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Abstract

Dynamics of complex natural and artificial systems is often driven by large and intricate net-

works of microscopic interactions, whose sheer size obfuscates understanding. In light of limited

experimental data, many parameters of such dynamics are unknown, and thus models built on

the detailed, mechanistic viewpoint risk overfitting and making faulty predictions. At the other

extreme, simple ad hoc models often miss defining features of the underlying systems. Targeting

modern biophysics applications, here we develop an approach that instead constructs phenomeno-

logical, coarse-grained models of network dynamics that automatically adapt their complexity to

the amount of available data. Such adaptive models lead to accurate predictions even when mi-

croscopic details of the studied systems are unknown due to insu�cient data. The approach is

computationally tractable, even for a relatively large number of dynamical variables. For example,

it correctly infers the phase space structure for simulated planetary motion data, avoids overfitting

in a complex biological signaling system, and produces accurate predictions for a yeast glycolysis

model with only tens of data points and over half of the interacting species unobserved.
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One can view the physics enterprise as reverse-engineering Nature — using data to infer

predictive mathematical models of physical systems, and then finding similarities among

such models of distinct systems to identify physical laws. In the era of Big Data, these

models are becoming Big Models, which are often as complicated as the data themselves,

reflecting the humorous maxim that “the best material model of a cat is another, or prefer-

ably the same, cat” [1]. This is especially evident in modern biophysics and systems biology

[2], which are the primary focus of this article. Continued success of such approaches that

systematize all known details in a combinatorially large mathematical model is uncertain.

Indeed, generalizing and generating insight from complex models is di�cult. Further, speci-

fication of myriads of microscopic mechanistic parameters in such models demands vast data

sets and computational resources, and is hard even for very large data sets due to widely

varying sensitivities of predictions to the parameters [3]. Finally, the very structures of these

models are often unknown because they depend on many yet-unobserved players on the mi-

croscopic level. Identification of these structural characteristics is labor intensive and does

not scale up easily. Thus it is unlikely that mathematical models based solely on a detailed

microscopic representation will be able to account accurately for the observed dynamics of

many complex systems. More importantly, even if they could, the resulting models would

be too unwieldy to bring about understanding of the modeled systems. Model reduction

may alleviate some of these problems, but it still su↵ers from the di�culty of needing an

exact, detailed model as an intermediate step [4–7].

Because of these di�culties, the need to predict responses of complex systems to dynam-

ical perturbations has led to a resurgence of research into automated inference of dynamical

systems from time series data, which had been attempted since the early days of the field

of nonlinear dynamics [8, 9]. Approaches have been developed using linear dynamic models

[10], Bayesian Networks (see Supplementary Information (SI)), recurrent neural networks

[11], evolved regulatory networks [12], and symbolic regression [13, 14]. The latter two pro-

duce models that are more mechanistically accurate and interpretable. However, because of

the focus on microscopic accuracy, these approaches require searching through an extremely

large space of all possible microscopic dynamics. In general, this leads to very long search

times [12, 14], especially if some underlying variables are unobserved, and dynamics are

coupled and cannot be inferred one variable at a time.

To move forward, we note that microscopic and macroscopic complexity are not neces-

2



sarily related [15, 16]. Thus complex living systems may realize rather simple dynamics, at

least in typical experimental setups. For example, activation of a combinatorially complex

receptor can be specified with only a handful of e↵ective parameters, including the dynamic

range, cooperativity, and time delay [17–19], and the purpose of microscopic structural com-

plexity can be in making the simple macroscopic functional output robust in the face of

perturbations [18, 20]. Similarly, in engineering [21], e↵ective models are often su�cient for

forward (but not reverse) engineering of complex systems, as illustrated by the ubiquity of

the purely phenomenological Kalman filter. These considerations suggest that macroscopic

prediction does not necessarily require microscopic accuracy even in systems biology [22],

and that a complementary approach is needed, one in which we seek phenomenological,

coarse-grained models of cellular processes that are simple and inferable, and nonetheless

predictive and useful in limited domains [23].

Here we propose an adaptive approach for inference of dynamics from time series data

that does not attempt to find the single best microscopically “correct” model, but rather

a phenomenological, e↵ective model that is “as simple as possible, but not simpler” than

needed to account for the experimental data. Deemphasizing microscopic accuracy means

that we do not have to search through all possible microscopic dynamics, and we can focus on

a much smaller hierarchy of models. By choosing a hierarchy that is nested and complete,

we gain theoretical guarantees of statistical consistency, meaning the approach is able to

adaptively fit any smooth dynamics with enough data, yet is able to avoid problems with

overfitting that can happen without restrictions on the search space [24]. While similar

complexity control methods are well established in statistical inference [25] and in choosing

a systems biology model for data from a finite set of models [26–28], we believe that they have

not been used yet in the context of inferring complex, nonlinear dynamics from an infinite,

complete set of all possible dynamics. Importantly, this adaptive approach requires testing

a number of models that scales only polynomially with the number of dynamical variables.

Further, it uses computational resources that asymptotically scale linearly with the number

of observations. This allows us to construct models with much smaller computational e↵ort

and fewer experimental measurements, even when many dynamical variables are unobserved.

While our main goal is e↵ective dynamical modeling in systems biology, our approach works

for general physical dynamical systems. In fact, we call it Sir Isaac due to its success in

discovering the law of universal gravity from simulated data.
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FIG. 1: The law of gravity: an example of dynamical inference. A particle is released with velocity

v0 perpendicular to the line connecting it to the sun, with varying initial distance r0 from the

sun. (a) With only N = 150 examples (each consisting of just a single noisy observation of r at a

random time t after the release; see SI), we infer a single dynamical model in the S-systems class

that reproduces the data. With no supervision, adaptive dynamical inference produces bifurcations

that lead to qualitatively di↵erent behavior: in this case, a single model produces both oscillations

(elliptical orbits) and monotonic growth (hyperbolic trajectories). Inferred trajectories are shown

with solid colored lines, and the corresponding true trajectories are shown with dashed lines. (b)

Like the true model (left), the inferred model (right) contains a single hidden variable X2 and

works using a similar phase space structure. Specifically, the location of nullclines (green lines)

and a single fixed point (green circle) as a function of r0 are recovered well by the fit. Note that

the hidden variable is defined up to a power (see SI), and we choose to plot X2
2 here.
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I. RESULTS

We seek a phenomenological model of dynamics in the form

d~x

dt
= ~F

x

(~x, ~y, ~I),
d~y

dt
= ~F

y

(~x, ~y, ~I), (1)

where ~x are observed variables, ~y are hidden variables, and ~I are inputs or other parameters

to the dynamics. We neglect intrinsic stochasticity in the dynamics (either deterministic

chaotic, or random thermal), and focus on systems for which repeated observations with

nearly the same initial conditions produce nearly the same time series, save for measurement

noise. The goal is then to find a phenomenological model of the force fields ~F
x

, ~F
y

[8].

The same dynamics may produce di↵erent classes of trajectories ~x(t) dependent on initial

conditions (e. g., ellipses and hyperbolas in gravitational motion). Dynamical inference

rather than more familiar statistical modeling of trajectories is needed to represent these

multiple functional forms within a single dynamical system.

