
Two notes on transcriptional
regulatory networks

Ilya Nemenman
(CCS-3/LANL)

IU Biocomplexity, 04/27/06



Reconstructing transcriptional
networks

(few exceptions
 confirming the point)

cell

intervention

prediction
 (if any)

experiment

!



Why?
Maybe incomplete networks…
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 Context specificity
 Post-translational/post-transcriptional modifications
 Many mRNA constitutively expressed (p53)
 mRNA data carries no information about these modulation events

Or does it?



Posttranslational modulation
in mRNA data
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Solution: Phenotypic and population variability (even in
constitutively expressed genes) induces higher order
dependencies between TFs, targets, and modulators.

The similarity may be more than accidental!
(These are regulatory units.)



Posttranslational modulation:
MI signature
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Interaction (mutual info)
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Phenotypic variability of
constitutive modulators
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Genuine modulation?
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Distinguishing genuine
modulation (ARACNE, DPI)
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Reparm. invariance; small sample; low complexity;
good performance; low false positives.



Synthetic networks
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B-cell dataset: cMYC network
 ~400 arrays (Dalla-Favera et al.)
 No dynamics
 ~250 naturally occurring, ~150 perturbed
 ~25 phenotypes (normal, tumors, experimental perturbations)

• Protooncogene,
• 12% background binding,
• one of top 5% hubs
• significant MI with 2000

genes

Total interactions: 56
Pre-known: 22
New Ch-IP validated: 11/12Ch-IP

other info



Enforcing irreducibility:
ARACNE on a TF-hub
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c-MYC modulators
 1117 candidate modulators
 100 modulators, 130 targets, 205 interactions
 GO enrichment of the modulator set: kinases, acyltransferases, TFs (all

p<5%)
 Modulators in known MYC regulation pathways (e.g., BCR)
 TFs: 15/100, p=1e-6.
 4/5 TF modulators (e.g., E2F5) with TRANSFAC signatures have

binding sites in modulated targets promoter regions.
 Modulators with many (>=4) targets are not-specific (proteolisis,

upstream signaling components, receptor signaling molecules).
 Modulators with few (1-2) effected targets are mostly co-TFs,

interaction-specific.
 ~1/3 modulators are literature-validated.
 Biochemical validation of some of the predictions in progress.



BCR pathway:
Reducibility
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Summary of part 1
 Post-translational regulatory

mechanisms visible from transcriptional
data

 Sparseness of species sampling
probably not the reason for bad
predictability



So why low predictive power?
 Maybe: noisiness due to small TF concentration?
 NB: reconstruction models that keep strength of

the interaction besides topolgy do better (Leslie
et al.)

 Maybe: adjacency matrix description just not
enough (soft parameters needed)?

 Maybe: networks can adapt soft parameters to
perform the tasks they want to?

Let’s check this for simple topologies!



From Mangan et al., 2003 

A Sign-Sensitive Delay
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genetic output, G

How to characterize the function of these systems?

Experiments

Logic Gates
From Guet et al., 2002 



Function =
Information processing

Guet example:
C={(0,0),(1,0),(0,1),(1,1)}
G={+1, -1}
Broken circuit: I(C,G)=S(G)=0

I c(t),g(t)[ ] = dP c(t),g(t)[ ]log
dP c(t),g(t)[ ]

dP c(t)[ ]!dP g(t)[ ]!

Functional integral
Need to know P[C(t)]

Circuit Quality:

Simplify: Steady State Inf. Processing

I(C,G) = dcdg! p(c,g)log
p(c,g)

p(c)p(g)!

0 " I(C,G) " min S(C),S(G){ }

g = g(c,t)
t!"

+ noise

Good 
Circuits

Bad Circuits



How good are the circuits?
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1. For a given topology, 
exactly one promoter per gene,
each TF binds to one promoter type

…2. For a given p(C), 
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3. Calculate g=g(c) for all c⊂C
dg

dt
= !Rgg + a0 +" g,c{ }( )

4. And maximize information.
!̂ = argmax

!"
biologically
realistic( )

I(C,G)

high fidelity differentiation in development
high capacity signal transduction (lac, photoreceptor)max=

Constraints on
time to and the
copy # at the
steady state.

How does max(I) depend on
the parameters and the topology?



Calculating P(g|c): linear
noise approximation (LNA)

1. For copy # as low as 10, LNA agrees with Gillespie (by KL measure).
2. We can go to higher order in 1/Ω.
3. Contrary to Baras et al, 1996, LNA is sound if                              .
4. For eig(S) of very different sizes, need to adiabatically integrate out

the fast modes.

A = A(g),!B = B(g)
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At steady state:
P(g | c) = N g(c),![ ]

Xi = !gi +!1/2"i



Model + parameters:
details

gi determ. conc. of ith TF
R protein decay rate
K dissociation constant
n Hill coefficient (set to 2)
a range of promoter
a0 leak of promoter
s effect of signal molecule

Up to 22 parameterss
j
=

1,!!signal +

optimized, signal!-

!
"
#

!!equivalent to rescaling K

0 =
dgi

dt
= !Rgi + a0 +" gj , s j( )

molecules of G

p(
G

|C
=c

)

Example: two distinct steady states with Gaussian 
noise; P(each state | C=c)=const; no stochastic 
stability analysis.

However: we can consider cycles (g→∞ is never a 
solution, so at t→∞, we either have cycles or fixed
points, and we have not observed chaos).



Numerics: Increasing MI

decreasing the reporter variance to
the Poisson limit (low pass filtering
upstream noise by slow reporter);
variance of the other species may
be sub-Poisson (negative feedback) other species

reporter

optimization start optimization end

Mean output in response
 to different inputs

separating 
peaks



Achieving 2 bits (T, #)

I(G,C) - λ2T

I(G,C) I(G,C) - λ1N

I(G,C) - λ1N - λ2T

optimization 
flow

Low pass filtering
(separating time scales)

Increasing copy #



Adaptation makes any
topology functional

N ! 100,!T ! hours



More bits? Other P(c)?
More states of c?

Since G has no feedback, minimum noise for fixed NG is Poisson.

1. All topologies close to the 
maximum (the worst at N=80
and S(C)=3, is about 2.4 bits
with max3=2.7 and max∞=3.2).

2. 3-cycles seem to be 
consistently worse.

I(C,G) ! S(G) !
0.5 logN

G
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numerical curve, for !S(C) = 3
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T ! hours



Insensitivity to parameters
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(e.g., I for topology 1)

1. Almost 10-fold parameter
changes may still lead to
I>1.4 bits (holds for some
other topologies).

2. High I is generic! No fine-
tuning.



Multiple functions
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Summary of part 2
 Generically, can send many bits through

simple networks (cross-talk?)
 Noise in adapted circuits is not the reason for

low predictability
 Circuits can adapt (e.g., after a knock-out) to

perform a function reliably
 Circuits can perform many functions (without

“hard” changes)
 “Soft” parameters must be known to specify

networks, or must focus on functions



The work was done by…
 Post-translational regulation: Kai Wang,

Adam Margolin, Andrea Califano et al.,
Katia Basso, Riccardo Dala-Favera et
al., LANL comp-bio team

 Information processing by circuits: Etay
Ziv, Chris Wiggins


