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Abstract 
Cellular phenotypes are determined by dynamical activity of networks of co-regulated genes. 
Elucidating such networks is crucial for the understanding of normal cell physiology as well as 
for the dissection of complex pathologic phenotypes. Recently we have shown that ARACNE, a 
novel information-theoretic algorithm for reverse engineering of transcriptional networks using 
microarray data, holds significant promise for the genome-wide analysis of mammalian networks, 
which had never been performed in silico.  
In this paper we present the application of ARACNE to reverse engineering of transcriptional 
networks in the yeast Saccharomyces cerevisiae. This provides another platform for further 
comparisons of the new method to a variety of established ones, which have been extensively 
used to analyze this important model organism. Moreover, it provides an additional genome-wide 
interactome for the yeast using a method that is shown to produce very few false positive 
interactions, both in vivo and in silico. Additionally, we investigate the global topological 
properties of the reconstructed networks and determine that the scale-free structure suggested by 
existing models should be taken cautiously. Finally, analysis of the ARN1 sub-network, which 
has also been investigated using Bayesian Networks, shows that ARACNE is able to distinguish 
the key regulatory elements of this pathway from within a large cluster of co-regulated genes. 
 

1. INTRODUCTION 
Cellular phenotypes are determined by complex relationships among genes and their products that 
control the majority of cellular functions. By modeling these relationships, the whole genome can 
be organized into a network of genetic interactions. Understanding this organization is crucial to 
elucidate normal cell physiology as well as to dissect complex pathologic phenotypes. The advent 
of high throughput assays for monitoring gene expression profiles across entire genomes has 
spawned much research aimed at using this data to “reverse engineer” genetic networks by 
grouping together genes that exhibit similar transcriptional responses to various cellular 
conditions [1, 2]. While this approach has shown promise in applications such as the stratification 
of disease-related phenotypes [3], the organization of genes into co-regulated clusters is too 
coarse a representation to identify individual interactions. This is because as biochemical signals 
travel through cellular networks the expression of many genes that interact only indirectly may 
become strongly correlated. More generally, as has long been recognized in statistical physics, a 
long range order (that is, a high correlation among indirectly interacting random variables) can 
easily result from several short range, pairwise interactions [4]. Thus one cannot use correlations, 
or any other local dependency measure, as a tool for the reconstruction of interaction networks 
without additional assumptions.  
Within the last few years a number of more sophisticated approaches for the reverse engineering 
of cellular networks, also called deconvolution, from gene expression data have emerged. The 
goal of such methods is to produce a high-fidelity representation of the cellular network topology 
as a graph, where genes are represented as nodes and regulatory interactions as edges. However, 
all available approaches suffer to some degree from various problems such as overfitting, 
exponential complexity, reliance on non-realistic network models, or a critical dependency on 
data that is only available for simple organisms. We recently introduced a novel, information 
theoretic algorithm, ARACNE, for the reverse engineering of gene regulatory network that 
overcomes some of these critical limitations. ARACNE (Algorithm for the Reconstruction of 
Accurate Cellular Networks) [5] extends upon traditional clustering approaches and reconstructs 
finer-grained dependencies within gene clusters by further discriminating between direct and 



indirect interactions. ARACNE compares very favorably with existing reverse-engineering 
methods, such as Bayesian Networks and Relevance Networks, and scales successfully to the 
complexity of large mammalian networks. Analysis of mammalian networks from a large number 
of microarray profiles for normal, tumor-related, and experimentally manipulated B cells shows a 
significant ability to deconvolute complex networks. By analyzing a specific sub-network that 
includes the c-MYC proto-oncogene, we have shown that the method successfully recapitulates 
known targets of this transcription factor and is able to discover many previously unknown 
targets. The latter were biochemically validated using Chromatin Immunoprecipitation assays, 
with better than 90% success rate [6]. 
In this paper, we first review ARACNE (within its theoretical context) and then summarize an 
extensive comparison of ARACNE vs. Bayesian Networks and Relevance Networks using a 
synthetic platform of realistic complexity. Finally, we report the results of the ARACNE-based 
deconvolution of gene regulatory networks in the yeast Saccharomyces cerevisiae. This analysis 
provides a basis for the objective comparison of the algorithm’s performance in a real biological 
context, where substantial background information is available to assess the accuracy of in silico 
predictions. Additionally, results of this analysis provide an additional and orthogonal 
“interactome” for yeast, which (based on the benchmark’s results) is likely to have a low rate of 
false positive interactions as compared to previous microarray-based studies. This can be 
integrated with other models produced either experimentally or in silico. 

