affinities, and thus cannot tell us 
anything quantitative about specific interactions. 
Mulligan et aZ. (1984) have found a correlation 
between the activity of promoter sites and a 
“homology score” that measures the closeness of a 
part’icular sequence to the perceived consensus 
promot’er sequence. This homology measure weighs 
the importance of each “wrong” base-pair (relative 
to the consensus sequence) against the observed 
variability among all promoters. Mulligan et al. 
(1984) and Mulligan & McClure (1986) also used this 
homology score as a basis for a computer search for 
promoters in known DNA sequences. Similar search 
algorithms, using somewhat different weighting 
schemes? have been presented and applied by others 
(Harr et al., 1983; Staden, 1984). Recently, a more 
elaborate pattern-recognition method has been 
designed and used to analyze Escherichia coli 
promoter sequences (Galas et al., 1985). 

While the results of the present paper will be 
relevant’ to the design of search algorithms and to 
the interpretation of sequence analyses, our main 
focus will be on the relationship between sequence 
variability within a set of specific sites and the 
interaction free energy contributed by each base- 
pair in the site. The connection between sequence 
variability and binding affinity derives from an 
evolutionary selection constraint. That is, specific 
binding sequences can be assumed to be selected to 
show binding affinities in some useful range. 
Fortunately, we do not need to understand the 
exact nature of this selection constraint in order to 
establish the required theoretical connection 
between sequence variability and binding free 
energy. In the next section we explore the 
consequences of some different selection constraints 

and derive the desired relations between the 
sequence variability in the set of possible binding 
sequences and the corresponding int#eract,ion free 
energies. In the third section the theory is first 
applied to the binding sites for the cro repressor of 
lambda phage and is then extended and applied to 
the E. coli and coliphage promoter sequences 
studied by Mulligan et al. (1984). Our theory 
suggests a more general homology measure that is 
directly related to binding and activity: this 
measure more closely resembles the statistical 
weighting scheme used by Harr et al. (1983). The 
significance of the information measures used bq 
Schneider et aZ. (1986) is also discussed in light, of 
the present’ results, and it is shown how they relate 
to the functional specificity requirements in t.hr 
living cell. In the fourth section we explore the 
consequences of t’he theory for the evolutionary 
selection of binding interactions. It is obvious t,hat, 
specificity is not’ maximized in evolution. Instead 
we argue that evolution ~minimizes the ma~irnum 
loss of specificity, in the sense that~ specificity will 
tend towards a situation where mutational errors 
have relatively small effects. 

The statist’ical-mechanical selection theory 
provides a physical basis for the analysis and 
interpretation of sequence data. It enables us to 
quantify the expected specificity for any sequence 
and sets that in relation t’o the requirements for it’s 
biological function. A statistical analysis of this sort 
requires a fairly large sample of specific sit,rs to 
provide a reasonable predictive accuracy. Thus, all 
quantitative results are compared to the expected 
statistical uncertainties. However, the general 
results of the theory are not dependent, on actua,l 
sequence analysis: thus, t)hey provide a framework 
within which the relationships between sequence 
variability, specificity and function can be 
understood. 

2. Statistical-mechanical Ensembles that Describe 
the Sequence Variability of Specific Binding Sites 

Protein-DNA recognition is based primarily on 
the DNA-sequence-dependent hydrogen bond donor 
and acceptor patterns exposed in the grooves of the 
double helix. These patterns must be more nr less 
complementary to similar patterns in the binding 
site of the protein. In particular oases t.hese 
interactions have been identified physically (e.g. bs 
X-ray crystallography), but in general the struct’ure 
of the recognition site on the protein is not known. 
One can also gain information about the impor- 
tance of base-pair interactions in a recognition 
sequence by studying the effects on recognition of 
the modification or substitution of individual base- 
pairs. Tn the absence of detailed laboratory st’udies 
of such effects. t’he sequence analysis of naturally 
occurring recognition sites can provide similar 
information. This follows because we assume that in 
the course of evolution nature has carried out, 
analogous experiments, testing base-pair substitu- 
tions and accepting and rejecting sequences on the 
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basis of their properties as recognition sites. In 
recent years the number of known sequences has 
been increasing sharply, while the physical charac- 
terization of their functional properties (binding, 
activity, etc.) has lagged far behind. Thus, it 
becomes particularly important to derive as much 
information as possible from the sequence analysis 
itself. 

(a) Consensus sequences 

A certain sequence-specific (“recognizer”) protein 
can normally recognize and bind to DNA sites that 
vary somewhat in sequence, so that a base-pair at 
any particular position may differ from site to site. 
In general such sites share common features, 
consensus base-pairs that “almost always” appear 
at the same position in every site. These consensus 
base-pairs then form a distinct pattern that can 
help the biologist to identify previously unknown 
recognition sites in other DNA sequences. Qualita- 
tively, it can also be argued that sites that differ 
more from the perceived consensus sequence are 
weaker recognition sites, and this also appears to be 
so in cases that have been tested (e.g. for operators 
or promoters). In principle, the consensus sequence 
could be defined as the sequence that, at every 
position in the site, carries the base-pair most often 
found at this position in the set of all naturally 
occurring sites that have been sequenced. 
Obviously, with such an extended definition of 
consensus, not all consensus base-pairs turn out to 
be equally significant. Some questions that 
naturally arise are: (1) how should one quantify the 
significance of a consensus base-pair and the 
importance of deviations from it? (2) What can be 
deduced from the sequence data about the 
recognition mechanisms and the functional proper- 
ties of particular sequences? 

Various stat,istical measures have been applied in 
approaching the first question. For example, 
Schneider et al. (1986) have used information 
theory to analyze some sets of operator sites and 
have assigned a measure that quantifies the 
importance of the base-pair choice at each position 
in a particular kind of recognition site. This 
measure of information is determined from the 
probability that the observed base-pair utilization 
frequency has appeared at random. Thus, the 
information-theoretic sequence analysis can also be 
used to estimate the probability that a certain kind 
of recognition sequence will occur at random in the 
genome. However, a statistical measure of this sort 
cannot tell us anything quantitative about the 
recognition efficiency (binding or activity) of a 
particular base-pair sequence. Mulligan et al. (1984) 
devised a measure for the importance of any 
particular base-pair choice at individual positions in 
promoter sites, based on its frequency of occurrence 
in the set of ident,ified promoter sites found in E. 
coli. Although it is not obvious why this particular 
measure should be chosen, Mulligan et al. (1984) 
used it to quantify a homology score (defined as the 

degree of closeness of a given promoter to the 
consensus sequence) and were able to demonstrate a 
correlation between this core and the activity of 
various promoter sequences. 

What has been missing in most sequence studies 
of this sort is an a priori coupling between sequence 
choice and functional properties. In order to use the 
sequence analysis of the naturally occurring 
recognition sites to predict the recognition efficiency 
of any particular sequence, one must know what 
constraints the sites were chosen to satisfy. In the 
course of evolution, only sequences with binding 
affinity (or activity) in some useful range would be 
selected as specific recognition sites. These evolu- 
tionary selection constraints provide the necessary 
relationship between sequence choice and functional 
properties. Rather than just guessing what this 
relationship might be, we shall proceed by assuming 
that some selection constraint is operating and then 
consider all possible sequences that could satisfy it. 

(b) Selection model 

For simplicity of discussion, let us first consider a 
set of sites that have been chosen on t,he basis of 
affinity for a particular sequence-specific protein 
(e.g. operator sites). Differences in base-pair choice 
at certain positions in individual sites can have 
several causes. (1) Certain sites may require a 
different binding affinity depending on their 
functional role in the genome. {2) Some base-pair 
choices may be neutral with respect to binding 
affinity; or if they do matter, the binding affinity 
could be compensated by appropriate choices at 
other positions in the site. (3) Some base-pair 
choices may be required for regulation (e.g. binding 
of effector molecules) rather than for binding of the 
recognizer protein under consideration. The effect of 
a requirement of this type is difficult t.o predict, 
without knowing its exact nature and will not be 
taken into account in the derivat,ions below. 
However, the results of the analysis make it possible 
to identify and discuss the effects of some such 
requirements. 

Thus, we shall consider the effects of the binding 
requirements for one particular recognizer protein 
on base-pair variability (or base-pair conservation) 
within the set of binding sites. To be able t.o do this 
we shall assume that the binding free energies for 
all possible sequences are known and then derive 
the most probable base-pair utilization frequencies 
that ensue. This is analogous to a st)atistical- 
mechanical approach in which it is assumed that 
the energy levels of a particular system are known; 
a distribution of level occupancies ran then he 
calculat.ed. In the Appendix these dist,ributions are 
calculated from first principles. In this section we 
shall pursue the statistical-mechanical analogy. 

The basic assumptions we make a,re: (1) indivi- 
dual binding sequences are selected to have a value 
of binding affinity for the recognizer protein in some 
useful range. Depending on the functional role of 
the protein-DNA interaction at issue. t,his range 
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may well vary between individual sites. (2) The 
number of sequences in such an affinity ringe that 
could possibly be used is large. If selection is only 
on the basis of affinity, “neutral sequence drift” 
within this selection constraint will ensure that all 
possible sequences are equiprobable. (3) Each 
possible base-pair B (B = 0, 1, 2, 3, where e.g. 
O=A.T, l=T.A, 2=G.C, and 3=C.G) at 
position 1 (I = 1, 2, . . ., s, where s is the site size) in 
a binding site contributes a certain amount eIBkTt 
to the binding free energy at that site. These 
individual base-pair contributions are assumed to 
be independent and therefore additive. The 
strongest binder, the cognate base-pair designated 
B = 0 at each position, is considered to define the 
ground-state level with cl0 = 0. Thus, &LB are 
dimensionless positive numbers that express the 
decrease in (favorable) binding free energy (in units 
of kT) that results when the cognate base-pair at 
position l’is replaced by base-pair B; this will be 
referred to in the following discussion as the local 
(per base-pair) discrimination energy. 

The total discrimination energy for a particular 
sequence is given by the sum of the local 
contributions from the individual base-pairs. In this 
way the binding affinity for all sequences are 
measured relative to the best binding (cognate) 
sequence. (In principle any particular base-pair 
sequence could be chosen as the standard to which 
other sequences are compared; then E,~ could be 
either posit,ive or negative.) 