Since our primary focus is on complex cellular processes, we construct two classes of

nested and complete model hierarchies, both well matched to properties of biochemistry

that underlies cellular network dynamics. We build the first with S-systems [29] and the

second with continuous time sigmoidal networks [30]. The S-systems use production and

degradation terms for each dynamical variable formed by products of powers of all involved

variables (chemical species concentrations); this is a natural generalization of biochemical

mass-action laws. Specifically, an S-system consists of J dynamical variables x
i

andK inputs

I
k

= x
J+k

, with each dynamical variable governed by an ordinary di↵erential equation [29]

dx
i

dt
= G(x)

i

�H(x)
i

, (2)

where production G and degradation H terms have the form

G(x)
i

= ↵
i

J+KY

j=1

x
gij

j

, H(x)
i

= �
i

J+KY

j=1

x
hij

j

. (3)

Secondly, the sigmoidal class represents interactions using linear combinations of saturating

functions of species concentrations, similar to saturation in biochemical reaction rates:

dx
i

dt
= �x

i

/⌧
i

+
JX

j=1

W
ij

⇠(x
j

+ ✓
j

) +
KX

k=1

V
ik

I
k

, (4)
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where the sigmoidal function ⇠(y) = 1/(1 + ey). Importantly, both classes are complete and

are able to represent any smooth, nonlinear dynamics with a su�cient number of (hidden)

dynamical variables [29, 31, 32]. They can also each e�ciently represent the types of sharp

nonlinearities typically found in biophysical systems (see SI).

To perform adaptive fitting within a model class, a specific ordered hierarchy of models

is chosen a priori that simultaneously varies both the degree of nonlinearity (the number

of factors in Eq. 3 or terms in Eq. 4) and the number of hidden variables (additional x
i

;

see FIG. S1 and SI). Within this restricted model space, Bayesian inference is then used to

select a single best model (see Methods).

A. The law of gravity

Before applying the approach to complex dynamics where the true model may not be

expressible simply within the chosen search hierarchy, we test it on a simpler system with

a known exact solution. We choose the iconic law of gravity, inferred by Newton based

on empirical observations of trajectories of planets, the Moon, and, apocryphally, a falling

apple. Crucially, the inverse-squared-distance law of Newtonian gravity can be represented

exactly within the S-systems power-law hierarchy for elliptical and hyperbolic trajectories,

which do not go to zero radius in finite time. It requires a hidden variable, the velocity, to

completely specify the dynamics of the distance of an object from the sun (see SI).

FIG. 1 displays the result of adaptive inference using the S-systems class. Given data

about the distance of an object from the sun over time, we discover a model that repro-

duces the underlying dynamics, including the necessary hidden variable and the bifurcation

points. Since the trajectories include hyperbolas and ellipses, this example displays the

advantage of inferring a single set of dynamical equations of motion, rather than statistical

fits to trajectories themselves, which would be di↵erent in the two cases. This adaptive

dynamical inference is comparable to other recent methods [13], and it successfully treats

a hidden dynamical variable. FIG. S4 additionally shows inference of the law of gravity

using the sigmoidal model class. While accurate, the fits are worse than those using S-

systems, illustrating the importance of understanding basic features of the studied system

when conducting automated model inference.

Empowered by the success of the adaptive inference approach in this case, we chose to
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name it Sir Isaac. The software implementation can be found under this name on GitHub.

B. Multi-site phosphorylation model

When inferring models for more general systems, we do not expect the true dynamics to be

perfectly representable by any specific model class: even the simplest biological phenomena

may involve combinatorially many interacting components. Yet for simple macroscopic

behavior, we expect to be able to use a simple approximate model that can produce useful

predictions. To demonstrate this, we envision a single immune receptor with n modification

sites, which can exist in 2n microscopic states [33], yet has simple macroscopic behavior

for many underlying parameter combinations. Here, we test a model receptor that can be

phosphorylated at each of n = 5 sites arranged in a linear chain. The rates of phosphorylation

and dephosphorylation at each site are a↵ected by the phosphorylation states of its nearest

neighboring sites. With Michaelis-Menten kinetics and independence of kinetic rates for

di↵erent states, this produces a complicated model with 32 coupled ODEs specified by 52

parameters, which we assume are unknown to the experimenter.

We imagine an experimental setup in which we can control one of these parameters, e.g.,

by changing concentrations of various kinases. We are interested in e↵ects of such changes

on the time evolution of the total phosphorylation of all 5 sites. Here we arbitrarily treat

as input I the maximum rate of cooperative phosphorylation of site 2 due to site 3 being

occupied, V . This is inspired, for example, by being able to measure or control concentra-

tions of the SRC-family kinases (input), which mediate immune signaling conditional on the

previous steps in the receptor activation sequence being completed [17]. We then “measure”

the resulting time course of total phosphorylation starting from the unphosphorylated state.

Experimental measurements are corrupted with noise at the scale of 10% of their values (see

SI for details).

A straightforward approach to modeling this system is to fit the 52 parameters of the

known model to the data. A second approach is to rely on intuition to manually develop a

functional parameterization that captures the most salient features of the timecourse data.

In this case, we can write a simple 5 parameter model (see SI) that captures exponential

saturation in time with an asymptotic value that depends sigmoidally on the input V . A

third approach, advocated here, is to use automated model selection to create a model with
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FIG. 2: Multi-site phosphorylation model selection as a function of the number of measurements

N . The sizes of errors made by three models (filled symbols; left axis) decrease as the amount of

data increases. Adaptive sigmoidal models (orange squares) outperform a maximum likelihood fit

to the full 52-parameter model (green circles) in this range of N (although we expect that it will

eventually outperform all other models as N ! 1). A simple 5-parameter model (blue triangles)

that is custom-made to match salient features of the true behavior is the best performer for a

moderate amount of data, but is outperformed by adaptive models when given more data. The

mean over 10 sets of input data are shown, with shaded regions indicating the standard deviation

of the mean. The full and simple models each use a fixed number of parameters (open symbols;

right axis), while the sigmoidal model adapts to use more parameters when given more data.

complexity that matches the amount and precision of the available data.

In FIG. 2, we compare these three approaches as the amount of available data is varied,

and FIG. 3(a) shows samples of fits done by di↵erent procedures. With limited and noisy

data, fitting the parameters of the full known model risks overfitting, and in the regime we

test, it is the worst performer on out-of-sample predictions. The simple model performs

best when fitting to less than 100 data points, but for larger amounts of data it saturates in

performance, as it cannot fit more subtle e↵ects in the data. In contrast, an adaptive model

remains simple with limited data and then grows to accommodate more subtle behaviors

once enough data is available, eventually outperforming the simple model. Even when given

up to 400 data points, the adaptive model remains relatively simple, avoiding using as many

degrees of freedom as the full model (see also FIG. S5). Crucially, this performance stays

robust when various assumptions of the adaptive inference approach are violated (such as
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FIG. 3: Response (right axis) to (a) out-of-sample constant and (b) time-varying input (left axis,

blue lines) in the models of multi-site phosphorylation. Fit to N = 300 constant input data points,

the full known model (green) produces erratic behavior typical of overfitting (especially evident in

(b)), while the adaptive sigmoidal model (orange) produces more stable out-of-sample predictions

with median behavior that is closer to the true dynamics. Plotted is the median behavior over

100 samples from each model’s parameter posterior (see SI), with shaded regions indicating 90%

confidence intervals, which are in some cases smaller than the width of the line.

the model of the measurement noise, cf. FIGS. S2A, S2B). And it barely depends on details

of the approach such as the ordering with which parameters are added into the model

(cf. FIG. S2C).