2. Theoretical Background 
Let us start by noting that (as most reverse-engineering methods) we will focus on the study of 
steady-state inter-gene statistical dependences only. These are defined based on the definition 
of [7], which builds on ideas from the Markov networks literature [8]. Briefly, by analogy with 
statistical physics, we write the joint probability distribution (JPD) of the stationary expressions 
of all genes, , , as:   ({ })iP g 1, ,i N= K
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where N is the number of genes, Z is the partition function, ( )i igφ  are potentials, and ({ })iH g  is 
the Hamiltonian that defines the system’s dynamics. Then a set of variables is called interacting 
if and only if the single potential that depends exclusively on these variables is nonzero. The 
expansion in Eq. (1) does not define the potentials uniquely, and additional natural constraints of 
the Maximum Entropy type are needed to avoid the ambiguity (see [7, 9] for details).  
Given the relatively small number of expression profile samples, M , that can be realistically 
obtained, it is infeasible to infer an exponentially large number of potential n-way interactions, as 
suggested by Eq. (1). Rather, a set of simplifying assumptions must be made about the variable 
dependency structure. Eq. (1) provides a principled and controlled way to introduce such 
approximations. The simplest model is one where genes are assumed independent, i.e., 

( )({ }) i iiH g φ= ∑ g , such that the first-order potentials can be evaluated from the marginal 
probabilities, , which are in turn estimated from samples. As more data become available, 
we should be able to reliably estimate higher order marginals and incorporate the corresponding 
potentials progressively, such that for  the complete form of the JPD is restored. In fact, 

 is generally sufficient to estimate 2-way marginals in genomics problems, while 
 requires about an order of magnitude more samples. Thus, we truncate Eq. (1) at the 

pairwise interactions level, 
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two genes are declared non-interacting if they are statistically independent 
(i.e. ), and more complex interactions are not investigated.  ( , ) ( ) ( )i j i jP g g P g P g≈

However, the reverse is not true, and genes may still not interact (zero potential) even if the 
marginals do not factorize. Therefore, even focusing on pairwise interactions, the problem of 
network reverse engineering is still nontrivial: two genes can have nonzero correlation due to a 
confounding effect of a third one. That is, we may still have ( , ) ( ) ( )i j i jP g g P g P g≠  while 0ijφ =  
meaning that there is no direct interaction. Since the number of potential pairwise interactions is 
huge (quadratic in the number of genes), uncovering them to remove false positives presents a 
formidable challenge to all network reconstruction algorithms. To date, no method has been 
proposed to solve this issue exactly and to reconstruct an arbitrary two-way interaction network 
reliably from a finite number of samples and in a computationally feasible time. However, if the 
regulatory network can be represented as a tree, then we prove that ARACNE can reconstruct it 
exactly for . M → ∞

3. ALGORITHM 
ARACNE relies on a two-step process. First, candidate interactions are identified by estimating 
pairwise gene-gene mutual information (MI) ( , ) log[ ( , ) ( ) ( )]i j i j i jijI g g I P g g P g P g= = and by 

filtering them using an appropriate threshold, I0, computed based on a specific p-value, p0, in the 
null-hypothesis of two independent genes. This step is basically equivalent to the Relevance 
Networks method [10], and, as such, suffers from critical limitations. In particular, as previously 
discussed, genes separated by one or more intermediaries may be highly co-regulated without 
implying a direct physical interaction.  
Thus, in its second step, ARACNE removes the vast majority of indirect candidate interactions 
using a well-known property of mutual information – the data processing inequality (DPI) [11] –
not been previously applied to the reverse engineering of networks. The DPI states that if genes 
g1 and g3 interact only through a third gene, g2, (i.e., if the interaction network is of the form 

 and no alternative path exists between g1 2... ...g g↔ ↔ ↔ ↔ 3g 1 and g3), then  

 ( ) ( ) ( )1 3 1 2 2 3, min , ; ,I g g I g g I g g≤ ⎡ ⎤⎣ ⎦ . (2) 

Correspondingly, ARACNE starts with a network graph where each  is initially 
represented by an edge ( i ). It then examines each gene triplet for which all three edges are 
above statistical significance and removes the edge with the smallest mutual information. Triplets 
are analyzed irrespective of whether edges have been previously marked for removal by the DPI 
(based on a different triplet). Thus the network reconstructed by the algorithm is independent of 
the order in which the triplets are examined.  

