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Modeling genetic regulation at
different levels: framework,

!L algorithms, applications
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Reconstructing
interaction models
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Reconstruction algorithms:
Arms race

Stat Co GM Biochem.

Small data requirements %v X X
Robustness to fluct. 4 4 X X
Computational complexity % 4 x Xv

Conditional interactions v X v {74
Reparam inv., non-param. %v %v %v

Irreducibility v/ x v/ x

o
Influenciomics




Influenciomics (steady state)
‘I strongl>‘

I(A,C) < min| I(A, B),I(B,C)] ‘

What is | (influence)?
Influence vs. interaction?

O W >




Two separate

i influenciomics problems

= What is a (statistical, biological) interaction?
« What does an arrow mean?
« Higher order dependencies

= Realistic algorithms to uncover them
= Controlled approximations

= Biologically sound approximations
= Performance guarantees

= Complexity, Robustness, Data requirements...




Defining influence:

i Variances and Correlations

o’ (x) normal
,O()C, xz) = () linear

,O(f()C), g(y)) # ,O(X,y) not invariant

' One-to-one transformations of microarray expression
data completely destroys the ranking of correlations.
Even sign of correlations may change.



Entropy (unique measure of

i randomness, in bits)

K
SIX1=-Y p.logp, =-(logp,)
x=1

0< S[X] = 10g[{ (number of “bins”)

1
N(xo,az) = S[X]=510g(27reaz)



Defining influence:

i Mutual Information

I[X;Y]={(log it
p.D,

=S5[X]+S1Y]-S[X,Y]

O0</[X;Y]=min(S[X],S[Y]

1 2
NI(%,.30). 2] = 1[X:Y]=~log(1-p;)



Why MI as influence

i measure”?

= Captures all dependencies (zero iff joint
probabilities factorize)

= Reparameterization invariant

= Unique metric-independent measure of
“how related”

For 2 variables:

Influence (/>0) is interaction.

(Nemenman and Tishby 2005)



i Kullback-Leibler divergence

Dy [P101=Y p, log%

O0<D,,

How easy it is to mistake P for Q?
(KS test, etc.)



i MI as MaxEnt

Find least constrained (highest entropy, no
interaction) approximation g to p,,, s.t.

px=qx
p, =4,

s

q, = EeXp[—fpx -¢,]1=p.p,

I1X;Y]= DKL | P | Q] > () = interaction



By analogy:

i Example of irreducibility

Pysby
Py

PABC=

1
< = ZfABfBC

MaxEnt approximation without BC:

1

Qupc = Eexp(_qp/w ~@uc) = D[Py 10,,:1=0

No irreducible interaction!

1
For AB: QABC = Eexp(_gDAc - (pBC) DKL[PABC I QAgc] >0
Irreducible interaction.



i Higher order influences

D
p.D,P.

Iy, = log

(Axiomatically) Amount of all influenece (in
bits) among variables.
But these are not irreducible.

(Nemenman and Tishby 2005)



Higher order irreducible

& dependencies
’ Node
’ —0—
Irreducible

Interaction

How njuch dependeng
there in.a set of nodes
IS NO sent In an
subsets?

(Schneidman et al. 2003, Nemenman 2004)



i MaxEnt approximations
/Q\/ ©
_J —@— 3 ‘

N

@




i MaxEnt approximations
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i MaxEnt approximations
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i MaxEnt approximations
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1
QQ - Eexp[_%zms - %234@
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i MaxEnt approximations
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i MaxEnt approximations

I§56 = DKL [Q"110]

I, >0=  lrreducible interaction present



i MaxEnt factorization of PDFs

P(x,,...x,, )=

_Ewi(xi)— ECpij(xi,xj)— Eqpijk(xi,xj’xk)_.”
: ij

ijk

= exp

* N-particle potentials

« Spin models -- inverse problem (for discrete variables)
« Random lattices

* Message passing

* Markov Networks



Two separate
influenciomics problems

= What is an interaction?
= What does an arrow mean?
= Higher order dependencies

= Realistic algorithms to uncover them
= Controlled approximations (e.g., know the order)

= Biologically sound assumptions (new knowledge from their
verification)

= Performance guarantees (focus on low false positives for
irredicibility)
= Complexity, Robustness, Data requirements...



i Interaction network
O—
O

o—

(Basso et al. 2005, Margolin et al. 2005)




Disregard high orders

ﬁ (undersampling)
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ﬁ Locally tree-like approximation
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i Locally tree-like approximation




Locally tree-like:

i signals decorrelate fast
O—

o ..l Iy




ARACNE: remove the

ﬁ weakest link in every ftriplet

I(A,C) = min| I(A, B),I(B,C)]

More care needed for loops of size 3

Techniques for MI estimation needed!