(i) Sites selected with the same binding afinity 
Let us consider the potential binding sites as the 

set of all possible sequences that have binding 
affinity in some limited range around some fixed 
required value. All such sequences must have 
discrimination energy in some limited range AE 
around a required level E. Thus, in each potential 
site, the local contribution ~~~ from every position l 
must sum to E. In the set of all potential sites, 
what is the frequency with which a certain base- 
pair B appears at a certain position in a site? This 
question can be answered by counting all possible 
sequence combinations that provide the required 
discrimination energy E (see the Appendix). 
However, a completely equivalent question is 
frequently asked in statistical mechanics, where one 
seeks to describe the probability of energy-level 
occupancy given that the total energy should sum 
to a given value (e.g. see Gurney, 1949). Thus, a 
potential site can be considered as the realization of 
a statistical-mechanical system of s independent 
particles and a given energy E. Choosing base-pair 
B at position 1 in a sequence corresponds to putting 
particle 1 into energy level E,~ in the corresponding 
statistical-mechanical system. (Thus sequences are 
chosen according to a microcanonical ensemble.) To 
start with we shall assume that base-pairs are 
chosen with equal a priori probabilities, i.e. that 

t kT, the product of the Boltzmann constant and the 
absolute temperature. 

they are equally common in the genome. (This 
assumption is removed in the Appendix.) Then, in 
analogy with the probability distribution over 
single-particle levels, the probability fiB of choosing 
base-pairs B at position 1 is proportional to the 
usual Boltzmann factor exp ( -&): 

h(E) = exp ( - &,)/4q,; 
H=0,1.2,3 and 1=1,2 ,..., s, (1) 

where: 

qI = [l+exp (-&,)+exp (-A&,,)+ 

exp (-&)I/4 (2) 
is the partition function that is chosen to ensure 
that the base-pair probabilities in equation (1) sum 
to unity at each position 1. The coupling factor 1. is 
a dimensionless number, which has to be chosen so 
that the distribution satisfies the selection con- 
straint, i.e. so that the discrimination energy E has 
the assumed value. In a sense, ;1 compensates for 
the fact that, even if base-pairs contribute 
independently to the binding affinity, their fre- 
quency of occurrence cannot be totally independent 
since their contributions in each site must add up to 
the assumed value of E. 

In the combinatorical derivation of statistical- 
mechanical energy distributions (e.g. see Gurney, 
1949), a statistical parameter corresponding to 1 
appears as in equation (1) in order to satisfy the 
constraints on overall energy. When it’ is required 
that the relations agree with classical thermo- 
dynamics, this parameter can be identified with the 
absolute temperature of the system as 1= 1lkT. 
Obviously, in the case of sequence selection 
described here, we are not concerned with a 
thermodynamical system. Thus, 2 has a less 
obvious physical interpretation, though it serves, in 
the same sense as kT, as a proportionality factor to 
relate populations of base-pair choices to binding 
free energies. In the Appendix we show that I is 
determined by the density of potential sites, i.e. by 
the number of possible sequence combinations that 
have the required discrimination energy E. 

Since the free energy contribut’ions of individual 
base-pairs to the binding affinity are assumed to be 
additive, E can be calculated as the average over 
the whole set: 

Inserting fie from equation (l), t)his gives an 
implicit relation from which 1 can be calculated. 
Thus, the base-pair utilization frequences fie of 
equation (1) depend implicitly on E through their 
dependence on L(E) via equation (3). 

In the particularly simple case where all local 
discrimination energies are the same (cIS = E), from 
equations (I), (2) and (3) one finds for a site 
comprising s base-pairs that: 

1(E) = In (3x/E-3)/e. 

While the selection parameter i in principle can 
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have any positive value, for practical reasons it 
seems that L varies between -0.5 and - 1.5 at 
most. 

(ii) Sites selected with a distribution of binding 
afinities 

In general a set of sites will include all known 
binding sequences for a given protein. These sites 
may exhibit a wide variety of affinities for the 
protein, depending on their functional role in the 
genome. A set of n, binding sites will then have 
some distribution g(E) of discrimination energies so 
that n,g(E)AE is the number of sequences that have 
discrimination energies in the range BE around E. 
The observed base-pair utilization frequencies f,$ 
in this whole set will be an average over the 
expected base-pair frequencies in each affinity 
range: fp,“” = s f,,VWE)dE. (5) 

As seen in equation (4), I(E) is relatively insensitive 
to changes in E. Thus, to a first-order approxima- 
tion in variations of I, equation (5) gives: 

fpSbs = fd@L,)> (6) 

and, while equation (I) still holds, E has been 
replaced by its average value over the whole set of 
sites: VO,,, = s -WWE. (7) 

Again, from the assumed additivity of all individual 
base-pair contributions, as in equation (3) the 
selection energy ( E)seq is equal to the average over 
the base-pair utilization frequencies: 

This expression consequently determines the para- 
meter A( (E),,,) if the individual aIB terms are 
known. It should be stressed that A is thus a 
quantity determined from the properties of the 
whole set of sites, and (at least to a first-order 
approximation) does not vary from site to site. 

Thus, the expected base-pair utilization frequen- 
cies are very insensitive to variations in the 
required discrimination energy, and are determined 
primarily from its average. Consequently every site 
in the set gives approximately the same contribu- 
tion to the base-pair frequencies, regardless of its 
exact discrimination energy. It therefore follows 
that the base-pair frequencies from the whole set of 
binding sites can be analyzed properly and not just 
from sites with affinities m some limited range. 

The statistical sequence analysis of a set of 
binding sites will provide the base-pair utilization 
frequencies, flib”. With these we can calculate the 
local discrimination energies, Ebb, via equation (1) in 
the form: 

/I&$ = In (fpob”/fpBbs) (9) 

and their average over all possible substitutions: 

(10) 

With this definition, 3sE/4 corresponds to the 
average discrimination energy for a random 
sequence. The parameter 1, in principle determined 
by equation (8), remains undetermined from the 
sequence analysis unless real binding free energies 
are known for at least some sites. When all local 
discrimination energies E,~ are known from equation 
m one can calculate the actual discrimination 
energy: 

for any sequence {B,}i= 1. This will also provide 
information on the form of the required discrimina- 
tion energy distribution g(E) for the set of specific 
sites studied. 

(iii) Sequence information 
From the observed base-pair frequencies, 

Schneider et al. (1986) defined and calculated the 
information contained in a given set of sequences 
as: 

where p”(B) is the a priori probability of the 
occurrence of base-pair B. When all base-pairs are 
equally common in the genome, p”(B) = l/4, and 
one finds, using equations (8) and (9) that: 

fseq = -GE),,, - i In qi. 
I=1 

(12b) 

Thus, the sequence informat’ion is directly related 
to the average discrimination. In fact’, in the 
statistical-mechanical analogy the negative of the 
sequence information serves as the “selection 
entropy” (see below). The connection of this 
selection entropy with the thermodynamic entropy, 
S, becomes even more clear when it is observed 
from equation (12b) that (dl,,,Jd(E),,g = -A, in 
analogy with the thermodynamic relation 
(dS/dE) = l/T, in which T is the absolute 
temperature. 

In the Appendix t’he probability of random 
occurrence of a site with discrimination energy 
below some cut-off energy E is calculated. From 
equations (A16) and (12b), one finds that: 

P,Kne,) 

exp ( - Jseq) 
= ~67cs(l-E/2(E),,,)~“2(1 -(E),,q/~E) (13) 

expresses the probability of random occurrence of a 
site with discrimination energy less than the 
average GO,,, for the sites in the set studied. All 
the quantities required (l(E),,,, 22, and Jseq) to 
calculate this probability are determined from the 
sequence data via equations (8), (9), (10) and (12a). 
While the expression is dominated by Iseq (and this 
is the primary physical meaning of the sequence 
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information) the correction factor is also significant. 
Equation (13) makes it possible to estimate the 
number of randomly occurring binding sites in the 
genome. 

When the local discrimination energies (EJ are 
known we can also calculate the average binding 
constant, K,, for a random site. Since the random 
probability for any particular sequence {B,} of 
length s is 4-” and its binding constant is a factor 

,Q exp ( -b,) smaller than that of the consensus 

sequence (K,), one finds: 

exp ( - kf,) 

= K,4-” fi [l +exp ( -aLI)+ 
1=1 

exp (-62)+exp (-Ql (14a) 

where the sum is over all sequence combinations 
{B,} of length s. Thus, in the particular case when 
the selection parameter Jti = 1, the statistics for a set 
of specific sites can be used directly to estimate the 
specific affinity of a random site. From equations 
(12b) and (14a), the average binding constant for a 
random site is: 

KR = KO exp ( - (-Us,, - Is&; A= 1. (14b) 

This relationship between sequence statistics and 
specific afinity for a random site has been derived 
independently by Gary Storm0 (Universit’y of 
Colorado; personal communication). As shown in 
the Appendix, equation (A33a), the relation (14b) 
holds also when base-pairs are not equiprobable in 
the genome; furthermore, it holds to first-order in 
(2 - 1) even when 1 is different from 1, see equation 
(A33b). Actually, K, is the average of the specific 
component of the binding constant for a random 
site. If the protein can also bind in a totally non- 
specific mode with binding constant K,,,, this 
constant should be added to equations (14a) and 
(14b) for an estimate of the overall non-specific 
binding constant (see von Hippel & Berg, 1986). If 
the protein binds to random DNA dominantly in 
this non-specific binding mode, K,, > K, and K, 
may not be observable. 

(iv) Summary of the selection theory 

The results of the theory follow from the 
assumption that all base-pair sequences that 
provide the same specific affinity (or activity) have 
an equal probability of selection as recognition sites 
during evolution. To make the calculations more 
tractable, we have also added the assumption that 
individual base-pairs contribute independently to 
the affinity. As discussed further, below, together 
with the results of the sequence analyses, neither of 
these assumptions can be strictly true in general. 
However, the equiprobability assumption repre- 
sents the simplest assumption that is consistent 

with what’ is known about neutral sequence drift 
and natural selection. The independence assump- 
tion is removed in the Appendix, so that the theory 
can account for the possibility that’ neighboring 
base-pairs contribute co-operatively to the binding 
affinity (or activit,y). 

On the basis of these two assumptions the results 
follow from the calculations presented mostly in the 
Appendix. The statistical-mechanical analogy 
enables us to reduce the computations in the main 
text and to draw on various well-known results and 
concepts (e.g. Boltzmann factors, partition func- 
tions, etc.). It should therefore be stressed that this 
selection theory works in analogy with a statistical- 
mechanical ensemble. Specific sites are assumed to 
be selected to have affinity (or specific activity) in 
some useful range, while the possible states of a 
statistical-mechanical system are limit*ed by the 
amount of energy that is available. This is why 
binding free energaes of the DNA sequences serve as 
discrimination energies in the select,ion theory. in 
analogy t,o the energy levels for a statistical- 
mechanical system. Similarly (the negative of), the 
sequence information serves as the selection entropy 
describing the “degeneracy” (or sequence varia- 
bility) of the sit’es, i.e. it provides an estimate of the 
number of different sequences that’ could possibly 
function as specific sites. The selection parameter ;t 
provides a coupling between the affinity require- 
ment and the sequence variability. In effect, 1 is a 
coupling factor bet.ween the protein properties 
represented by the set of interaction free energies 
(&is} and the DNA properties in the form of the 
base-pair choices { f,s}. 

Sequence mutations that do not change t,he 
binding affinity very much are assumed neutral for 
selection so that all possible sequences with the 
required binding affinity are equiprobable. Thus, 
the sequence mutations are analogous t’o the 
thermal t,ransitions in a statistical-mechanical 
system. A collection of specific sites, where each 
individual site has been selected to serve a 
somewhat different function, will not be strictly 
analogous t,o a statistical-mechanical ensemble 
where individual systems are interchangeable. This 
is why the functional distribution of sequence 
specificity, g(E), in principle cannot be determined 
in analogy with a statistical-mechanical energy 
distribution. However, as we found above, the 
average sequence statist’ics are very insensitive to 
the actual form of the required functional speci- 
ficity distribution so that the properties of 
individual sites can be analyzed properly. 