0ijI I>

j↔

Theorem: If MIs can be estimated with no errors, then ARACNE (with threshold p-value of 1, or 
equivalently, only the second step) reconstructs the underlying interaction network exactly, 
provided this network is a tree and has only pairwise interactions. 
Proof of the Theorem: First, consider that for every pair of nodes gi and gk that are not physically 
interacting there is at least one other node gj that separates them on the tree. Thus, applying the 
DPI to the (ijk) triplet leads to the removal of the (ik) edge and only edges corresponding to true 
interactions survive. Similarly, each removed edge cannot correspond to a true interaction. 
Consider some (ijk) triplet. One of its genes, say gj, may separate the other two. In this case the 
removed edge (ik) clearly does not correspond to a true interaction in the tree. Alternatively, there 
may be no separating gene, and one may be able to move between any gene pair in the triplet 
without going through the third one. In this case none of the three edges is in the true graph, and 



any DPI-removed edge would not correspond to a true interaction. Thus, all removed edges are 
indirect, while all remaining edges are factual. The network is reconstructed exactly.  
As we will demonstrate using a synthetic dataset, the introduction of the DPI results in a 
remarkable reduction of false positive interactions with minimal impact on false negative ones. 
However, the algorithm is not guaranteed to reconstruct correct networks if loops are present (in 
fact, every loop with only three genes will be opened along the weakest edge). However, if loops 
are large, then the network has essentially a local tree structure and the algorithm will work well. 
This is because nodes in a network generally decorrelate rather quickly, and interactions over 
more than a few separating edges are weak, reducing the impact of large loops. While a local 
tree-like structure is a reasonable first-order approximation for biological networks, there will be 
many violations. For instance, the feed forward loop (a three-gene loop) has been found to be 
over-represented in biological circuits [12]. In practice, as it will be shown, even in the presence 
of tight regulatory loops and complex network topology, ARACNE performs remarkably well 
and outperforms comparable reverse engineering algorithms. 
In the current implementation of the algorithm, we use a computationally efficient Gaussian 
Kernel estimator [13] to estimate MI. Given two measurement vectors { }ix  and{ ,  }iy
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where ( , )f x y  and ( )f x  are Gaussian kernel density estimators defined as: 
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Here, is the kernel width. This estimator is asymptotically unbiased for , as 
long as  and . Unfortunately, for finite 

( )h h M= M → ∞

( ) 0h M → 2[ ( )]h M M → ∞ M , the bias strongly depends 
on the choice of , and the correct choice is not universal. However, ARACNE’s 
performance does not depend directly on the accuracy of the MI estimate, but rather on the 
accuracy of the estimation of MI ranks: to test if MI is statistically significant or to apply DPI, 
one only needs to check if  or if , respectively; that is, only to rank MI estimates. 

It turns out that for fixed h  the bias tends to cancel out, especially for 

( )h M

0,ijI I≥ ij ikI I>

,ij klI I≈  and the ordering 
of MI estimates is only weakly dependent on the choice of . Thus it is accurately estimated 
even when MI is not. Thus selecting a single “ensemble best” value of h rather than searching for 
the best kernel width for each estimate (a computationally intensive operation) impedes 
performance very little. 

h

With such a choice, ARACNE’s complexity is , where, as always, M is the 
number of samples, and N is the number of genes. This is allows to effectively analyze networks 
with tens of thousands of genes. We refer the reader to [6] for details of selection of the kernel 
width as well as the other adjustable parameter, the DPI tolerance, 

3 2 2(O N N M+ )

τ , which can be used to 
further minimize the impact of potential MI estimation errors by transforming the exact form of 
the DPI inequality to the form (1 )ij ikI I τ≤ − . We note that 0τ =  corresponds to the strict 
implementation of the DPI, while 1τ =  corresponds to Relevance networks, where no DPI is 
applied. Values in between explore the range between the two extremes. In particular, in [6], we 



show that for tolerances up to about 20% the 
number of true positives inferred by the 
algorithm can be increased with very little 
expense in terms of false positives. 