Fractional Error
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Estimating /: stability of ranks

Also:
= NSB
= copula



No false positives
Where 2-way -- it's 2-way

Theorem 1. If MIs can be estimated with no errors, then ARACNE
reconstructs the underlying interaction network exactly, provided this
network 1s a tree and has only pairwise interactions.

Theorem 2. The Chow-Liu maximum mutual information tree 1s a
subnetwork of the network reconstructed by ARACNE.

Theorem 3. Locally tree-like -- no false positives (no false negatives
under stronger conditions).




Aside: Bethe approximation,

i Message passing (MP)

P(x;,x.)
P{x.})= ]:[ J Exact for trees

MP (belief propagation, transf. matrix) works for trees and
sometimes for loopy networks. But when exactly?



i Conjecture

Locally tree like assumption is what makes MP work!




i Biological soundness

= Higher order interactions project to
lower orders

= Fast decorrelation:
I(gene,gene)>> [(gene,second best)

= Small loops often transient




Synthetic networks
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Synthetic networks
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Graceful decay for smaller N

Half of all loops kept.



Complete B-cell network
(400 arrays)

~129000 interactions



other info
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c-MYC subnetwork

Protooncogene,
12% background
binding,

one of top 5% hubs
significant M| with
2000 genes

Total interactions: 56
Pre-known: 22
Ch-IP validated: 11/12



Also validated In...

s Other hubs
= Various yeast data sets
= RBC metabolic network (synthetic)

| ~80% precision
E | 20-80% recall (depending on N)

LACE(ES)




3rd order interactions

i (modulated, conditional)

Nontranscriptional modulators from expression datal!



Numerical case study:

i Non-transcriptional modulation

Q)
0.732
0.064." ™. 0.007
Cond 1 TF Conditiona I on Kinase
@ @)
) )



Large hubs,

i global (discrete) modulators

modulator

®




Large hubs,
global (discrete) modulators

= Focus on important hubs (c-MYC)

Expression Profiles = Pre-filter candidate modulators by
| dynamic range and other conditions.
L e = = Find modulators whose expression

inflicts significant changes on
topology of the ARACNE hubs’
interactions

= No guarantee of irreducibility

wijiene = Validate in GO w.r.t. to transcription
ARACHE ARACNE ! factors and kinases among
Targets .~ o S ] modulators

A + —
Statistical Significance <— N — N > 0
!

Modulators




i c-MYC modulators

= 1117 candidate modulators (825 with known
molecular function in GO)

= 82 (69) candidate modulators identified
= Kinases: 10/69 (backgr. 42/825), p=1e-3

= TFs: 15/69 (backgr. 56/825), p=1e-6 (validated -- see
below).

= Total: 25/69 (backgr. 98/825), p=3e-8

= Large scale modulators: ubiquitin conjugating
enzyme, mRNA stability, DNA/chromatin
modification, etc.




Example:

ﬁ TF co-factor modulator

oo oco___..
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Reducibllity:

i modulating pathways

«» predicted modulators

> not in the candidate list
=3 TF’s not predicted

& Protein complex

< Targets




Large hubs, local modulator

i (MI change, transistor)




Large hubs,
local modulators

= Focus on important hubs (c-MYC)

Expression Profiles = Pre-filter candidate modulators by
dynamic range and other conditions.
P— o ——— = Find modulators whose expression

inflicts significant conditional Ml
changes for an ARACNE target in at
least one conditional topology

m No guarantee of irreducibility
= Validate in GO w.r.t. to transcription

14 .
ARACNE AN factors and kinases among
Targets ¥ modulators
. ' Tii.i)-éene Network from L AI(gTF , gt | gm ) —_
Statistical ?gmﬂcance —

Modulators = ‘I(gTF’gt | g;) - I(gTF’gt | gr; )‘ > 0



i ARACNE helps
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c-MYC modulators

= 1117 candidate modulators

= 100 (69) candidate modulators identified, modulating 205 interactions
with 130 targets

= Modulators enriched in: kinases, acyltransferases, TFs (all at p<5%);
correspond to known MYC modulation pathways.

= TFs: 15/69 (backgr. 56/825), p=1e-6; binding signature for co-TFs
(E2F5, MEF2B) found.

= Modulators with largest number of effected targets are not-target-
specific (proteolisis, upstream signaling components, receptor signaling
molecules); overlap with global modulators.

= Modulators with small number of effected targets are mostly co-TFs,
are interaction-specific; no overlap with global modulators.

s About one third of modulators are literature-validated.

= 4 out of 5 TF modulators with TRANSFAC signatures have binding
sites in modulated targets promoter regions.



i Currently

s Biochemical validation
s Search for irreducible modulators
= Dealing with small loops




i Summary

IT quantities good measures of dependency
Defined irreducible interactions

Proposed a set of simplifying assumptions and a
corresponding algorithm for second order interactions

Bootstrapped the algorithm to identify certain third
order dependencies

Validated algorithms in-silico

Analyzed interaction network of c-MYC, validated in-
vivo and through literature
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