The multi-site phosphorylation example also demonstrates that dynamical phenomeno-

logical models found by Sir Isaac are more than fits to the existing data, but rather they

uncover the true nature of the system in a precise sense: they can be used to predict re-

sponses to some classes of inputs that are qualitatively di↵erent from those used in the

inference. For example, as seen in FIG. 3(b), an adaptive sigmoidal model inferred using
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temporally constant signals produces a reasonable extrapolated prediction for response to a

time-varying signal. At the same time, overfitting is evident when using the full, detailed

model, even when one averages responses over the posterior distribution of the inferred

model parameters.

C. Yeast glycolysis model

A more complicated test of the method is to reproduce nonlinear oscillatory dynamics,

such as that describing yeast glycolysis, for which there has been recent interest in automated

inference [14]. A recent model for the system [34, 35], informed by detailed knowledge of

metabolic pathways, consists of coupled ODEs for 7 species whose concentrations oscillate

with a period near 1 minute. The system dynamic is simpler than its structure in the sense

that some complexity is used to stabilize oscillations to perturbations. On the other hand,

the oscillations are not smooth (see FIG. 4) and hence are hard to fit with simple methods.

These aspects make this model an ideal test case for Sir Isaac.

If we were given abundant time series data from all 7 species and were confident that

there were no other important hidden species, we may be in a position to infer a “true”

model detailing interactions among them. If we are instead in the common situation of

having limited data on a limited number of species, we may more modestly attempt to make

predictions about the inputs and outputs that we have measured. This is conceptually

harder since an unknown number of hidden variables may need to be introduced to account

for the dynamics of the observed species. We demonstrate our approach by constructing

adaptive models using data for only 3 of the 7 coupled chemical species, as their initial

conditions are varied.

Depicted in FIG. 4 is the model selection procedure for this case. After selecting an adap-

tive model fit to noisy data from N single timepoints, each starting from initial conditions

sampled from specified ranges, we test the inferred model’s ability to predict the time course

resulting from out-of-sample initial conditions, including those lying far away from the limit

cycle. With data from only N = 40 measurements, the selected model is able to predict

behavior with mean correlation of over 0.6 for initial conditions chosen from ranges twice

as large as those used as training data (shown in FIG. 4) and 0.9 for out-of-sample ranges

equal to in-sample ranges (shown in FIG. S9). At this point, the model saturates at about
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65 nominal and 35 e↵ective parameters (FIG. S11). This is larger than in the true model

and does not necessarily reflect its topology. However, since discovering the functional form

of the true model (including hidden nodes) would require a search through a much larger

space of models, complexity here should not be measured just by the number of parameters.

This is illustrated, in part, by the admirable predictive performance of the phenomenological

model for a relatively small N .

We can compare this to the performance of a hand-constructed “simple” 9 parameter

harmonic oscillator model (an analog of the simple model in the multi-site phosphorylation

case). The simple model, for which the numbers of nominal and e↵ective parameters are

equal (FIG. S11), does not have the exploratory power to resolve the sharp peaks and

obtain good predictions (see SI and FIG. S9). In another comparison, the true model

that generated the data has 16 parameters, which is more than the result of Sir Isaac.

However, the functional form of the dynamics for this exact model should also be counted

as inferred parameters, making such comparisons harder. In fact, because of this, previous

work that inferred the exact equations of the original 7-dimensional model (including also an

unexpected conservation law) [14] had to use roughly 500 times as many measurements of

all 7 variables and 200 times as many model evaluations. While Sir Isaac is somewhat aided

by an appropriate choice of sigmoidal basis functions, and has not been designed to look for

conservation laws, this example illustrates how focusing on a simpler problem, namely finding

an approximate, phenomenological model of the process, can decrease data requirements by

orders of magnitude. This example also demonstrates that adaptive modeling can hint at the

complexity of the hidden dynamics beyond those measured: the best performing sigmoidal

model requires three hidden variables, for a total of six chemical species, which is exactly

what one would expect for a seven-dimensional system with a (hidden) conservation law [14].

Crucially, the computational complexity of Sir Isaac still scales linearly with the number of

observations, even when a large fraction of variables remains hidden (see SI and FIG. S10).

We anticipate that using advanced approaches to identify and conduct the most informative

experiments and e�ciently search the model hierarchy using genetic algorithms, as in [14],

may improve performance further.

11



S
p
e
c
i
e
s
c
o
n
c
e
n
t
r
a
t
i
o
n
(
m
M
)

0 1 2 3 4

Computational effort
(�108 model evals)

0.0
0.2
0.4
0.6
0.8
1.0

M
ea

n
ou

t-o
f-s

am
pl

e
co

rr
el

at
io

n

8 24 40

Num. measurements N

0.0

1.3

2.6

S1

Condition 1 ...

Condition N

0.0

1.3S2

0.0

0.2S3

0.0

0.3S4

0.0

0.2S5

0

2S6

0 1 2 3 4
0.0

0.1S7

0 1 2 3 4 5

Time (minutes)

�450

�400

�350

�300

L

0 20 40 60

Number of parameters

0.0
0.2
0.4
0.6
0.8
1.0

O
ut

-o
f-s

am
pl

e
co

rr
el

at
io

n

0.0

1.3

2.6

S1

Condition 1 ...

Condition M

0.0

1.3S2

0.0

0.2S3

�4

1X4

�4

0X5

0 1 2 3 4
�2

�1X6

0 1 2 3 4 5

Time (minutes)

A B

D

C

FIG. 4: An example of the model selection process using measurements of timecourses of three

metabolites in yeast glycolysis as their initial concentrations are varied. (a) For each set of initial

conditions (open circles), a noisy measurement of the three observable concentrations (filled circles)

is made at a single random time. Hidden variables (in gray) are not measured. In this example,

we fit to N = 40 in-sample conditions. (b) Models from an ordered class, with the illustrated

connectivity, are fit and tested sequentially until L, an approximation of the relative log-likelihood,

decreases su�ciently from a maximum. (c) The selected model (large connectivity diagram) is

used to make predictions about out-of-sample conditions. Here, we compare the output of the

selected model (solid lines) to that of the model that created the synthetic data (dashed lines). (d)

Performance versus computational and experimental e↵ort. The mean out-of-sample correlation

for 3 measured biochemical species from the range of initial conditions twice that used in training

rises to over 0.6 using less than 5 ⇥ 108 model evaluations and 40 in-sample measurements. In

Ref. [14], inferring an exact match to the original 7-dimensional model used roughly 500 times as

many measurements of all 7 species (with none hidden). The approach also uses 200 times as many

model evaluations (see SI). Nonetheless, the accuracy of both approaches is comparable, and Sir

Isaac additionally retains information about the phase of the oscillations. This illustrates that the

problem of adaptively finding an approximation to the dynamics is, in fact, much simpler than the

problem of inferring the detailed equations describing the dynamics.
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II. DISCUSSION

The three examples demonstrate the power of the adaptive, phenomenological dynamical

modeling approach. Sir Isaac models are inferred without an exponentially complex search

over model space, which would be impossible for systems with many variables. These models

are as simple or complex as warranted by data and are guaranteed not to overfit even for

small data sets. Thus they require orders of magnitude less data and computational resources

to achieve the same predictive accuracy as methods that infer a pre-defined, large number

of mechanistic parameters in the true model description.