In the Appendix the relations above have been 
calculated from first principles and have also been 
extended to account for the possibility that the 
base-pairs do not occur with equal probability in 
the genome. These relations cannot be expected to 
apply exactly like the corresponding statistical- 
mechanical relations because of the limit,ations in 
the number of possible realizations; the number of 
sequences conforming to some discrimination 
energy requirement may be of the order of lo* t,o 
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Figure 1. Relationship between base-pair frequencies 
f and discrimination energies ate in a randomly 
dinerated set of all sites with discrimination energy below 
a certain cut-off energy E,. Data points are observed 
values and the lines are the expected relations using 
eqns (1) and (4) (or (AU) and (A13) from the Appendix). 
Slope a. results for {E,,}~!, = (0.4, 0.6, 0.8, 12, 1.5, 1.7, 
1.9, 2.1. 2.5, 2.8) and E, = 3.2. At every position 1, 
cl1 = erZ = erj is assumed. A total of 706 different 
sequence combinations fall within the cut-off. Slope b, 
results for {en,}~~r = {l.O. 1.5, 2.0, 2.5, 3.0, 3,5, 4.0, 4.5, 
5.0, 5.5) and E, = 8.7. At every position 1, ql = cIZ = q3 
is assumed. A total of 2029 different sequence 
combinations fall within the cut-off. 

lo6 rather than 10’” as in a normal statistical- 
mechanical system. 

We have also checked the relations on the 
computer by entering various sets of local dis- 
crimination energies (aiB} and counting all possible 
binding sequences with an overall discrimination 
below some cut-off E,. From the observed base-pair 
frequencies in the sample of all sites below this cut- 
off value, we can predict the local discrimination 
energies &a from equation (1) or equation (9) and 
compare them with the values aIB that were 
assumed to generate the sequences. As seen from 
two representative examples in Figure 1, the basic 
result’ (eqn (1)) holds well except when %lJ 
approaches EC. This limitation is expected since 
base-pairs with such large discriminations will not 
contribute in the sample of possible sequences. The 
straight lines in Figure 1 with a slope corresponding 
to ;1 represent the predicted relation between the 
observed base-pair frequencies and the local 
discrimination energy. While the computer calcula- 
tions quickly become too time-consuming when the 
site size and/or the number of different discrimina- 
tion energies is large, we conclude from the results 
of Figure 1 that the theoretical relations above can 
be used for most situations and do, in fact, become 
more exact as the number of possible sequence 
combinat’ions increases. 

(c) Statistical small-sample errors 

In the preceding section we derived the expected 
relationship between discrimination energies and 
base-pair utilization frequencies in the set of all 
possible sites. The specific sites that have been 
experimentally identified and sequenced in any real 
case can be expected to form a very small subset of 
all sequences that could possibly have been used in 
nature. This will introduce a “small-sample effect”, 
so that the observed base-pair utilization frequen- 
cies will not necessarily be identical to those 
expected. In the Appendix, equation (A40), we 
show that the best estimate of the true (in the set of 
all possible sites) base-pair frequency is: 

where nIB is the number of occurrences of base-pair 
B at position 1 in the sample of N sites. This is often 
referred to as Laplace’s Law of Succession. The 
assignment as in equation (15) makes obvious sense 
in the limit when no observations of the sequences 
have been made, i.e. when n18 = N = 0, since under 
these conditions fiB = l/4 and all base-pair choices 
are equally probable at each position in the site. In 
other cases (N # 0), equation (I 5) provides the best 
assignment in the sense that it minimizes the 
uncertainty (or the expected variance) in the 
estimate. When used in place of the frequencies 
(= n,,/N) actually observed in the sample, equation 
(15) smooths out the differences between the 
various base-pair choices somewhat and also affords 
a non-vanishing probability of occurrence to base- 
pairs that have not been observed in the sample. 
Although equation (15) gives the best estimate for 
the expected base-pair frequency f,a, it does not 
necessarily give the best estimate for a function of 
fiB (like, e.g. jlaIB = In (fro/f&)> as discussed in the 
Appendix. However, as a first approximation, our 
small-sample correction implies the usage of 
equation (15) in all expressions where fLbs is 
required. 

With equations (9) and (15), the local discrimina- 
tion energies should be estimated as: 

nio+l /& = In ~ 
( ) n,,+l 

(16) 

for each base-pair B at position 1. 
In the Appendix the statistical errors in the base- 

pair frequency assignments introduced by the small 
sample have also been calculated. From equation 
(A41), the expected relative standard deviation 
s,a/fiB in the base-pair frequency assignment is 
given by: 

hs/fd2 = 
N+2-(n,,+l) 

(%+l)(N+5) 

=L$f (forN31). (17) 

Thus, the relative error is much smaller for base- 
pairs that occur frequently in the sample. For large 
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Table 1 
Small sample uncertainties and contributions from 
random jiuctuations in base-pair choice at irrelevant 

positions 

10 0.45 4.2 7 0.30 0.078 
20 0.35 7.4 11 0.27 0.055 
30 0.29 10.4 14 0.25 0.042 
40 0.26 13.4 17 0.24 0.033 
50 0.23 16.1 21 0.22 0.027 
60 0.21 19.1 24 0.20 0.022 
70 0.20 21.9 27 0.19 0.019 
80 0.19 24.5 29 0.18 0.018 
90 0.18 27.2 33 0.17 0.013 

100 0.17 30.2 36 0.17 0.014 
112 0.16 33.5 40 0.16 0.013 
120 0.15 35.8 42 0.16 0.012 
200 0.12 57.5 65 0.13 0.0074 

Columns c to f were calculated from 1000 randomly generated 
samples of size N. 

* Sample size. 
b R,elative standard deviation in the assignment of base-pair 

frequency from eqn (17), calculated for an “average” base-pair 
observed N/4 times. 

‘Average number of occurrences of the most common base- 
pair at an irrelevant position. 

d Number of occurrences of the most common base-pair. for 
which the probability is 5% or less, that a larger number will be 
observed at an irrelevant position. These numbers provide a 
quick estimate of the significance in base-pair variability. 

’ Average discrimination energy assigned to an irrelevant 
position. 

f Average sequence information from eqn (A34) in a random 
assignment of base-pairs. 

values of N, the measure in equation (17) agrees 
with the relative standard deviation in the 
frequency of occurrence of base-pair B in the 
sample if it is known to occur with probability f,a. 
In column b of Table 1 the relative error from 
equation (17) has been listed for various sample 
sizes .!V. 

From equation (9) the expected standard devia- 
t’ion in &a would be approximately: 

8, = lh/flo) 2 +(slB/fiB) 23 1 (18) 
From equations (11) and (16), the discrimination 
energy E for a certain sequence {B,}f= i would be 
estimated as: 

AE({B,}) = ,zl In s 
(, > 

(19) 
IB 

Since the variances are additive, the expected 
standard deviation in this estimate 1E would be 
approximately: 

2~ (em/N)+. (20) 

where slB/fiB is given by equation (17). Since the 
discrimination energy E is defined relative to the 
consensus sequence, the sum in equation (20) is 
taken only over positions in the sequence at which 
base-pairs other than the consensus base-pair 

(B = 0) occur. In the approximate relat,ion, m is the 
number of non-consensus base-pairs in the sequence 
under consideration and this part of the expression 
has been evaluated using equation (17) with an 
average base-pair frequency fro = f,a = l/4. When 
two different sequences are compared, equation (20) 
gives the expected st,andard deviation of the 
difference in their discrimination levels (LE) if the 
sum is taken instead only over the base-pairs that 
differ in the t,wo sites. 

Equation (20) accounts for the uncertainty in the 
discrimination energy relative to the consensus 
sequence. There is also an uncerta,inty as t)o whet)her 
t,he perceived consensus sequence really represents 
the cognate (best binding) sequence. As discussed in 
the Appendix, even irrelevant positions will be 
assigned positive (or possibly zero) discrimination 
energies through the use of equation (16). The 
inclusion of many irrelevant positions in the 
analysis will substantially increase the statistical 
uncertainty in the discrimination energies esti- 
mat,ed from equat,ion (19). 

Equations (16) and (19) will serve as the basis for 
the sequence analyses below. The expect’ed devia- 
tion given by equations (17) and (20) represent the 
statistical small-sample errors. Tf one observes 
deviations much larger than these, they are likely 
to represent errors in the physical assumptions, e.g. 
base-pairs at, different’ positions that do not, 
contribute independently to the binding affinity OI 
certain highly conserved base-pairs in the sites that, 
serve some purpose other than to contribute to 
the binding affinity. Such base-pairs will have 
a statistical weight. in the sample bha,t is 
not proportional t,o their effect, on binding 
discrimination. 

3. Sequence Analysis of Specific Sites 

(a) Operator selection 

In principle, we can apply our theory directly via 
equation (16) to derive local discrimination energies 
(&IB) using published compendia of base-pair 
utilization frequencies; for example, repressor 
binding sites of various types on E. coli DNA. Rase- 
pair frequencies in the binding sites for the E. coli 
lexA, trpR, 1acI and argR gene products, as well as 
for t’he lambda c1 and cro gene products have been 
assembled by Schneider et al. (1986). Unfortunately 
each of these sets of sites consists of less than a 
dozen DNA base-pair sequences. As a consequence 
of these small sample sizes the statistical errors are 
very large and predictions may be of limited value, 
especially if the binding constant,s of t,he relevant 
protein to the various sites differ rather little. 
Nevertheless, order-of-magnitude predictions can 
be made that are in reasonable accord with 
published binding data. 

As an illustrat,ive example we can consider the 
(non-co-operative) binding of the cro repressor of 
phage lambda to the two sets of three adjacent, 
operator sites at, the lambda P, and P, promoters. 
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Table 2 
Binding sites for CI’O and lambda cl repressors 

Consensus 

(“m+ 1) 

0 R3 

(hi2 

%I 

OL3 

T T A T C A C C G G/C C G G T G A T A A ’ 
A A T A G T G G C G/C G C C A C T A T T 

A 2 2 13 4 1 10 1 1 1 2 35 23 17 1109 
C3 314132128 2 6 102 1111 112 
G2 111 11 1210 6 2 8 12 2 13 4 1 3 3 b 
T91017 1325 3 2 1 1 110 1 4 13 2 2 

CTATCACCG C AAGGGATAA’ 
GATAGTGGC G TTCCCTATT 
3 

i 

35 2 
-- 
10 8 iii 

0.0125d 

CTAACACCG T G C G T 6 T T G A ’ 
GATTGTGGC A C G (’ A (: A A C T 
3 4 

9 7 

2 2 2 
s -- 

10 8 

4 3 
5.4 10-4d 

7 lo 

TTACCTCTG G (1 G G T G A T A A ’ 
A A T G G A G A C C GCCACTATT 

4 3 5 

7 10 s 
0.107 d 

A T A C C A C T G G CGGTGATAC’ 
T A T G 0 T G .4 C C G C C A C T A T G 
2 4 5 

ii 7 s 

2 
; 0.0176d 

TTATCTCTG G (: G G T G T T G A ’ 
AATAGAGAC C GCCACAACT 

3 5 

10 s 

4 3 
0.032 1 * 

7 lo 

TAACCATCT G CGGTGATAA’ 
ATTGGTAGA C GCCACTATT 

2 4 2 3 

ii 7 12 10 
5.7 10-3d 

a Symmetric consensus sequence formed by taking the most common base-pair at each position. 
b Numbers of occurrences plus one (n,,+ 1) for each base-pair at each position. Since the protein 

binds symmetrically, individual binding sites have been counted in both directions, thereby artificially 
increasing the sample from 6 to 12 (cf. Schneider et al.. 1986). 