4. RESULTS  
We benchmark our algorithm by comparing its 
performance to that of Relevance Networks 
(RNs) [10] and Bayesian Networks (BNs), as 
implemented by [14]. RNs are basically 
equivalent to ARACNE without the DPI and thus 
are representative of a class of 
statistical/information theoretical which define 
two-way probabilistic measures of gene 
correlation to distinguish potential interactions 
from background noise. This comparison is 
important to assess the performance gain 
associated with the introduction of the DPI. BNs 
have emerged as some of the most widely used 
reverse engineering methods and provide an 
ideal comparative benchmark. We compare these 

ree algorithms’ ability to reconstruct a 
realistically implemented synthetic network, and 
to identify key regulatory elements in a yeast 
iron homeostasis pathway. We conclude by 
analyzing the global topological properties of the 
whole-genome regulatory network reconstructed 
by ARACNE. 

th

A Synthetic Network Benchmark 
Validation Framework:  We have benchmarked 
ARACNE against two other algorithms using a 
synthetic networks model proposed by [15] as a 
realistic platform for the objective comparison of 
reverse engineering algorithms. These networks 
contain 100 nodes and 200 interactions organized 
in a scale-free topology [16], and evolve 
according to a multiplicative Hill dynamics. Such 
networks present a formidable challenge to 
reconstruction algorithms due to (a) their realistic 
complexity, (b) the presence of many regulatory 
loops, (c) the presence of a few highly 

interconnected genes, and (d) the biologically motivated non-linear transcriptional dependencies 
among genes. To generate synthetic microarrays, we randomly vary the efficiency of gene 
synthesis and degradation reactions for each synthetic sample at the beginning of each simulation. 
This models the sampling of a population of distinct cellular phenotypes at random time points 
(but at equilibrium). Reconstruction of these networks is evaluated by calculating recall, 

, and precision, /( )TP TP FNN N N+ /( )TP TP FPN N N+ , which, respectively, measure the fraction of 
true interactions correctly inferred by the algorithm and the fraction of genuine interactions 
among all predicted ones ( TPN , FPN , TNN , and FNN  stand for true/false positives/negatives). 

Figure 1 Precision vs. Recall for 1,000 samples 
generated from the Mendes networks. PRCs for 
ARACNE are consistently better than for the 
other algorithms. That is, for any reasonable 
precision (i.e. > 40%), ARACNE has a 
significantly higher recall than the other 
methods, and its precision reaches ~100% at 
significant recall values. To isolate the 
performance gain associated with 
introduction of the DPI, points on the PRCs 
for ARACNE and RNs are indicated 
corresponding to  (the value 
yieding < 0.5 expected false positives for 
4,950 potential interactions). Using this p-
value, ARACNE correctly infers 97 out of 
194 true interactions, with on 2 false 
positives. By contrast, Relevance Networks 
infer 113 true connections with 234 false 
positives. Therefore, the DPI eliminates 232 
false candidate interactions at the expense of 
only 15 true positives. Moreover, as shown, 
the statistical significance threshold yielding 
near optimal performance can set a-priori, 
by choosing a p-value (calculated from the 
background distribution described earlier) 
yielding a low expected number of false 
positives for the sample size in question. 

5
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Precision vs. Recall curves (PRCs) are a better 
match than the more familiar ROC curves for 
problems where the number of true negatives is 
far greater than that of true positives, which is 
the case in large sparse networks. 
 
Performance Analysis:  PRCs are shown in 
Figure 1 for all three comparative algorithms. 
These curves were obtained by changing the MI 
threshold and the Dirichlet pseudocounts, 
respectively for ARACNE/RNs and BNs. As is 
obvious from the figure, ARACNE performs 
consistently better than BNs and RNs, and 
achieves remarkably low false positive rates. 
Such high precision is necessary to guide 
experimental validation of the method’s 
predictions. Using 1,000 samples, over half of 
all edges can be inferred with hardly any false 
positives. As shown, for a given p-value, 
introduction of the DPI produces a dramatic 
ncrease in precision with hardly any impact in 

recall, indicating that the DPI is highly efficient 
in filtering false candidate interactions with 
minimal impact on true positives. The reason for 
this success can be understood by considering 
the distribution of MIs as a function of the 
length of the shortest path connecting each gene 
pair (degree of connectivity). As shown in 
Figure 2, there is no unique threshold that can 

separate direct and indirectly interacting genes, as is evident by the high false positive rates in the 
PRC for Relevance Networks. However, MI is larger for directly interacting genes and decreases 
rapidly with this distance, raising the possibility of eliminating a substantial number of distant 
indirect associations by imposing a slightly conservative threshold that will eliminate only a few 
true interactions, while connections with enriched mutual information due to indirectly interacting 
genes can be eliminated a-posteriori via the DPI. Moreover, as discussed in [5], ARACNE’s 
performance remains stable as the sample size decreases. In particular, the number of true 
positives decays gracefully while the number of false positives remains extremely low. For this 
data set and a sample size of only 125 synthetic microarrays, ARACNE still recovers 46 true 
interactions with only 3 false positives. 