These advantages require that the inferred models are phenomenological, and are designed

for e�ciently predicting system dynamics at a given scale, determined by the available data.

While FIG. 1 shows that Sir Isaac will infer the true model if it is within the searched model

hierarchy and enough data is available, more generally the inferred dynamics may be quite

distinct from the true microscopic mechanisms, as shown by a di↵erent number of chemical

species in the true and the inferred dynamics in FIG. 4. What is then the utility of the

approach if it says little about underlying mechanisms?

First, there is the obvious advantage of being able to predict responses of systems to

yet-unseen experimental conditions, including those qualitatively di↵erent from the ones

used for inference. This is trivially useful in the context of engineering and control, where

predictive, usable models are often necessarily far removed from microscopic precision [21].

Second, some general mechanisms, such as the necessity of feedback loops or hidden vari-

ables, are easily uncovered even in phenomenological models. However, more importantly,

we draw the following analogy. When in the 17th century Robert Hooke studied the force-

extension relations for springs, a linear model for a specific spring did not tell much about

the force generation. However, the observation that all springs exhibit such linear relations

for small extensions allowed him to combine the models into a law — Hooke’s law, the first

of many phenomenological physical laws that followed. It instantly became clear that exper-

imentally measuring just one parameter, the Hookean sti↵ness, provided an exceptionally

precise description of the spring’s behavior. And yet the mechanistic understanding of how

this Hooke’s constant is related to atomic interactions within materials is only now starting

to emerge. Similarly, by studying related phenomena across complex living systems (e.g.,

chemotactic behavior in E. coli [36] and C. elegans [37], or behavioral bet hedging, which
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can be done by a single cell [38] or a behaving rodent [39]), we hope to build enough models

of specific systems, so that general physical laws describing how nature implements them

become apparent.

If successful, our search for phenomenological, emergent dynamics should allay some

of the most important skepticism regarding the utility of automated dynamical systems

inference in science [40], namely that such methods typically start with known variables of

interest and known underlying physical laws, and hence cannot do transformative science

and find new laws of nature. Indeed, we demonstrated that, for truly successful predictions,

the model class used for automated phenomenological inference must match basic properties

of the studied dynamics (contrast, for example, FIG. 1 to FIG. S4, and see FIG. S6). Thus

fundamental properties of the underlying mechanisms, such as the power-law structure of

the law of gravity, or the saturation of biochemical kinetic rates, can be inferred from data

even if unknown a priori. Finally, we can contrast our approach with a standard procedure

for producing coarse-grained descriptions of physical systems: starting from mechanistically

accurate dynamics, and then mapping them onto one of a small set of universality classes

[22, 41]. This procedure is possible due to symmetries of physical interactions that are not

typically present in living systems. Without such symmetries, the power of universality

is diminished, and microscopic models may result in similarly di↵erent macroscopic ones.

Then specifying the microscopic model in order to coarse-grain it later becomes an example

of solving a harder problem to solve a simpler one [42]. Thus for living systems, the direct

inference of phenomenological dynamics, such as done by Sir Isaac, may be the optimal way

to proceed.

III. MATERIALS AND METHODS

A. Classes of phenomenological models used by Sir Isaac

To create a model in the form of (1), we would like to gradually increase the complexity

of F until we find the best tradeo↵ between good fit and su�cient robustness, essentially

extending traditional Bayesian model selection techniques to the realm of an infinite set of

possible dynamical models. Ideally, this process should progress much like a Taylor series

approximation to a function, adding terms one at a time in a hierarchy from simple to more
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complex, until a desired performance is obtained. To guarantee that this is possible, the

hierarchy of models must be nested (or ordered) and complete in the sense that any possible

dynamics can be represented within the hierarchy [24] (see SI). Any model hierarchy that fits

these criteria may be used, yet specification of the hierarchy is nontrivial in that it requires

choosing an ordering of models that gradually adds both nonlinearities and unobserved

variables. Further, di↵erent model hierarchies may naturally perform di↵erently on the same

data, depending on whether the studied dynamics can be represented succinctly within a

hierarchy. Our results suggest that the choice of model class, specifying the functional forms

used to model the dynamics, is more important to performance than the subsequent choice

of the order of adding parameters within that class (see FIG. S2C).

Our first model class is the S-system power-law class, defined in Eqs. 2 and 3. In a process

called “recasting,” any set of di↵erential equations written in terms of elementary functions

can be rewritten in the power-law form by defining new dynamical variables in the correct

way [29]. Since any su�ciently smooth function can be represented in terms of a series of

elementary functions (e. g., Taylor series), a power-law network of su�cient size can describe

any such deterministic dynamical system. Note that, since exponents are not constrained to

be positive or integer-valued, dynamics in this class are generally ill-defined when variables

are not positive. We find that the S-systems model class works well for planetary motion,

which has an exact representation in the class (see SI). For our biological test examples, the

S-systems class is outperformed by the sigmoidal class (see below). This may be indicating

that behavior common in the S-systems class is not common in typical biological systems

(e. g., real production and degradation terms cannot grow without bounds). It may also

stem from the positivity constraint: since the condition that variables remain positive is not

easily determined from parameter values, we are forced in our model selection process to

simply discard any tested parameters that lead to zero or negative values.

The second model hierarchy that we construct is the sigmoidal network class. In this

class, we use the fact that the interactions among biological components often take the form

of a sigmoidal function to define the system of ODEs in Eq. 4. This class of models has also

been shown to approximate any smooth dynamics arbitrarily well with a su�cient number

of dynamical variables [30–32, 43]. Note that natural variations of this class to be explored

in future work include rescaling of the arguments of the sigmoids ⇠ or switching the order

of operations to apply the sigmoidal function to a linear combination of state variables in
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order to more closely match traditional neural network models [44].

It is possible that both the S-system and sigmoidal classes can be unified into power-

law dynamical systems with algebraic power-law constraints among the dynamical variables

[29], but this will not be explored in this report. Other than these two model classes and

their modifications described above, the authors are not aware of other biologically relevant

dynamical representations that are currently known to be complete. Yet others certainly

exist and could be developed into alternate model hierarchies in future work.

B. Description of model selection procedure

For each model in the hierarchy, its parameters are fit to the data using a two step process

akin to simulated annealing (see SI), with best-fit parameters from the next simplest model

in the hierarchy used as a starting point to speed convergence. The resulting fit model

is evaluated by calculating an estimate of the Bayesian log-likelihood L. This estimate

makes use of a generalized version of the Bayesian Information Criterion [45] (BIC), which

is described in detail in SI. We believe that this is the first time BIC has been adopted for

use with automated nonlinear dynamical systems inference over an infinite set of models.

As models increase in complexity, L first grows as the quality of fit increases, but eventually

begins to decrease, signifying overfitting. Since, statistical fluctuations aside, there is just

one peak in L [24], one can be certain that the global maximum has been observed once it

has decreased su�ciently. The search through the hierarchy is then stopped, and the model

with maximum L is “selected” (see FIG. 4(b)).
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FIG. S1. Hierarchical model selection follows a single predefined path through model space.