’ The 6 binding sequences for cro and lambda CI repressor as listed, e.g., by Ohlendorf et al. (1982). 
d The fractional number under a certain base-pair is (a,,+ l)/(~, + 1) = exp (-le,,), which expresses 

t,he reduction in binding constant (taken to power 2) from a non-consensus base-pair in the sequence. 
The number on the right is the product of these reductions, which gives the total reduction in binding 
constant (taken to the power 1) for a particular sequence relative to the consensus sequence. 

Taking these operator sites as being 19 base-pairs in significance. The O,, operator is the strongest 
length, we can use the base-pair utilization binding site (of the 6 cro operators under 
frequencies listed by Schneider et al. (1986), consideration) for the lambda CI repressor; thus, 
together with equation (19), to predict the relative clearly its base-pair sequence has been selected to 
binding constants (taken to the power A) of these satisfy another strong constraint in addition to cro 
sites for cro repressor. The relative values of protein binding. The cl binding interaction 
exp (-1E) obtained for these sites, listed in the involves significant, contacts with the middle base- 
order OR3/ORz/0,,/0,,/0,2/O~~, are found to be: pairs of the operator sequences, while cro protein 
1~0/0~044/8~6/1~4/2~6/0~46 (see Table 2). This set of binding does not seem to involve these positions 
relative values can be compared to the relative (see Ohlendorf et al., 1982). If we recalculate our 
values of the measured binding constants (tabu- predicted ratios of binding constants, using only the 
lated by Ohlendorf et al., 1982), which are: 1.0/O-12/ 14 base-pairs (the central 17 base-pairs of the 19 
0.12/0.5/0*5/0.1. Obviously, no single value of 1 can base-pair sequence of each operator, omitting the 
be used that will make the predicted ratios agree central 3 base-pairs) that have been implicated in 
with those observed. However, of the differences cro binding, we find for the expected ratios of 
listed only the discrepancy factor of -70 for the exp (-1E): 1~0/0~20/0~87/2~8/0~26/0~15. This brings 
ORI site is really significant; the others fall within all the calculated ratios of binding constants 
the expected statistical uncertainty of about a (assuming that 1 is close to unity) within or close to 
factor of 6 for a sample of this size (cf. eqn (20) and the expected standard deviation of about a factor of 
Table 1). 6 from the ratios of the experimental values. 

The discrepancy at O,, may have biological This result demonstrates that while predictions 
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may be of limited direct usefulness for sets of 
binding sites based on such small sample sizes, 
ratios of binding constants can be estimated at least 
to within an order of magnitude. Furthermore, the 
theoretical description is consistent with experi- 
ment, and large deviations from the predicted 
ratios can be used to infer the existence of other 
selection constraints that perturb base-pair utiliza- 
tion frequencies. In the following section we analyze 
E. coli promoter sequences to show that the theory 
can be used to make predictions of considerable 
utility for systems based on larger sample sizes. 

(b) Promoter selection 

The initiation of transcripts by RNA polymerase 
at promoters, unlike repressor binding, is not an 
equilibrium selection process as described in the 
previous sections. However, it is a useful example 
for our selection theory because there are many 
more sequences available for promoters than for 
any other type of protein binding site on DNA. 
Hawley & McClure (1983) have compiled a list of 
112 different promoter sequences from E. coli. We 
can extend the arguments for equilibrium selection 
to steady-state selection in the following way. 

(i) Promoter activity 

In a system with a collection of different (and 
non-interfering) promoters Pi (i = 1, 2, . . .) the 
reaction scheme for chain initiation at each of them 
can be written as (cf. McClure, 1985): 

Pi+ R $ (PiR)cl ’ (PiR),, 2 P,+R (21) d 
where R denotes RNA polymerase, (PiR)cl repre- 
sents the initial (closed) complex of promoter and 
polymerase, and (PiR)op denotes the “melted-in” 
(open) complex. The third step, k\ is the rate with 
which the promoter is “cleared” by the elongating 
polymerase (R’), and thus made available to accept 
a new polymerase. Thus, the steady-state chain- 
initiation flux for each promoter of type i in the 
system can be calculated as: 

k:K;[R,] 
ji = 1 +K;[R,](l+~~/@s)’ (22) 

where [R,] is the concentration of free polymerase 
and: 

k’ 
K;=z 

k;+k; 

corresponds to the inverse of the Michaelis-Menten 
constant. The ratio of initiation fluxes through 
different promoters is given by the ratio of their 
respective k, K, values if the denominator in 
equation (22) is close to unity, i.e. if the promoters 
are not saturated. There are strong indications that 
this may be the case in viva (Bremer & Dalbow, 
1975; Crooks et al., 1983). Thus, the discrimination 
for promoter selection under steady-state condi- 
tions is determined by a ratio of k, K, values for the 
various promoter sequences in question, just as the 
equilibrium binding distribution is determined by 

ratios of binding constants. The discrimination free 
energies of our theory can then be replaced by a. 
combination of binding and activation free energies. 

(ii) Promoter homology 
A correlation between in vitro values of k2 K, and 

sequence has been demonstrated by Mulligan et al. 
(1984), who find a linear relation between 
log (k2 KB) and a “homology score” defined in terms 
of the deviation of each promoter from t,he 
consensus sequence. We are now in a position to 
apply physical theory to describe these correlations. 
The discrimination level AE defined in equation (19) 
will serve as a measure of the departure from 
homology. One basic difference of this approach 
from the ad hoc homology score defined by Mulligan 
et al. (1984) is that their score is derived by adding 
the observed base-pair frequencies nlB,, while the 
measure 1E from equation (19) adds In (“iel+ 1) for 
every base-pair B, in a sequence { B,}f= 1, ’ 

To apply our theory, we must first include the 
contributions from the variable-length spacer 
region between the two important, sequence regions 
around positions - 10 and -35. Tn agreement with 
previous assumptions we assume that the spacer 
contributes independently bo the binding inter- 
actions. Then the variation in spacer 1engt.h ean be 
shown to contribute an additive term to the overall 
discrimination energy (see eqn (A21) of t,he 
Appendix). As a, consequence. equation (19) 
becomes: 

where LOP, ( = 17 for the promoters) is the optimal 
spacer length and L is the actual spacer length for 
the sequence in question. n,(L) is the observed 
number of occurrences for spacer length L in the 
sample of sequenced promoters. IJsing equation (24) 
requires that every given specific sequence be 
aligned with the consensus sequence in only one 
way; otherwise the number of occurrences n(L) of a 
certain spacer length is not uniquely defined. Thus, 
both the - 10 and the -35 regions must be so well- 
defined that, alternative alignments (assuming 
different spacer lengths) are not possible. This is 
true for most of the promoter sequences listed, but 
certainly not for random sequences. ln principle it 
would be possible to relax this assumption and 
enter different alignments with different weights. 

(iii) Activity-homology correlations 
Using the compilation of base-pair frequencies 

obtained by Hawley & McClure (1983), the 30-base- 
pair site size, and the list of in vitro k, K, values for 
31 promoters presented by Mulligan et al. (1984), we 
find the correlation plotted in Figure 2 between 
In (k2 KB) and AE defined by equation (24). A least- 
squares line can be fitted fairly well through the 
data points with a correlation coeficient’ r = 0.84. 
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Figure 2. Observed correlation between calculated discrimination level 1E and in vitro activity k,K, for various 
promoters. Since there are uncertainties in both co-ordinates (1E and In (k2KB)) in this Figure, the least-squares line 
(In (k2 K,) = - lN),L!C+24+35) has been determined by minimizing the average perpendicular distance from the data 
points. The numbers for the various promoters and references to the original literature are as given by Mulligan et al. 
(1984). The broken lines represent a f 1 standard deviation, both as observed for the 31 data points and as expected 
from the predict,ed uncertainty (N + 1 unit) in 1E and the experimental uncertainty in In (k2 KB). 

This is only a marginally better fit than was 
obtained with the homology score used by Mulligan 
ef al. (1984), which gave r = 0.83. From our theory 
we expect t,hat k, K, will vary proportionally to 
exp (--IS). Thus, the slope of the line in Figure 2 
gives the parameter I z 1.0, although there is a 
large uncertainty in the quantitative estimate of 
the slope interpreted as the physical parameter 1. 
In Table 3 we have listed the observed base-pair 
frequency data from Hawley & McClure (1983) and 
some of the various quantities that are relevant for 
the statistical-mechanical analysis. In keeping with 
the basic selection assumption of the theory we 
have excluded the six promoter sequences listed by 
Hawley & McClure (1983) that were created by 
fusion or mutation, and have considered in the basic 
set only the 106 naturally occurring sequences. This 
exclusion has a very small effect on the numerical 
results. 

The large statistical uncertainties in the esti- 
mated discrimination energy discussed in 
section 2(c), above (cf. Table 1 and eqn (20)) lead to 
a standard deviation in the estimated numerical 
value for IE of about f 1 unit; the uncertainty is 
somewhat smaller for sites with good homology. 
There is also a large experimental uncertainty in 
the promoter strengths as given by k,K,. In 
Figure 2, data points connected by a continuous 
vertical line correspond to measurements of k, K, 
for the same promoter carried out in different 
laboratories (see Mulligan et aZ., 1984). Thus, 

agreement with the theory can be expected only on 
average. In fact, the deviations from the least- 
squares line observed in Figure 2 are of the 
magnit’ude expected from the uncertainties in the 
two co-ordinates. 

Extending the straight line in Figure 2 to 
maximum homology (discrimination E = 0) would 
give (~zKB~,,~~ = 10” M- ’ s- ‘. However, there is 
no reason to expect the linear relationship to extend 
t’hat far. From column d of Table 3 it can be 
estimated that between four and nine positions 
in the site size may be irrelvant for specificity since 
the base variations at these positions could well be 
caused by random fluctuations. Each of these 
irrelevant positions would contribute, on average, 
0.16 (see Appendix, section (c), and column e of 
Table 1) to the estimate for LE. Thus, AE could 
probably not be smaller than about 1. 