i

 

Figure 2 Here we plot the log of the empirical 
probability that MI for a given separation between 
genes is above some value (in nats) marked on the 
horizontal axis. For both topologies, high MI 
values are significantly more probable for closer 
genes. Statistical significance thresholds of 10-5 
for the background MI distribution, 
corresponding to  nats, is marked on 
each graph. As shown, this threshold retains a 
large number of indirect candidate interactions, 
and there is no threshold that would be able to 
separate indirect and direct interactions; a 
threshold that eliminates most of the former (red 
arrows) also eliminates the majority of the latter. 
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Analysis of Regulatory Networks in S. cerevisiae 
To further benchmark our method in a real biological context, we compare the three methods on 
the reconstruction of regulatory networks in S. cerevisiae, an organism for which many 
biochemical interactions have been validated experimentally, and for which several reverse 
engineering studies have been considered to infer such interactions. We applied our method to 
two S. cerevisiae gene expression data sets. One 
data set monitors response of yeast cells to diverse environmental 
transitions [17].  The second data (Rosetta Compendium) captures 
yeast transcriptional response corresponding to nearly 300 diverse mutations 
and chemical treatments [18]. 
 



Figure 3 (a)  ARN1-centered network with first and second neighbors.   The first neighbors are enriched in the two 
classes of proteins that are involved in the intial steps of iron-uptake: siderophore transporters (SIT1, ARN2) and 
reductase (FRE3) (nodes shown in bright green).   Many second neighbors enhance uptake of iron or other heavy 
metals (nodes shown in dark green).   (b)   Arn1-centered network with 15% tolerance.   Several direct and indirect 
players of iron-uptake are identified but there are many neighbors which are not known to be related to iron 
homeostais. 

 
 
Analysis of the ARN1 Iron Homeostasis Pathway: We examine the reconstruction of an iron 
homeostasis pathway centered around the ARN1 gene that was previously used to test a Bayesian 
Networks approach to network reconstruction [19], using the dataset described in [18]. 
ARN1-mediated iron uptake: Although iron is one of the most abundant elements, ionic forms of 
iron, especially iron (III), its most common state, are very insoluble under physiological 
conditions. Evolution of life has depended on development of effective methods for its 
assimilation. The yeast Saccharomyces cerevisiae can use two different high-affinity mechanisms 
to take up iron from the extracellular medium [20, 21].  The reductive mechanism involves the 
reduction of extracellular ferric chelates  via the inducible plasma membrane reductases Fre1p, 
Fre2p and Fre3p.  The other method is a non-reductive mechanism which utilizes high-affinity  
transporters to shuttle ferric complexes into the cells  prior to any reduction step.  These 
transporters, encoded by ARN1, ARN2/TAF1, ARN3/SIT1 and ARN4/ENB1, each uptake 
specific forms of iron-bound siderophores.  Another family of genes FIT1, FIT2 and FIT3 
enhance iron uptake but are not essential for the process [22]. 
It is clear that the first response to iron deprivation is modulated by two groups of proteins: the 
plasma membrane reductases (FRE1, FRE2 and FRE3) and ferrous transporters  (ARN1, 
ARN2/TAF1, ARN3/SIT1).   
Reconstruction Performance: In Figure 3.a, we show the first and second neighbors of ARN1 
generated by ARACNE with 0% tolerance.  Remarkably, ARACNE is able to capture the two 
direct groups players in the initiation of the iron uptake pathway – the plasma membrane 