I. HIERARCHICAL BAYESIAN MODEL SELECTION

For consistent inference, we need a hierarchy of models that satisfies criteria laid out in Ref. [1].

First, we desire a model hierarchy that will produce a single maximum in L, up to statistical

fluctuations, as we add complexity. For this, the hierarchy should be nested (but not necessarily

regular or self-similar), meaning that once a part of the model is added, it is never taken away.

Second, the hierarchy should be complete, meaning it is able to fit any data arbitrarily well with

a su�ciently complex model. Intuitively, instead of searching a large multidimensional space of

models, hierarchical model selection follows a single predefined path through model space (FIG. S1).

While the predefined path may be suboptimal for a particular instance (that is, the true model

may not fall on it), even then the completeness guarantees that we will still eventually learn any

dynamical system F given enough data, and nestedness assures that this will be done without

overfitting along the way [26].

A. Ordering of hierarchies

An advantage of the S-systems and sigmoidal representations is the existence of a natural scheme

for creating a one-dimensional model hierarchy: simply adding dynamical variables x
i

. The most

general network is fully connected, such that every variable x

i

has an interaction term in every

other dx

j

/dt. Our hierarchy starts with a fully-connected network consisting of the necessary

number of input and output variables, and adds “hidden” dynamical variables to add complexity.
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With each additional x
i

, we add parameters in a predetermined order.

In the S-systems class, without connections, variable x

i

’s behavior is specified by 5 parameters:

x

init

i

,↵

i

,�

i

, g

ii

, and h

ii

. Each connection to and from x

j

is specified by 4 parameters: g
ij

, g

ji

, h

ij

, and

h

ji

. When adding a new dynamic variable, we first fix its parameters (to zero for the exponential

parameters and one for the multiplicative parameters), and then allow them to vary one at a time

in the following order: g
ii

, g

ji

, h

ji

, g

ij

, h

ij

,�

i

, h

ii

,↵

i

(adding connections to every other x
j

one at a

time). An example is shown in Table I.

The sigmoidal class is similar: without connections, variable x

i

’s behavior is specified by 4

parameters: xinit
i

,W

ii

, ⌧

i

, and ✓

i

. Each connection to and from x

j

is specified by 2 parameters: W
ij

and W

ji

. When adding a new dynamic variable, we first fix its parameters (to zero for W and ✓ and

one for ⌧), and then allow them to vary one at a time in the following order: W

ij

,W

ji

,W

ii

, ⌧

i

, ✓

i

(adding connections to every other x
j

one at a time). An example is shown in Table II.

For every adaptive fit model and the full multi-site phosphorylation model,[27] we use the same

prior for every parameter ↵
k

, which we choose as a normal distribution N (0, 102) with mean 0 and

standard deviation & = 10.[28]

B. Representation of sharp nonlinearities

Both the sigmoidal and S-systems classes can represent arbitrary dynamics. However, it is

important that they can e�ciently represent sharp nonlinearities that are often present in biological

systems, such as those typically represented by large Hill coe�cients. While this is straightforward

for the S-systems class [2], it is less obvious for sigmoidal models.

The sigmoidal model class relies on ⇠(y), which has the largest derivative ⇠

0(0) = �1. Thus it

may seem that sharp nonlinearities could be hard to produce. In fact, the introduction of hidden

variables that perform multiple transformations can produce arbitrarily sharp production rate laws.

As an example, we show here that the nonlinearity captured by the Hill equation,

f = S

n

/(Sn +K), (S1)

(where S is the substrate concentration, K is the dissociation constant, and f is the fraction of
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Model No. i Num. parameters Np Form of power-law ODEs
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TABLE I. The first seven models of an example hierarchy in the S-systems class with one input xI and fixed

initial conditions xinit

1

and x

init

2

.
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Model No. i Num. parameters Np Form of sigmoidal ODEs
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TABLE II. The first six models of an example model hierarchy in the sigmoidal class with one input xI

and fixed x

init

1

and x

init

2

.
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bound receptors) can be represented exactly in the sigmoidal class using two dynamical variables.

Treating I = logS as the input to the system, the sigmoidal system

dx

1

dt

= �x

1

⌧

1

� I,

dx

2

dt

= �x

2

+ ⇠(x
1

+ ✓

1

), (S2)

where we set ⌧
1

= n and ✓

1

= logK, has a steady state solution that reproduces (S1):

lim
t!1

x

2

(t) = ⇠(�n logS + logK) = f. (S3)

C. Robustness of adaptive inference

In FIG. S2, we test the robustness of the performance of adaptive models in the multi-site

phosphorylation example (see below) when various assumptions of the modeling framework are

violated.

First, the derivation in Section V assumes that the distribution of noise on measured data is

Gaussian with known variance. In FIG. S2A, we compare fitting to the same data but using an

incorrect standard deviation for noise on the data when calculating the Bayesian log-likelihood.

When the data is thought to be noisier than it actually is (purple and red points), performance

remains unchanged until large N , when, as expected, simpler than optimal models are chosen, and

comparatively more data is required to select complex models that produce better performance.

When the data is thought to be less noisy than it actually is (yellow points), more complex models

are selected, which in this case yields performance that can be better or worse, depending on N . In

FIG. S2B, we compare fitting to data with log-normally distributed noise, keeping the mean and

variance fixed. The closely overlapping performance suggests that, in the absence of knowledge

about the true noise distribution, a good estimate of � may be enough to attain consistent inference.

Finally, a somewhat arbitrary choice must be made to define an ordering for adding parameters

in the model hierarchy; we chose to use the “node order” that is described in Table II. In FIG. S2C,

we instead add parameters for each dynamical variable in random order. This includes orderings

that first add parameters controlling only hidden nodes, which may be decoupled from the visible

variables and hence cannot improve the fit. To compensate for this and avoid erroneously stopping
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FIG. S2. Testing the robustness of adaptive inference in the multi-site phosphorylation example. In each

case, the original performance curves from the main text’s Fig. 2 (smaller symbols) are compared to an

altered version of the model selection process (larger symbols). (A) Comparing fitting to the same data but

using an incorrect standard deviation �

assumed

when calculating the Bayesian log-likelihood. (B) Comparing

fitting to data with log-normally distributed noise; the two lines overlap and are hard to distinguish on the

plot. (C) Comparing to adding parameters in random order, averaged over 10 realizations. See text for

details.

fitting due to adding these unproductive parameters, we increase the number of models checked

by increasing i

overshoot

from 3 to 4 (see Section VI). One could additionally avoid unproductive

orderings by checking that each additional parameter has some causal influence on visible variables.

But even including these orderings, mean performance is largely una↵ected.