More important, however, is the fact that k, K, is 
a combination of kinetic factors. From equation 
(23) we have kzK, = k,kz/(kz +kd). Most of the 
promoters in Figure 2 probably work in the limit 
where k, >> k,, so that the observed correlation 
between sequence homology and activity k,K, 
actually pertains to k, K, z k,k,lk,. Thus, if k, is 
fairly insensitive to sequence (e.g. diffusion-limited) 
the observed correlation is between sequence 
homology and the ratio kJk,. When this ratio 
becomes large, promoter activity will become 
association limited, k, K, M k, from equation (23). 
Then the straight line in Figure 2 should level off at 
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Table 3 
Statistics from the promoters 

-45 A 52 15 19 23 0.127 
A 40 20 14 35 0.079 
A 43 12 20 34 0.102 
T 37 21 10 41 0.115 
A 39 23 20 27 0.035 

-40 A 38 17 24 30 0.041 
T 19 26 25 39 0.034 
T 26 11 27 45 0.102 
c 25 41 29 15 0.059 
T 3 8 12 87 0.670 

-35 T 6 7 6 91 0.737 
G 3 11 86 IO 0.647 
A 70 18 3 19 0.401 
c 25 59 11 15 0.213 
A 49 9 17 35 0.168 

-30 T 26 25 15 44 0.070 

T 22 26 
T 29 19 
T 17 25 

-15 G 23 20 
G 18 27 
T 3 11 
A 101 3 
T 28 16 

-10 A 63 15 
A 55 22 
T 2 4 
A 34 14 
(’ 22 37 

-5 A 30 30 

(spacer) 

14 48 
29 33 
27 41 
42 25 
35 30 
12 84 
2 4 

18 48 
18 14 
14 19 

1 103 
33 29 
22 29 
29 21 

0.099 0.458 ‘l-A 
0.019 0.163 AT 
0.048 0.351 TG 
0.045 0.379 GT 
0.027 0.215 GT 
0.610 0.506 TA 
1.016 0.285 AT 
0.100 0.457 TA 
0.237 0.592 AA 
0.152 0.541 AT 
1.089 0.232 TA 
0.048 0.164 GC 
0.025 0.272 CG 
0.010 0.077 

0.519 AA 
0.305 AA 
0.354 AA 
0.293 AA 
O-325 AA 
0.292 TT 
0.324 TT 
0.400 TA 
0.341 CT 
0.482 TT 
0.460 TG 
0.493 GA 
0.533 AC 
0.550 CA 
0.409 TT 
0.400 

0.694 

23'18.9 1 .o 
19 : 15.6 0.9 
20:14.4 1.6 
19.13.0 1.8 
14 : 13-4 0.2 
14 : 10.5 1.1 
16 : 15.9 0.0 
15 : 10.1 1.6 
31 : 32.5 -0.3 
75:73.0 0.4 
71 172.2 -0.3 
56:55.3 0.1 
44:37-x 1.3 
32:26.3 1.3 
21:13.8 2.1 

16:12.4 1.1 
17 : 10.6 2.1 
28:15.5 3.4 
15:11.2 1.2 
29.26.6 0.5 
77:78.3 -0.3 
43:44.3 -0.3 
29:27.5 0.3 
33:31.6 0.3 
54:52.0 0.4 
32:31.6 0.1 
19 : 10.9 2.6 
15:9.5 1.9 

a Position number in the promoter sites as labeled by Hawley & McClure (1983). 
b Consensus sequence. 
’ East-pair utilization (n,,+ 1) for B = A, t”, G, ‘I’, at position 1. 
d Sequence information at position 1 from eqn (A35). From eqn (A36) exp (-NIL) gives a measure 

for the probability of random occurrence of the observed base-pair utilization at this position. The sum 
of the entries in this column gives I,,, = 7.1. 

e (6,) is the average contribution to the discrimination energy at this position. The sum of the 
entries in this column gives I(E),,, = 12.0. 

r Most frequent doublet at this position and the following. 
*r@ is the number of occurrences of the most frequent doublet and ,Zz is the expected number based 

on the singlet frequencies of the respective base-pairs. 
h (@S- %,)/[fi,( I -nJ~v)]* is the deviation in the observed doublet frequency divided by the 

expected standard deviation. This gives a measure of the significance of the observed doublet 
correlation 

k, ks z k= when the discrimination energy decreases 
below that which corresponds to k,lk2 N 1. In fact, 
the “best” promoters in Figure 2 may already be 
approaching this limit. This may also be the reason 
why a very efficient synthetic promoter with close 
to maximal homology exhibits almost no change in 
its in vitro activity when one of the strongly 
conserved base-pairs in the -35 region is substi- 
tuted (Rossi et aZ., 1983). This substitution would 
increase the discrimination level AE from 1.1 to 23. 
These small values would keep both sites well 
within the region conjectured to correspond to an 
association-limited promoter activity (cf. Fig. 2). 

Similarly, when the discrimination energy 
becomes very large (and k,K, becomes very small) 
other kinds of interactions (e.g. purely non-specific 
electrostatic) may become dominant so that the 
straight line cannot be extended too far in this 

direction either. Also, since the slope is rather 
uncertain even within the range of the available 
data, predictions too far outside the observed range 
would not be very reliable even if the linearity 
observed does hold over the entire range. 

(iv) Promoter classification 
If the promoters are classified according to 

increasing values of AE (see Fig. 3), their order will 
differ appreciably (in detail) from the list given by 
Mulligan et aZ. (1984) for decreasing values of their 
homology score. This is not’ surprising, since the 
homology score is defined quite differently from 3-E 
given by equation (24). However, the gross features 
of these classifications are very similar within the 
expected statistical errors, so that a promoter with 
a large homology score according to Mulligan et al. 
(1984) will have a small discrimination level AE in 
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Figure 3. The promoters in the sample, rank-ordered in accord with their discrimination level 1E, which is given 
below each promoter name. To see the form of the distribution of promoters along the discrimination level co-ordinate, 
the promoters have been put into groups for which 1E differs by 1 unit. Promoters with half-interger values of 1E at the 
separation between groups have been put arbitrarily in the group to which they would belong when second decimals are 
included in the value of 1E. For comparison, the distribution that would be expected if the promoters conform to a 
canonical ensemble has also been drawn (continuous line), and is approximated as a Gaussian with variance 
1’~; = 10.4 as determined from eqn (A32). Since A z 1 for the promoters, in accordance with eqn (A20) this curve 
approximately describes also the expected distribution of random activity in the genome at pseudosites with the 
discrimination levels indicated. Numbers on the bottom are the predicted in vitro activities, if the correlation observed 
in Fig. 2 holds. 

our listing. In fact, a linear relationship between the 
two measures holds very well (with correlation 
coefficient 0.98) over the entire range of the 
promoter sample. However, this linear relationship 
between the two measures relies on an approximate 
proportionality between 

7 In [(%I + 1 )/h~, + 1 )I and c ho -%,I. 

This is certainly not true in general, and may not 
hold as well for arbitrary sequences or different 
samples. Thus, since equation (24) is based on 
physical theory, we propose that the discrimination 
level AE provides a better and more general 
measure for the departure from sequence homology 
as it pertains to binding and activity. 

The small-sample uncertainties in the correlations 
between iE and the k,K, values makes a detailed 
classification of predicted promoter strength 
according to sequence homology impossible, 
although a gross classification should work. This 
statistical uncertainty also implies that no strict 
cut-off in the value of ilE (or any other homology 
score based solely on sequence data) can exist that 
sharply separates promoter from non-promoter 
sites. 

(c) Conclusions from the sequence analysis 

The theory requires that the functional DNA 
sites have been selected according to some 
constraint (e.g. the binding affinity or activity must 
be in some useful range), and that this constraint 
operates for all sites. Obviously, problems of 
interpretation will occur when many sites have been 
selected to satisfy other criteria simultaneously, for 
example, promoter sites that also bind effector 
molecules, etc. 

(i) Base-pair independence 
As developed and applied above, the theory also 

requires that base-pair substitutions act indepen- 
dently, so that their contribution to the interaction 
free energy is additive. There are physical reasons 
to expect that this is not generally true (cf. von 
Hippel & Berg, 1986). First, it is likely that 
recognition is affected by the secondary effects that 
base sequences have on the local DKA structure 
and flexibility; since these DNA properties are 
determined primarily by interactions between 
neighboring base-pairs (Dickerson, 1983), if such 
effects dominate the specificity they would be 
expected to lead to strong correlations in the base- 
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pair usage at neighboring positions. Furthermore, 
even if specificity were based solely on the 
complementarity of the hydrogen-bond-forming 
groups of the functional sites of the protein and 
DNA, one might expect that the loss of contiguous 
specific contacts will contribute differently from the 
loss of non-contiguous ones (cf. Mossing & Record, 
1985). However, as we shall discuss below, the 
statistics of base-pair usage in the promoter sample 
do not indicate that such co-operative effects have a 
dominant influence on polymerase recognition. 

In principle, the theory can be extended to 
include correlations and co-operativity between 
different base-pairs (see the Appendix). However, 
because of the much larger range of possibilities for 
doublets, triplets, etc., more sequence data than is 
available at present are required to calculate such 
correlations reliably. To estimate the importance of 
such correlations in the promoter sample, we have 
counted the occurrences of all doublets of neigh- 
boring base-pairs and compared them to the 
doublet frequencies expected from the single base- 
pair frequencies at the two positions in question (cf. 
columns f and g of Table 3). The strongest 
correlation is at three and two base-pairs upstream 
from the TATA box (i.e. positions - 16 and - 15 as 
numbered in Table 3), where T and G, respectively, 
are weakly preferred. Here, the doublet T-G occurs 
in 28 cases while only 15 to 16 would have been 
expected from the singlet occurrences of base T and 
base G at the respective positions. This is a highly 
significant deviation from individual base-pair 
independence, in that it would have occurred at. 
random with a probability of only 6 x 10V4. This 
result suggests that when either T or G is 
substituted, the choice of base-pair at the neigh- 
boring position becomes irrelevant. 

A nearest-neighbor correlation like this can come 
about in several ways. It could reflect a physical 
interaction, i.e. that the polymerase can only make 
good contact with the DNA site when both T and G 
are present. Alternatively, it could reflect a subset 
of promoters requiring T-G as a signal, either for 
the binding of the polymerase or for the binding of 
some effector. There is a similar (though weaker) 
preference for an A-T doublet just upstream at 
positions -17 and - 16. However, there is no 
significant preference for the simultaneous presence 
of these doublets, i.e. for the t,riplet ATG at these 
positions. Since neither of these doublets shows 
strong correlations with neighboring base-pairs on 
either side, it is unlikely that these positions serve 
as a signal related to the binding of an effector 
molecule other than the polymerase. 

Partially overlapping these doublets there is also 
a preference for CTC at positions - 18 to - 16, 
which shows up as strong doublet correlations for 
C-T and T-C at their respective positions. Out of a 
total of nine occurrences of this triplet, five are 
found among the 18 rRNA and tRNA promoters. 
Thus, this triplet could serve as part of a signal 
defining a certain class of promoters. Alternatively, 
it could reflect a close relationship, i.e. perhaps 

some of these promoters have only recently evolved 
from the same common ancestor. 

The second strongest doublet, correlation occurs 
directly downstream from the conserved - 10 
region. Here (at position - 7 and -6) the doublet’ 
G-C occurs 19 times, while only 11 would be 
expected from the respective singlet frequencies (see 
Table 3). Of these 19 occurrences. however, 14 
derive from the 18 rRNA and t,RNA promoters in 
the sample. This doublet is the first part of the 
discriminat,or region of sequence GCGC that is 
required for stringent control of stable RNA 
synthesis (Lamond, 1985). It is interesting to note 
that this correlation occurs in a region where the 
base-pair choice on the singlet level seems random. 
thus st,rengthening the suggestion that this signal is 
not directly relat,ed to polymerase activit,y. 