reductase (FRE3) and the ferrous transporters (ARN3/SIT1, ARN2/TAF1).  The secondary 
players that enhance iron uptake, or enhance uptake of other metals like copper or zinc are 
abundant in the second neighbors (e.g. FIT1, CCC1, FET3, MMT2,  ATX1 and COT).   One 
ferrous-transporter missing among the first neighbors is ARN4/ENB1.  But ARN4/ENB1 does 
have ARN2/TAF1 and ARN3/SIT1 as its first neighbors.  The ARN1 network generated by 
ARACNE is richer in genes directly related to iron uptake than an earlier ARN1 network reverse-
engineered using BNs [19].  While three of the four ARN1 first neighbors inferred by ARACNE 
are essential for and directly related to iron- uptake, only two out of six of the ARN1 first 
neighbors of the BN approach fall in that category.   Moreover, ARACNE is able to capture the 
modular structure of the initial steps of iron-uptake pathway (the transporter and reductase 
activity) more clearly than the BN approach.  
When the tolerance is relaxed to 15%, the ARN1-centered network recruits several additional first 
neighbors interactions (28), as shown in Figure 3.b.  While some of the relevant iron-uptake 
genes are present – the network is now crowded with many genes from complementary pathways 
and it is difficult to assess the hierarchy of the iron-uptake pathway.  With a complete (100%) 
relaxation of tolerance, which is equivalent to the Relevance Networks approach, ARN1 has over 
200 first neighbors and the importance of iron homeostasis becomes undetectable. 
Analysis of the Global S. cerevisiae Network: ARACNE was able to infer whole-genome 
interaction networks for the Rosetta and the Stress Response data respectively (at the DPI 
tolerance of 15%). As ARACNE is believed to produce very few false positives even with this 
tolerance, the disparity between the numbers of inferred interactions is probably due to a different 
nature of the expression data in the datasets. The Rosetta data consists of responses to various 
knockouts and drugs, which only lead to relatively small perturbations of the entire system 
(according to [23], the steady state of a weakly perturbed Yeast transcriptional network is very 
close to that of the unperturbed one). As mutual information is bounded from above by variability 
(as measured by the entropy), such robustness to perturbations decreases the number of 
reconstructable edges. On the other hand, the stress response set consists of time series data from 
a macroscopic biological behavior (motion of the organism). This involves substantial variation 
of many expressions and provides the necessary dynamic range for discovery of the interactions. 
We summarize the inferred networks by their global connectivity properties in Figure 4. The 
results show a power-law tail in the relationship between the number of genes, n, in the networks 
and their number of interactions, k, which extends over two orders of magnitude in n. This can be 
interpreted as an evidence for a scale free structure for underlying networks [16], with few hubs 
and many weakly connected genes. However, for the stress response data there also is a peak at 
k ≈ 20  in the degree distribution. Thus such identifications should be made with an extreme 
caution (see Discussion).  



Figure 4.  Distribution of nodes with a specific number of incident edges (degree of connectivity) in log-
log scale using a tolerance  ε = 0.15  for the (a) Rosetta and (b) stress response dataset. There is some 
evidence that the Rosetta dataset possesses a scale-free topology with the power law of . On the other hand, 
the graph of the degree distribution for the stress response dataset, which also has a power law tail has a 
clear peak at about 20 incident edges. These results persist for the tolerance down to 0%, suggesting clear 
biological differences between the datasets.  

 
 

DISCUSSION 
Inferring functional dependencies between genes from co-regulated expression profiles has 
presented significant challenges for reverse engineering algorithms that rely on statistical 
correlations between genes since even without direct interactions genes may be highly co-
regulated.  However, due to inherent stochasticity in biochemical reactions, mutual information 
between genes decreases as genes become more distantly related. We have developed an 
algorithm that exploits this property of transcriptional networks and uses the data processing 
inequality to infer intricate dependencies within co-regulated gene clusters. Through synthetic 
data analysis we have shown that this approach is highly effective in distinguishing between 
direct and indirect interactions, and that it offers significant performance improvements over 
widely used Bayesian Networks algorithms. By analyzing regulatory relationships in S. cerevisae, 
we demonstrated that ARACNE refines the dependency structure within a large class of co-
regulated genes centered around the iron transporter ARN1, and identifies only key “first 
responders” in this pathway as being directly related to ARN1.  
Furthermore, application of ARANCE to the Rosetta dataset hints at possible scale free structure 
of the yeast transcriptional network. Such result would agree with previous studies which have 
shown that many real biological networks [24] [25] [26] [27] [28], including even the Yeast 
transcriptional network , possess the scale free property.  However, analysis of the stress response 
data set shows strong preference towards about 20 connections per node and probably does not 
agree with the scale free hypothesis. Thus decision regarding the underlying structure of the yeast 
network would be premature. In fact, one reason for the discrepancy between the data sets could 
be that the stress response data corresponds to a particular biological phenomenon, while the 
Rosetta data set is a compendium of various responses. Thus, in the first case, we reconstruct the 
network that is responsible for a particular phenomenon, while in the second case the 
reconstructed network is an average. Since the full network is never active simultaneously, it is 
unclear if the overall scaling behavior is biologically relevant.  Further, it is well known that 



combination of networks with well defined, but different, scales can produce a scale free 
structure, and this may be the explanation of the observed discrepancy. We emphasize again that 
definite conclusions are premature at this stage. The question may be analyzed by using 
ARACNE to study networks conditional on particular phenomenological characteristics. 
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