II. THE LAW OF GRAVITY MODEL

For a mass m in motion under the influence of the gravitational field of a mass M � m, the

distance r between the two evolves as [3]

d

2

r

dt

2

=
h

2

r

3

� GM

r

2

, (S4)

where h = (~v
0

· ✓̂)r
0

is the specific angular momentum, ~v
0

is the initial velocity, r
0

is the initial

distance, ✓̂ is the unit vector perpendicular to the line connecting the two masses, and G is the

gravitational constant. Setting the initial velocity parallel to ✓̂ and measuring distance in units of

GM

v

2
0

and time in units of GM

v

3
0
, the dynamics become [29]

d

2

r

dt

2

=
1

r

2

✓
r

2

0

r

� 1

◆
. (S5)
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When written as two first-order di↵erential equations, we see that this system can be represented

exactly in the S-systems class if the particle does not fall onto the Sun:

dr

dt

= �� 1

d�

dt

= r

2

0

r

�3 � r

�2

, (S6)

where we use the variable � = dr

dt

+ 1, so that the resulting system’s variables are never negative,

a requirement of the S-systems class.

To illustrate constructing an adaptive model for planetary motion, we consider as input the

initial distance from the sun r

0

. We sample r

0

uniformly between 1 and 3 (in units of GM/v

2

0

),

which covers the possible types of dynamics: at r
0

= 1, the orbit is circular; when 1 < r

0

< 2 the

orbit is elliptical; when r

0

= 2 the orbit is parabolic; and when r

0

> 2 the orbit is hyperbolic. In

this and later examples, to best determine the minimum number of measurements needed for a

given level of performance, we sample the system at a single time point for each initial condition

(FIG. S3), rather than sampling a whole trajectory per condition. This ensures that samples are

independent, which would not be the case for subsequent data points of the same trajectory, and

hence allows us to estimate the data requirements of the algorithm more reliably. Further, this is

similar to the sampling procedure already used in the literature [4]. In the planetary motion case,

we assume only the distance r is measured, meaning the total number of of datapoints N

D

= N ,

where N is the number of initial conditions sampled. We choose the time of the observation as

a random time uniformly chosen between 0 and 100, with time measured in units of GM/v

3

0

. To

each measurement we add Gaussian noise with standard deviation equal to 5% of the maximum

value of r between t = 0 and t = 100 GM/v

3

0

.

Typical training data for the model can be seen in FIG. S3. Fits to N = 150 data points are

shown in FIG. 1. Here our adaptive fitting algorithm selects a model of the correct dimension,

with one hidden variable. The selected model ODEs in this case are

dr

dt

= e

�3.405

r

3.428

0

r

0.049

X

7.372

2

� e

�2.980

r

2.936

0

r

0.046

X

2

�4.925

dX

2

dt

= r

�0.651

0

r

�3.435

X

�0.014

2

� e

�0.006

r

�4.288

0

r

�1.595

. (S7)
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Note that certain transformations of the hidden variable and parameters can leave the output

behavior unchanged while remaining in the S-systems class. First, the initial condition of hidden

parameters can be rescaled to 1 without loss of generality, so we remove this degree of freedom and

set X
2

(0) = 1. Second, we have the freedom to let the hidden variable X
2

! X

�

2

for any � 6= 0 with

appropriate shifts in parameters. To more easily compare the fit model with the perfect model, in

the rightmost column of FIG. 1 we plot X2

2

on the vertical axes instead of X
2

when comparing it

to the dynamics of the true hidden variable �.

Finally, we may compare performance when we fit the gravitation data using sigmoidal models,

a model class that we know is not representative of the underlying mechanics. The results are

shown in FIG. S4; the selected sigmoidal network, which contains three hidden variables, still

provides a good fit to the data, as expected, but it does not generalize as well when r

0

is near the

edge of the range contained in the data and timepoints are outside of the range of data to which

they were fit. This is expected since forces can diverge in the true law of gravity, and they are

necessarily limited in the sigmoidal model.

III. MULTI-SITE PHOSPHORYLATION MODEL

To explore a complicated biological system with relatively simple output behavior, we imagine

a situation in which an immune receptor can be phosphorylated at each of five sites arranged in

a linear chain. The rates of phosphorylation and dephosphorylation at each site are a↵ected by

the phosphorylation states of its nearest neighboring sites. A site can be unphosphorylated (U) or

phosphorylated (P ), and its state can change via one of two processes. The first process does not

depend on states of neighboring sites:

U

i

*

)

P

i

, (S8)

with on-rate kon
i

([U
i

]) and o↵-rate ko↵
i

([P
i

]) that depend on the concentration of the corresponding

substrate. The second, cooperative process happens only when a neighboring site j is phosphory-

lated:

U

i

P

j

*

)

P

i

P

j

(S9)

S9
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FIG. S3. Typical in-sample data points for the planetary motion and multi-site phosphorylation model

examples. For the planetary motion, r
0

is treated as input, and for each in-sample r

0

, r is measured, with

added noise, at a single randomly chosen time between 0 and 100. For multi-site phosphorylation, the

single parameter V is treated as input, and the total phosphorylation is measured, with added noise, at

a single randomly chosen time between 0 and 10 minutes. Dotted lines show the original model behavior,

filled circles with error bars show the in-sample data, and unfilled circles show the varying initial conditions

in the planetary motion case. The original planetary motion model includes a single hidden variable X

2

corresponding to the time derivative of r. (For the yeast glycolysis example, a similar depiction of typical

in-sample data is shown in the left panel of FIG. 4.)

with on- and o↵-rates k

on

ij

([U
i

P

j

]) and k

o↵

ij

([P
i

P

j

]). All rates k are modeled as Michaelis-Menten

reactions: k([S]) = V [S]

Km+[S]

. With each reaction specified by two parameters (V and K

m

) and

26 possible reactions, the phosphorylation model has a total of 52 parameters. To more easily

generate the di↵erential equations that govern the multi-site phosphorylation model, we use the

S10
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FIG. S4. Fit of sigmoidal model to planetary data. We know that the sigmoidal network model class is

not likely to perform as well for the planetary data case because gravitational interactions do not saturate.

Here we show the performance of a model fit to N = 180 data points, which contains three hidden variables.

The model still fits well in the time region where data is given (between 0 and 100 GM/v

3

0

, corresponding

to the left half of A and the dark blue part of the trajectories in B), but has a larger divergence from the

expected behavior at the extremes of the range of given r

0

s in the extrapolated time region (corresponding

to the right half of A and the light blue part of the trajectories in B).

BioNetGen package [5, 6].

When fitting this phosphorylation model, we use as input the parameter V on

23

, which is chosen

from a uniform distribution in log-space between 10�3 and 103 min�1. The remaining 51 V and

K

m

parameters we sample randomly from our priors on these parameters. As output, we measure

the total phosphorylation of the 5 sites P

tot

at a single random time uniformly chosen between 0

and 10 minutes. To each measurement we add Gaussian noise with standard deviation equal to

10% of the P

tot

value at t = 10 min.

Typical training data for the model is shown in FIG. S3. The out-of-sample mean squared error,

as plotted in FIG. 2, is measured over 100 new input values selected from the same distribution as

the in-sample values, each of which is compared to the true model at 100 timepoints evenly spaced

from 0 to 10 minutes.
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As a simple guess to the functional form of the total phosphorylation timecourse as a function of

our control parameter V = V

on

23

(the “simple model” in FIG. 2), we use an exponential saturation

starting at 0 and ending at a value P1 that depends sigmoidally on V :

P

tot

= P1(V )


1� exp

✓
t

t

0

◆�
, (S10)

where

P1(V ) = a+
b

2


1 + tanh

✓
log(V )� d

c

◆�
(S11)

and a, b, c, d, and t

0

are parameters fit to the data. FIG. 2shows that this simple ad hoc model

can fit the data quite well.