There are also two weaker correlations sur- 
rounding the conserved -35 region. At positions 
-42--41 and -31--30 T-A and A-T. respec- 
tively, are unfavored while T-T and A-A are 
slightly favored in both cases (see Table 3). 

Similarly, we have looked at, the correlations 
between next-nearest and nextnextnearest- 
neighbors and find only a few, all of which are 
connected with t’he doublets discussed above. There 
is a relatively strong preference for A and G at 
positions -9 and - 7 with 24 occurrences rather 
than the 16 expectled from the singlet dat,a. This 
correlation disappears when the 18 rRNA and 
tRNA promoters are excluded from the sample. 
This does not necessarily imply that, t,he A should 
be considered as part) of the signal in the 
discriminator region; possibly, it simply reflects the 
fact that most stable RNA promoters that carry 
the discriminator signal also are strong promoters, 
thus requiring the consensus A at posit,ion -9. 

To gauge the importance of the doublet correla- 
tions observed, we have generated sets of “random 
promoter sequences” on a computer, where at, every 
position a base-pair has been assigned in proportion 
to its frequency of occurrence in the promoter 
sample without, regard to base-pair assignments at) 
other positions. This procedure yields sequences 
where the single-base-pair occurrences agree 
approximately with those in t,he promoter sample. 
but where doublet correlations are due only to 
random small-number fluctuations. This provides a 
numerical “base-line” against which t#o assess the 
significance of the correlations found in the “real” 
promoter sequences. 

We find that of the 28 doublet. posit.ions included 
in our study of the real promoters, only the six 
positions discussed above show significant correla- 
tions above the random variation expected. To 
quant,ify further the statistical significance of the 
doublet correlations, we have also calculated the 
“doublet informat,ion content” (1,) as defined by 
equation (A38b) in the Appendix; for the real 
promoters it is 1, = 1.6 as compared t v about’ I.1 01 
1.2 for the randomly generated ones. .In cont,rast.. 
t,he primary sequence information t)hat, measures 
the importance of the individual base-pair choices 
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in the promoter sample is around Zseq = 7 (see 
Table 3), while for a similar sample of totally 
random sequence it is Zseq = 0.4 (see Table 1). 

Thus, a few significant nearest-neighbor correla- 
tions exist in the promoter sequences, and some of 
these no doubt derive from co-operativity in the 
interactions between the polymerase and the 
individual base-pairs. Others seem to be part of 
signals that are not directly related to polymerase 
activity and therefore should not be ascribed to co- 
operativity. At most positions, however, the 
observed doublet correlations are not distin- 
guishable above the small-number fluctuations, and 
base-pair occurrences seem, indeed, to be largely 
independent. This does not prove that the contribu- 
tions from different base-pair positions to the 
interaction free energies are additive, although it is 
an indication that additivity is dominant and a 
reasonable first approximation. Apart from the few 
cases discussed above, the statistics of doublet 
occurrences in the promoter sample do not suggest 
any major revision of this assumption. To really 
prove independence and additivity would, of 
course, require experimental verification by syste- 
matic base-pair substitution; the statistics can 
suggest where deviations are most likely to occur. 

the statistical uncertainties in the correction terms. 
Thus, it will be more useful to apply the doublet 
corrections only to cases where the statistics suggest 
that doublets are important. In the case of 
promoters, such an application has only a minor 
influence on the estimated discrimination energies. 

Co-operativity and correlations can also be 
included in a systematic and useful way for samples 
that are not prohibitively large by using smaller 
“alphabets” to reduce the number of possible 
combinations. For example, if DNA structure is 
determined mostly by purine-pyrimidine (rather 
than individual base-pair) choices (Dickerson, 1983) 
one need only consider four possible doublets and 
16 triplets, rather than the 16 and 64, respectively, 
that apply to the full DNA alphabet when one 
utilizes all four base-pairs. 

(ii) Functional distribution 

It should be noted that the discrimination 
energies calculated from the single base-pair 
occurrences already include some average of 
possible co-operative effects, e.g. a strong co- 
operativity between two neighboring base-pairs 
that leads to a selection for them as a doublet will 
also increase their singlet frequencies, even if they 
do not contribute to recognition individually. Thus, 
the effects of nearest-neighbor co-operativity will be 
to modulate the assigned discrimination energy for 
every possible base-pair, depending on its nearest 
neighbors in the site as given by equation (A38a) in 
the Appendix. 

The selection of samples may be biased in several 
ways. For example, it may be easier experimentally 
to identify strong sequences among all those that 
are used in the genome. Nature may also be biased 
in its choice of real sites among the potentially 
useful ones. In principle we cannot, in our analysis, 
distinguish between such biases. However, from the 
results presented in the second section it can be 
expected that such biases will primarily influence 
the parameter 1, and will leave the basic relation 
(eqn (16)) between the discrimination factors and 
base-pair utilization frequencies otherwise essen- 
tially unchanged. Thus, the correlation between 
sequence and discrimination should be largely 
invariant, although 1 cannot be calculated a priori. 

Applied to the promoter sample, this modulation 
has a relatively small effect on the assignment of IE 
for most promoters. The statistical correlation with 
in vitro activity becomes somewhat better than that 
depicted in Figure 2, with one glaring exception: 
the L305 mutations (no. 9 and no. 24 in Fig. 2) of 
the ZacUV5 and ZacP” promoters are pushed far 
away from the least-squares line, to 1E x 16 and 
iE c 17, respectively. This mutant has a single 
base-pair deletion just upstream from the -35 
region that presumably realigns a number of base- 
pairs in the relatively unimportant region further 
upstream. The discrepancy for the L305 mutant 
when doublet correlations are included may simply 
reflect the fortuitous addition of contributions from 
doublets that are individually statistically 
insignificant. 

From the sequence analysis of the promoters it is 
also possible to determine their dist#ribution g(E) 
along the discrimination-level co-ordinate 1E. The 
promoter list as depicted in Figure 3 can be viewed 
as a bar-graph represenbation of this distribution; it 
can be regarded as a distribution over the primary 
sequence specificity. The numbers on the bottom 
are the predicted in vitro activities that apply if the 
correlation found in Figure 2 holds. If the concen- 
tration of free polymerase is 3 X lo-* M, as it is 

suggested to be in vivo (McClure, 1985), the 
distribution spans initiation frequencies from about 
1 s-l to 1 h-‘, which seems a reasonable range. It 
should be stressed, however, that the functional 
activities in vivo will be influenced by many other 
factors (e.g. supercoiling, activator proteins, etc.) 
that could appreciably change the overall form of 
the activity distribution. 

For comparison, in Figure 3 we have also plotted 
the canonical distribution discussed in the 
Appendix and approximated as a Gaussian with 
mean WL, and variance 12cri given by equations 

The introduction of doublet correlations into the (8) and (A32), respectively. While this construction 
discrimination calculations increases the statistical forces the means of the observed distribution and 
uncertainties, since it requires the addition of a the canonical one to agree via equation (8), it is 
large number of imprecise data points. The doublet interesting to note that the widths of the two 
correction will be useful mostly when the base-pair distributions also agree quite well. This may well be 
correlations are so large that their presence coincidental, but could also reflect some evolu- 
introduces systematic errors that are larger than tionary advantage in selecting specific sequences 
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with a canonical bias. As discussed in the Appendix, 
the canonical distribution confers maximal 
sequence variability within the constraint set by 
the maintenance of a given average discrimination 
energy (EL,. Preliminary calculations (0. G. 
Berg, unpublished results) on 117 ribosome initia- 
tion sites (Gold et al., 1981) show that these sites 
similarly conform to a canonical distribution over 
the discrimination level 1E. This may be an 
indication that sequence variability (or sequence 
diversity) is of primary importance in the evolu- 
tionary selection of recognition sequences. 

(d) Sequence information and over.speci$cation of 
binding sites 

Schneider et al. (1986) have used information 
theory to calculate the sequence information 
(defined from the observed base-pair frequencies via 
equations (12) and (A34)) for the binding sites of 
various recognizer proteins. Their analysis demon- 
strates the usefulness of sequence information in 
assessing the relative importance of various posi- 
tions in the site; notably, it can be used to delineate 
those positions within the binding sequence that are 
really relevant via equation (A35). However, as 
shown above and in the Appendix, it is not the 
sequence information per se, but the ratio of base- 
pair frequencies that is directly related to the free 
energy of binding. While the sequence information 
is a measure for the whole set of sites, the 
statistical-mechanical sequence analysis can also 
provide a quantitative measure of specificity for 
individual sites. 

(i) Operator sites 

Schneider et al. (1986) found, for all the sets of 
specific sites investigated by them, that the 
sequence information is approximately equal to the 
negative logarithm of the probability that a site 
chosen at random in the genome is a specific site. 
Since the information content is essentially the 
negative logarithm of the probability of random 
occurrence of a potential site of average binding 
strength or greater (cf. eqn (13), one would 
conclude that the number of specific sites in the 
genome is approximately equal to the expected 
number in a random genome of the same size. 
However, the reduction factor (the denominator in 
eqn (13)) could reduce the estimate of randomly 
occurring binding sites by an order of magnitude or 
more; thus sequence information alone does not 
provide a reliable estimate of t,his expected 
frequency. 

It has been argued (von Hippel, 1979) that 
specific sites in the genome should be specified in a 
way that makes the random occurrence of competi- 
tive binding sites (“pseudosites”) unlikely. Without 
such “overspecification”, the recognizer protein 
would be “soaked up” by binding to a large number 
of such pseudosites. In a recent paper (von Hippel 
& Berg, 1986) we showed quantitatively how 
binding selection can be balanced by sequence 

length (site size), discrimination factors and protein 
concentration. The amount of overspecification 
required is determined primarily by the number of 
protein molecules the system can afford to lose by 
non-productive binding at pseudosites. We can now 
relate this number quantitatively to the sequence 
information as follows. From equation (3) of von 
Hippel & Berg (1986) we can express the number of 
proteins bound at pseudosites as: 

m, = ~NT~‘A 1 PAE’i) 

X 

z+exp (Ei-ET’ (25) 
i 

where the sum is taken over all classes (i) of sites in 
the genome. p&E,) is the probability of random 
occurrence of a pseudosite with discrimination Ei, 
and 2N, FA is the total number of available binding 
sites in the genome. NT is the size of the genome in 
base-pairs and FA is a reduction factor that 
accounts for the fact that only a fraction of the 
genome may be available for binding; the rest ma] 
be covered by other proteins or struct,urally 
inaccessible for other reasons. The sat,uration level .I 
is defined from the fraction saturation 8, of t,he 
specific site (with discrimination E,) as 
x z e,/( l-0,). Since p,(E,) increases rapidly with 
increasing discrimination E,, the sum in equat,ion 
(25) is dominated l)Y terms for which 
exp (Ei- E,) > Z. Then one finds: 

m, z 2N,F,x exp (E,) x 

T PAEJ exp ( -Ei) 
= 2N,F,x exp (- fseq). (26) 

The sum in equation (26) is the same as was 
calculated in equation (14a) and (14b) and t>he 
result. holds if 2 z 1 and if z is determined by t,hr 
fractional saturation of a specific site with average 
discrimination E, = (E)seq. When the sat’ura,tion 
effects of the pseudosites cannot be neglected. a’ 
correction factor (< 1) should be included in 
equation (26). However, we find this to make a ver3 
small difference in all examples where we have 
summed equation (25) exactly; the non-specific 
competition from pseudosites is expected to be 
dominated t,otally by the large number of weak 
(unsaturated) sites rather than by a few strong 
ones. Thus. the observed sequence Information in a, 
set, of binding sites can be related directly to the 
expected number of protein molecules wasted by 
non-productive binding at, pseudosites. This number 
is modulated primarily by the saturation level x 
required at an average specific site. Therefore. the 
relat,ionship between sequence information and t,he 
number of specific sites in the genome is likely to be 
a complicated function that also involves t,he details 
of the regulatory requirements of the @em. This 
will be discussed in more detail in a subsequent 
paper (0. G. Berg &, P. H. von Hippel. unpublished 
results) in which we analyze the sequence specificity 
of the DNA binding sit,es for the cyclic AMP 
receptor protein (de Crombrugghe et al.. 1984). 