For the example shown in FIG. 3, the selected sigmoidal model consists of the ODEs

dP

tot

dt

=
�P

tot

e

�1.219

+
0.409

1 + exp(P
tot

� 4.469)
+

7.087

1 + exp(X
2

)
+ 0.0005V

dX

2

dt

= �X

2

� 2.303

1 + exp(P
tot

� 4.469)
� 0.071V (S12)

X

2

(0) = 0.101,

with P

tot

(0) = 0.

The selected sigmoidal models contain fewer parameters than the microscopic exact model, even

when taking into account that the full model is e↵ectively lower dimensional, with many directions

in parameter space unconstrained by typical data; see FIG. S5.

In this multi-site phosphorylation example, the sigmoidal model class is a better performer

than the S-systems class. A typical example of performance is depicted in FIG. S6. Though the

S-systems class makes predictions that are still qualitatively correct, and its predictions steadily

improve as N increases, the sigmoidal class comes closer to the true underlying model with an

equal amount of data.

The confidence intervals on the dynamics in FIG. 3correspond to samples from the posterior over

parameters given N = 300 data points. In the notation of section V, this posterior P (↵ | data) /

exp
⇥��̃

2(↵)/2
⇤
. To generate samples from this distribution, we use Metropolis Monte Carlo as

implemented in SloppyCell [7, 8]. As a starting point, we use the best-fit parameters from the model
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FIG. S5. Selected adaptive sigmoidal models in the phosphorylation example have both fewer total param-

eters and fewer e↵ective parameters than the full microscopic model. Solid colored lines indicate the total

number of parameters in each model, as in Figure 2 in the main text. Solid symbols connected by dotted

lines indicate the e↵ective number of parameters, which we define as the number of directions in parameter

space that are constrained by the data such that the corresponding Hessian eigenvalue � > 1 (compared to

parameter priors with eigenvalue 10�2). Shown are the mean and standard deviation of values over 10 data

realizations. For comparison, the solid black line indicates the number of data points ND = N used to infer

the model.

selection procedure, and we sample candidate steps in parameter space from a multidimensional

Gaussian corresponding to the Hessian at the best-fit parameters.[30] From 104 Monte Carlo steps,

the first half are removed to avoid bias from the initial condition, and every 50 of the remaining

steps are used as 100 approximately independent samples from the parameter posterior.

IV. YEAST GLYCOLYSIS MODEL

As an example of inference of more complicated dynamics, we use a model of oscillations in

yeast glycolysis, originally studied in terms of temperature compensation [9] and since used as a

test system for automated inference [4]. The model’s behavior is defined by ODEs describing the

dynamics of the concentrations of seven molecular species (the biological meaning of the species is
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FIG. S6. A typical example of out-of-sample performance in the multi-site phosphorylation example. Here,

each model is fit using N = 50 datapoints. With this small amount of data, the di↵erences between model

classes are more apparent, with the sigmoidal model class clearly better predicting the dynamics than the

S-systems model class and the full phosphorylation model.

FIG. S7. The performance of models fit to data from the multi-site phosphorylation model as a function of

the number of parameters in each model. This is a replotting of the data in Figure 2 in the main text. If we

think of a model as more e�cient if it can produce the same level of predictive power with fewer parameters,

then the best models lie at the Pareto front, drawn in solid lines for each model type.
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FIG. S8. (Left) Network depicting the yeast glycolysis model defined by Eqns. (S13). Solid arrows represent

excitation, solid lines with circles represent inhibition, and dashed arrows represent other types of interaction

terms. (Right) Selected sigmoidal network fit toN = 40 noisy measurements from the yeast glycolysis model,

as shown in FIG. 4. Again, arrows represent excitation and circles inhibition, with the thickness of arrows

indicating interaction strength. For clarity, self-inhibitory terms for each variable are not shown.

not important here):
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Parameter values, listed in Table III, are set to match with those used in Ref. [4] and Table 1 of

Ref. [9], where our S
5

= N

2

, our S
6

= A

3

, and our S
7

= S

ex

4

.

For the yeast glycolysis model, we use as input the initial conditions for the visible species S
1

,

S

2

, and S

3

. These are each chosen uniformly from ranges listed in the “In-sample IC” column of

Table IV. Each of the three visible species are then measured at a random time uniformly chosen

from 0 to 5 minutes, meaning the total number of datapoints N
D

= 3N for this system, where N

is the number of initial conditions sampled. Gaussian noise is added to each measurement with
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J

0

2.5 mM min�1

k

1

100. mM�1 min�1

k

2

6. mM�1 min�1

k

3

16. mM�1 min�1

k

4

100. mM�1 min�1

k

5

1.28 min�1

k

6

12. mM�1 min�1

k 1.8 min�1

 13. min�1

q 4

K

1

0.52 mM

 0.1

N 1. mM

A 4. mM

TABLE III. Parameters for the yeast glycolysis model defined in Eqns. (S13).

standard deviations given in Table IV. To evaluate the model’s performance, we test it using 100

new input values selected uniformly from the ranges listed in the “Out-of-sample IC” column of

Table IV, each of which is compared to the true model at 100 timepoints evenly spaced from 0

to 5 min. The correlation between the adaptive fit model and the actual model over these 100

timepoints is calculated separately for each visible species, set of initial conditions, and in-sample

data, and the average is plotted as the “mean out-of-sample correlation” in FIG. 4. The topology

of the selected sigmoidal model in an example with N = 40 is illustrated in FIG. S8. The model
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Variable In-sample IC (mM) Out-of-sample IC (mM) In-sample � (mM)

S

1

[0.15, 1.60] [0.15, 3.05] 0.04872

S

2

[0.19, 2.16] [0.19, 4.13] 0.06263

S

3

[0.04, 0.20] [0.04, 0.36] 0.00503

S

4

0.115 0.115 N/A

S

5

0.077 0.077 N/A

S

6

2.475 2.475 N/A

S

7

0.077 0.077 N/A

TABLE IV. Initial conditions (IC) and standard deviations of experimental noise (�) used in the yeast

glycolysis model. Initial conditions for visible species S

1

, S
2

, and S

3

are chosen uniformly from the given

ranges, chosen to match Ref. [4]. Out-of-sample ranges are each twice as large as in-sample ranges. Initial

conditions for the remaining hidden species are fixed at reference initial conditions from Refs. [4] and [9].