Tn this connection it is also interesting to note. 
for the repressor binding sites studied by Schneider 
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et al. (1986), that the ones with the smallest 
sequence information are, at least in part, co- 
operative sites (e.g. sites for arginine repressor and 
lambda cI repressor) where binding to two 
neighboring sites is favored, while the ones with the 
largest sequence information are mostly indepen- 
dent sites (e.g. sites for tryptophan repressor and 
ZexA protein). Obviously, when regulatory proteins 
bind co-operatively to two neighboring sites, less 
specificity is required for each individual binding 
site to achieve a required binding level. Thus 
sequence information can indeed be a useful 
measure for specificity, although one should be 
aware that it deals only with an entropic aspect of 
the specificity of a whole set of sites and cannot 
describe the specificity of individual sites. 

(ii) Promoter sites 

We can also estimate the number N, of randomly 
occurring promoter sites (pseudopromoters) in the 
genome using the promoter sample data: 

(27) 
Using equation (13) for the probability P,( (E),,,) of 
random occurrence of a site with discrimination less 
than (E) and data from Table 2 (Iseq = 7*1, 
I(E),,, = 12.0, 1E = 1.2, site size s = 30, and a 
genome size of N, = IO’), this gives 
N,((E),,,) = 1000. Accounting for various spacer 
lengths with an extra factor l/f(L,,,) from equation 
(A22) gives N,((E),,,) = 2000 for the number of 
pseudopromoters with discrimination less than the 
average in the sample of real promoters. The 
number of pseudopromoters with dE < 15, which is 
where most of the real promoters fall (cf. Fig. 3), 
would be somewhat less than a factor 
exp (15--I(E),,,) = 20 larger (cf. eqn (A17)), 
giving possibly 30,000 pseudopromoters in the 
genome. Taken at face value, these numbers would 
indicate a significant initiation by RNA polymerase 
at non-specific sites in the genome. However, this is 
likely to represent an overestimate as a measure of 
the number of functional and accessible 
pseudopromoters. 

First, only a fraction (perhaps less than 10%) of 
all non-specific sites are expected to be accessible 
for recognition at any one time. Second, there may 
exist subtle requirements for promoter recognition 
other than the primary sequence specificity con- 
sidered in the present calculation; e.g. higher-order 
(beyond nearest-neighbor) correlations between 
different base-pairs or contributions from regions 
surrounding the 30 base-pair site size used in the 
analysis here. It is also likely that strong 
pseudopromoters are selected against. However, 
most of the non-specific activity is expected to 
derive from pseudopromoters with weak homology 
since there are so many more of them. Tt appears 
less likely that an effective selection will be 
operating against the large number of weak 
pseudopromoters; this is corroborated by the fact 
that Mulligan et al. (1984) find almost exactly as 
many (1396) “promoter-like sequences” in plasmid 

pBR322 as expected (about 1380) from random 
occurrence, using their particular definition of a 
promoter-like sequence. Thus, the expected number 
of randomly occurring pseudosites as given by 
equation (27) serves as an interesting reference 
point for the specificity requirements. 

Since the selection parameter, /2, is equal to unity 
in the promoter sample, we can use equation (14b) 
directly to estimate the average activity (k, KB)md 
for a random site in the genome: 

(The factor l/f(Lopl) z 2 accounts for the different 
spacer lengths as required by eqn (A22).) 
Assuming that the free polymerase concentration in 
the cell is 3 x 10-s M (McClure, 1985), and using the 
other data for the promoter sample as above, this 
gives -500 FA initiations per second at random 
sites in the genome. (It should be noted that this 
estimate holds even if the maximum activity 
(k, KB)mar x 10” M-l s -I is not attainable since the 
total activity at pseudopromoters is dominated by 
the weaker ones.) If it is further assumed 
(arbitrarily) that only 5% of the genome is 
accessible for RNA polymerase (FA = O-05) and 
that a random transcript is only -200 bases long 
(i.e. the transcript would take approximately 4 s to 
complete), the total number of polvmerase mole- 
cules active in random transcription would be 
- 100. This is about 3% of the total number of 
actively transcribing polymerase molecules 
(McClure, 1985). It does not appear likely that a 
much larger fraction would be allowed, and 
probably the fraction should be even smaller. This 
calculation is intended primarily to illustrate the 
possible consequences of the specificity require- 
ments. It seems clear, however, that if random 
initiations do occur it is crucial that the transcripts 
started at these loci be rapidly terminated. 

On the basis of primary sequence specificity the 
promoters do not appear to be overspecified; their 
numbers are not in large excess over that which 
would be expected from random appearance in the 
genome. Tnstead, efficient discrimination from 
pseudopromoters may be achieved by keeping the 
control regions more accessible than the average 
DNA. For instance, control regions could have 
sequence characteristics that make them unlikely to 
be covered by structural proteins. Such secondary 
sequence specificity (von Hippel & Berg, 1986) 
could reside in a sequence choice that. subtly 
changes the DNA helix parameter over larger 
stretches of DNA (Drew & Travers. 1984) or it 
could reside in a combination of effects from the 
various recognition sites that make up the control 
region. Furthermore, a random RNA transcript is 
not likely to be translated and could therefore be 
quickly terminated by, for example, rho-dependent 
transcription termination (von Hippel et al., 1984; 
Platt, 1986). Thus, part of the effective promoter 
specificity may reside in a close coupling with 
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ribosome initiation sites. In contrast, operator sites 
that rely on an equilibrium selection cannot show 
such kinetic discrimination and may therefore 
require more overspecification for optimal 
specificity. 

4. Evolutionary Selection of Binding Sites 

The theory described here relies on the assump- 
tion that specific sequences have been positively 
selected to provide a certain binding aflinity or 
biological activity. Opposing this specific selection 
is the mutational drift towards randomness. To 
weigh the importance of certain sequence choices it 
is necessary to know, as a base-line, what the 
random base-pair choice is; for this we have simply 
used the average base-pair composition of the 
genome. This is a natural assumption, although not 
necessary. Operationally, the random choice could 
be represented by the composition of a part of the 
genome that is under no selection pressure 
whatever. 

While we do not yet understand the significance 
of the particular distribution of specificity found for 
the promoter sites shown in Figure 3, it is 
interesting to discuss some of the factors that can 
influence and shape such a distribution. Although 
the specificity must reflect the functional require- 
ment for specific activity at individual sites, it is 
likely to be further influenced by the particular 
properties of sequence drift and selection. 

The evolutionary constraint will work both on 
the recognizer protein (affecting the discrimination 
energies ais) and on the binding sequences (B,) 
actually used. A minimal requirement for effective 
binding selection in the living cell would be that 
sequences and discrimination factors are both 
chosen large enough to reduce the competitive 
binding to strong pseudosites in the genome to 
appropriate levels. In this way the investment in 
protein can be kept low. A larger site size can allow 
weaker discrimination factors without losing effec- 
tiveness in binding selection. This would also permit 
a much larger variability in the specific binding 
sequences actually used. 

Alternatively, if the discrimination factors are 
very large, the specific sites could be defined using a 
minimum number of base-pairs, but would also 
allow a minimal variability in the binding 
sequences; large discrimination factors require a 
very precise protein-DNA interaction that does not 
permit much variability either in the protein 
sequence or in the DNA sequences. In a sense, this 
approach would correspond to a maximization of 
specificity. 

Maximizing specificity by decreasing site size to a 
minimum and increasing the discrimination factors 
may lead to some reduction in the investment in 
protein that, is required for a suitable binding level. 
This might well represent some gain in efficiency 
and evolutionary fitness. However, this gain is 
probably not sufficient to counteract totally the 
continuous drift towards disorder. That is, there are 

always many more sequences (DNA and protein) 
that can support weak binding interactions. 
A balance will be reached when the entropic drift 
towards smaller discrimination factors and less 
perfection requires too heavy an investment in 
protein to permit sufficient binding. The natural 
fluctuations of protein numbers in the living cell, 
which can be very large (Berg, 1978), set another 
limit to how good specificity can usefully be. As 
discussed previously (von Hippel & Berg, 1986), a 
regulatory system with too-high specificity would 
be very sensitive to the removal of even a single 
protein molecule by fluctuation in protein 
concentration. 

A larger site size requires a larger protein to 
recognize it,. Such enlargements can be achieved by 
the formation of dimers (or of larger multimers) of 
the protein. An effective increase in site size can 
also be achieved by co-operative binding of the 
same protein to two neighboring binding sites, so 
that the effective recognition sequence consists of 
the two sites taken together. Apart from the fact 
that, cooperative binding can have different 
regulatory sensitivities, there may also be a 
substantial gain in specificity in such an arrange- 
ment; although more protein is required for specific 
binding, the reduction in the number of competitive 
pseudosites will be very large, so t,hat the protein 
“wasted” by non-productive binding can he 

substantially reduced. 
As the whole system grows more complicated, it 

can also make use of combinations of specific 
processes and thereby relax the specificity require- 
ments in t,he individual reactions. Some examples of 
this possibility were discussed above in connection 
with the apparent lack of overspecification for the 
promoter sites. As a corollary of this, it can be 
expected that more primitive systems have higher 
requirements for primary sequence specificity. 

The large variability observed for the real sites 
implies that specificity has not been maximized in 
evolution. This is also corroborated by the fact that 
the best binding sequences seemingly are not, 
utilized either for the promoter sequences discussed 
above or for the lac operator (Sadler et al., 1983: 
Simons et al., 1984). In the picture developed above. 
this is understandable in terms of the fact that. 
whenever possible, sequence drift would tend 
t,owards weaker sites since there are so many more 
of them. The large variability could reflect the real 
difficulty of designing a protein with very large 
discrimination factors, i.e. one with a very precise 
recognition surface for DNA binding. However, 
even if specificity could be absolute, there may be 
advantages to using many small discrimination 
factors rather than a few strong ones. Thus, the use 
of some weaker discrimination factors permits a tine 
tuning or modulation of the binding (or a.ctivity) at 
different specific sites. 

However, t,he observed sequence variability 
seems to go beyond such requirements for fine 
tuning. It appears very likely that the choice of 
discrimination factors (and thereby the permitted 
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variability in sequences) will tend towards a 
situation that is most stable in an evolutionary 
sense. Such a situation will be reached when most 
mutations, in either the protein or the specific DNA 
sites, have only a small influence and are not singly 
lethal. This is consistent with the notion that many 
small discrimination factors are better than a few 
strong ones. Furthermore, one would expect a 
mutationally stable situation to provide many 
pathways for revertants that can restore binding or 
activity. This would imply that neither the protein 
nor the specific sequences used are the best binders, 
but rather that they incorporate many positions 
where a mutation could lead to better binding as 
well as to weaker interactions. Indeed, both 
repressor mutations (Nelson & Sauer, 1985) and 
operator mutations (Sadler et al., 1983; Simons et 
al., 1984) have been found that show increased 
binding affinities over the wild-type protein mole- 
cules and operator sites. 

Flexible and imperfect recognition of this sort 
may also favor independent, rather than co- 
operative, base-pair interactions, since co-opera- 
tivity would imply that many base-pair inter- 
actions can be lost as a consequence of a single 
mutational event. Such a flexible recognition 
interaction would be most stable not only with 
respect to DNA mutations, but also with respect to 
translational errors in the recognizer protein 
molecules. From the level of translational errors 
observed, one can infer that particular protein 
molecules should be viewed as members of a family 
where some entities can have slightly different 
properties depending on which and how many 
amino acid substitutions have been incorporated, 
rather than as identical units (Ehrenberg & 
Kurland, 1984). Although some amino acid sub- 
stitutions no doubt will lead to a non-functional 
protein, most will just result in slightly changed 
protein properties. Again, stability would argue 
that the recognizer protein is not designed for 
maximum specificity. Rather, the optimum will 
occur where most substitutions have a small effect, 
with some leading to increased and others to 
decreased specificity. Thus, the natural tendency 
will be towards lower specificity and higher 
disorder, simply because there are many more 
sequences (DNA and protein) that can fit a lower 
specificity requirement. While there is little adva- 
tage in (and therefore little selection for) maximum 
specificity, there will be a strong selection against 
too low a specificity. 

Thus, rather than maximizing specificity, evolu- 
tion will tend to minimize the maximum loss of 
speci$city. In fact, one can expect the same 
principle to hold for the design of protein molecules 
in general if specificity is replaced by specific 
activity. This agrees with the effects found for 
various amino acid substitutions in some enzymes 
(e.g. bacteriophage T4 lysozyme; Tom Alber, Rrian 
Matthews et al., unpublished results) where most 
substitutions have small effects and some lead to 
increased activity. Similarly, thermal stability may 

be a property that is not strongly selected for. Since 
many more sequences with low stability are 
expected to exist, the natural tendency would be 
for proteins to show only the minimal necessary 
thermal stability. Again this is consistent with the 
experimental findings (e.g. for T4 lysozyme; John 
Schellman et al., personal communication) 
indicating that most amino acid substitutions result 
in only small increases or decreases in thermal 
stability. 

5. Discussion 

Our statistical-mechanical selection model 
provides a physical basis for the sequence analysis 
of specific DNA sites. It includes the information- 
theoretic description (Schneider et al., 1986) as a 
limiting case when only entropy is considered. The 
theory not only predicts the correlations between 
promoter activity and “homology score” proposed 
by Mulligan et al. (1984), but also accounts for the 
observed deviations in terms of the expected 
statistical uncertainty. Actually, rather than being 
a “blemish” the observed scatter in the correlation 
lends further support to the theory. 

In essence, the theory presented above consists of 
two parts. The statistical-mechanical sequence 
analysis enables us to predict the influence on 
specificity of individual base-pair choices. This part, 
which carries a very large statistical uncertainty, 
can be combined with (or superceded by) actual 
measurements of base-sequence-dependent changes 
in activity (or affinity). The second part assumes 
that the discrimination factors for individual base- 
pairs are known and calculates the effective 
specificity in terms of competition from pseudosites, 
etc. Taken together, the two parts enable us to 
make quantitative predictions about the specificity 
of particular DNA sequences, as well as to put 
statistical measures (notably sequence information) 
into the context of the regulatory requirements of 
the living cell. 

We have derived from first principles a relation 
between DNA sequence variability in the binding 
sites and the binding affinity (or activity) for the 
particular protein that recognizes these sites. As 
discussed above, neither of the two basic assump- 
tions (the equiprobability for all sequences with the 
same specific affinity (or activity) and the indepen- 
dence of individual base-pair contributions) can be 
strictly true in general. In the analysis of the 
promoter sample we identified some deviations from 
both assumptions. However, these are not 
dominant effects and the results of the analysis 
(being within or close to the expected statistical 
uncertainties) provide no justification for revision 
or refinements of the basic assumptions at this time. 
As more sequence data accumulate and as more 
binding (or activity) constants are measured, some 
such refinements will no doubt be required, thus 
providing more information on physical and 
evolutionary constraints for regulatory site 
function. 
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In essense a sequence analysis of this sort mixes 
all of the sequences, and then extracts binding 
information from the patterns of base-pair utiliza- 
tion frequencies. Although this procedure obviously 
must lead to large statistical uncertainties, one 
advantage is that sequence requirements that are 
not shared by many of the sites (e.g. for effector 
binding) will be averaged out. In contrast, when 
many sites in the sample share constraints not 
related to primary protein recognition, the equi- 
probability assumption is invalid and the results 
will be skewed, signalling the need to look for 
additional constraints. 

Similarly, the interpretations could be skewed if 
many sites in the sample are derived from the same 
basic sequence, as would be the case if they had 
recently evolved from some common ancestor. 
While refinements such as introducing higher-order 
base-pair correlations or using a different weighting 
scheme for the selection constraint can be intro- 
duced, the approach presented here should provide 
the essentials of what one can do with sequence 
data alone. The usefulness of this analysis can only 
be judged by its success in predicting binding or 
activity for specified sequences. Again, large 
discrepancies would be an indication of selection 
constraints other than binding affinity, and could 
possibly be used to help identify such additional 
constraints. 

Although the evolutionary selection of binding 
sites take place in vivo, one expects the detailed 
correlations between sequence and binding (or 
activity) to show up in vitro where the differential 
influence of effecters other than DNA sequence can 
be kept to a minimum. The main requirement is 
that the property selected for in vivo be the same as 
that studied in vitro. To the extent that sequence is 
important for specificity, some selection constraint 
will be operating even if in vivo activities are 
strongly influenced by other effects as well; such 
constraints will then show up in the relations for in 
vitro activity, where sequence can be made to play 
an even more dominant role. 

The theory developed above also puts in context 
the various levels of selection that determine the 
observed sequences. The binding selection by the 
protein is based directly on the discrimination 
factors. The evolutionary selection of specific 
sequences is constrained by the binding selection, 
but could be biased in various ways. Also sample 
selection of the sites that have been identified and 
sequenced may be biased. In principle, we cannot 
distinguish these sources of bias. However, the 
theory works for an average selection constraint 
and is not much influenced by variations or bias 
around this average. 

Although developed in terms of binding affinity 
(or activity for the promoters), the theory is valid 
when selection is based on any property for which 
the contributions from individual base-pairs can be 
considered additive. The theory should be appli- 
cable not only to protein-DNA specificity, but also 
to protein-RNA specificity and possibly to inter- 

actions between nucleic acids as well (e.g. the 
ribosome binding sites; Gold et al., 1981). However, 
the application to these other systems may be less 
useful, since interactions involving single-stranded 
nucleic acids may be less linearly constrained, 
allowing effective “rearrangements” of the sequence 
simply by the extrusion of non-complementary 
sections of the RNA (or the single-stranded DNA) 
from the binding interaction. 
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APPENDIX 

Statistical Ensembles for Sequence Variability 

Otto G. Berg 

We shall start by considering the set of all 
potential sites; i.e. all sequences that could possibly 
work as specific binding sites for a particular 
recognizer protein. Whether a sequence is a 
potential site or not is determined by its binding 
affinity. For simplicity, it is assumed that each 
base-pair in the binding sequence contributes 
independently to the binding free energy. This 
independence assumption implies that each possible 
base-pair at each position in the binding sequence 
can be assigned a unique discrimination energy 
E > 0, defined as the difference between the binding 
free energies for a sequence with the best binding 
(cognate) base-pair at this position and the one with 
the actual base-pair under consideration. It also 
implies that there exists a best binding sequence 
(with maximum binding affinity) to which all other 
sequences can be uniquely related. 

(a) The cut-of distribution 

(i) Base-pair choice 
First we shall assume that there exists a 

threshold in binding affinity so that sites with 
weaker binding are not acceptable as specific sites. 
In the simplest case, each non-cognate base-pair in 
the sequence decreases the binding affinity by the 
same amount E (this is here defined as a free-energy 
difference in units of kT). If the total binding 
affinity can be reduced from the maximum affinity 
by at most E, if a site is to be potentially useful as a 
specific site, we can easily derive the variability in 
the sequence distribution of all potential specific 
sites. Out of a total of 4” different sites of length s, 
the number of potential binding sites with j base 
substitutions is given by (cf. eqn (6) of von Hippel 
& Berg, 1986): 

N. = (,“)3j; for j I E,IE 
J 0; forj > E,/E ’ (Al) 

if base-pairs are a priori equiprobable. Thus, the 
total number of potential binding sites of length s 

is given by: 

W,(E,) = $ (9)3’ z (;)3J 

(3s/J-3)’ 
= [2nJ( 1 - J/s)]+( 1 -J/s)” (A2) 

where J = Tnt(E,/&) is the maximum number of 
substitutions that leave the binding affinity within 
E, from the maximum one. The first approximation 
replaces the sum in equation (A2) with its maximum 
term, which is reasonable as Nj of equation (Al) 
increases rapidly with j. The second approximation 
step uses Stirling’s formula 
[In (n!) z n(ln n- 1)+(1/2) In (2nn)] for the fac- 
torials in the binomial coefficient and is given here 
for later use below. 

Among the W,(E,) potential binding sites, 
J-t 

3 jgo (“7)3’ 

will have a base-pair substitution at any particular 
position in the site. Thus, the fraction of potential 
sites that have a substitution at a certain position 1 
in the site is: 

J-l 

b, = 3 c (‘5 ‘)3’/ W,(E,) 
j=O 

= J/s = {(Ec/~)-(l/2)}/s, (A3a) 

where the first approximation is the same as in 
equation (A2), i.e. we replace the sums by their 
respective maximum term. The second approxima- 
tion replaces the integer function J = Int,(E,/a) with 
its continuous approximation J z E,/E - l/2. In this 
simple case, the frequencies of base utilization 
among the potential sites is: 

fro = 1 -b, = I --J/s, (A3b) 
for the cognate base-pair (B = 0), and: 

fiB = b,/3 = J/3s, (A3c) 
for each of the three non-cognate ones (B = 1,2,3) 
at each position 1. 