In-sample noise is set at 10% of the standard deviation of each variable’s concentration in the limit cycle,

as quoted in Ref. [4].
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ODEs in this case are

dS

1

dt

=
�S

1

e

2.284

+
2.520

1 + exp(S
1

� 0.4246)
+

14.04

1 + exp(S
2

� 0.4943)
� 19.56

1 + exp(S
3

+ 0.6711)

� 10.68

1 + exp(X
4

+ 2.240)
+

6.759

1 + exp(X
5

� 0.7566)
� 3.051

1 + exp(X
6

)
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2

dt
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2

e

�1.288

� 3.015

1 + exp(S
1

� 0.4246)
+

2.244

1 + exp(S
2

� 0.4943)
+

14.55

1 + exp(S
3

+ 0.6711)

+
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1 + exp(X
4

+ 2.240)
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1 + exp(X
5

� 0.7566)
� 4.380

1 + exp(X
6

)
dS

3

dt
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�S

3

e

1.514

� 2.463

1 + exp(S
1

� 0.4246)
� 10.99

1 + exp(S
2

� 0.4943)
+

0.6530

1 + exp(S
3

+ 0.6711)

� 0.07038

1 + exp(X
4

+ 2.240)
� 6.806

1 + exp(X
5

� 0.7566)
+

12.61

1 + exp(X
6

)
dX

4

dt

=
�X

4

e

1.771

+
25.77

1 + exp(S
1

� 0.4246)
� 50.05

1 + exp(S
2

� 0.4943)
� 6.648

1 + exp(S
3

+ 0.6711)
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1 + exp(X
4
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+
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1 + exp(X
5
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+
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1 + exp(X
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(S14)
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5

e
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+
16.39

1 + exp(S
1

� 0.4246)
+

33.15

1 + exp(S
2

� 0.4943)
+

0.6452

1 + exp(S
3

+ 0.6711)

� 33.65

1 + exp(X
4

+ 2.240)
� 8.976

1 + exp(X
5

� 0.7566)
+

0.01966

1 + exp(X
6

)
dX

6

dt

= �X

6

+
0.3391

1 + exp(S
1

� 0.4246)
� 2.514

1 + exp(S
2

� 0.4943)
� 4.479

1 + exp(S
3

+ 0.6711)

� 3.396

1 + exp(X
4

+ 2.240)
+

1.219

1 + exp(X
5

� 0.7566)
+

2.313

1 + exp(X
6

)

X

4

(0) = 3.437

X

5

(0) = 1.453

X

6

(0) = �0.7183.

Note that our model fitting approach assumes that the model timecourse is fully determined (aside

from measurement error) by the concentrations of measured species. To be consistent with this

assumption we do not vary the initial conditions of the three hidden variables. In future work

it may be possible to relax this assumption, allowing the current state of intrinsic variations in

hidden variables to be learned as well.

A. Simple sinusoidal model

As with the multi-state phosphorylation example, we can use a simple ad hoc model of yeast

glycolysis for comparison to our adaptive models. The long-term behavior of the yeast network
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consists of stable oscillations with a roughly fixed period; a minimally complicated model of the

measured concentrations S

1

, S
2

, and S

3

then consists of three sinusoidal oscillators with equal

frequency ! and phase relationship fixed by two parameters, �
2

and �

3

:

S

1

(t) = y

1

+A

1

sin(!t+ �)

S

2

(t) = y

2

+A

2

sin(!t+ �+ �

2

) (S15)

S

3

(t) = y

3

+A

3

sin(!t+ �+ �

3

).

The phase � depends on the initial conditions S

1

(0), S
2

(0), S
3

(0). Specifically, when the initial

condition is a valid point on the one-dimensional elliptical curve specified by Eqs. (S15), � can be

determined by any two initial values; for instance,

� = arctan
x

1

sin(�
2

)

x

2

� x

1

cos(�
2

)
, (S16)

where x
i

= (S
i

(0)�y

i

)/A
i

. Because the model is not exact, however, we cannot assume that initial

conditions will lie on this curve. Instead, we will assume that transient dynamics infinitely quickly

bring the state of the system into the plane defined by the curve. This plane has normal vector

~n = (sin(�
2

��

3

), sin�
3

,� sin�
2

), so that any initial conditions ~x can be projected onto a point on

the plane ~x0 = ~x� c~n, where c = (~x ·~n)/(~n ·~n) = (x
1

sin(�
2

��

3

)+x

2

sin�
3

�x

3

sin�
2

)/(sin2(�
2

�

�

3

) + sin2 �
2

+ sin2 �
3

). Thus ~x0 is a modified initial condition that is inserted into (S16) to obtain

�. Unlike the adaptive model, this simple sinusoidal model does not capture the jagged shape of

the yeast glycolysis oscillations, but when its 9 parameters are fit to data, its rough approximation

is moderately predictive. Its performance is compared to sigmoidal adaptive models in FIG. S9.

B. Comparing to EUREQa

In Ref. [4], the EUREQa engine is used to infer the same yeast glycolysis model that we use

here. We can roughly compare performance as a function of computational and experimental

e↵ort by measuring the number of required model evaluations and measurements (FIG. 4). Here

we compare the two approaches in more detail. However, we emphasize that they have di↵erent

goals: EUREQa aims at finding the exact microscopic model of the process, while Sir Isaac strives
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for accurate prediction with the simplest phenomenological model. The former is a harder task,

and thus one expects it to require more data and computation.

Reference [4] attempts to match time derivatives of species concentrations as a function of

species concentrations, instead of species concentrations as a function of time as we do. This

means that each model evaluation[31] is more computationally costly for us, since it requires an

integration of the ODEs over time. It also means, however, that we are able to match well the

phases of oscillations, which remain unconstrained in Ref. [4]. The fitting of time courses instead

of derivatives also makes our method focus on the fitting of dynamics near the attractor, rather

than attempting to constrain dynamics through the entire phase space.

To consistently infer exact equations for the full 7-dimensional model, Ref. [4] used 20, 000

datapoints and roughly 1011 model evaluations. We contrast this with our method that produces

reasonable inferred models using 40 datapoints and less than 5⇥ 108 model evaluations (FIG. 4).

Finally, in the main text we test the performance of our yeast glycolysis models for out-of-

sample ranges of initial conditions that are twice as large as the in-sample ranges from which data

is taken, as in Ref. [4], in order to more directly test their ability to extrapolate to regimes that

were not tested in training. In FIG. S9, we compare this to performance when out-of-sample initial

conditions are chosen from the same ranges as in-sample data (note that, nonetheless, none of the

test examples has appeared in the training set). Here we see that the mean correlation can reach

0.9 using N = 40 measurements.

V. DERIVATION OF BAYESIAN LOG-LIKELIHOOD ESTIMATE L

Multiple previous approaches have used approximate sampling methods to perform Bayesian

model selection on a small number of alternate models in the context of systems biology; e. g., [10–

12]. For our approach that relies on a search over an infinite set of models, even such approximate

sampling is slow. Yet with su�ciently large N , an expansion resembling that used to derive the

Bayesian Information Criterion produces good performance without sampling. The derivation here

largely follows Refs. [13, 14], but can be traced to the 1970s [15].

For a given model M that depends on parameters ↵, our model selection algorithm requires
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FIG. S9. Performance of inferred models of yeast glycolysis as a function of the number of measurements

N (left) and the mean number of parameters Np in the selected model (right). The given sigmoidal model

hierarchy requires about 30 measurements (corresponding to 90 datapoints) and 60 parameters to produce

reasonable predictions. Here we compare mean correlations produced for out-of-sample initial conditions

chosen from ranges twice as large as in-sample ranges (“wide ranges,” plotted in red, listed in the “out-of-

sample” column of Table IV) to when out-of-sample conditions are chosen from the same ranges as in-sample

ranges (“narrow ranges,” plotted in purple, listed in the “in-sample” column of Table IV). For comparison,

the simple sinusoidal model defined in (S15) is shown in shades of blue. The mean and standard deviation

over 5 realizations of in-sample data are shown by filled symbols and shaded regions. Also plotted are the

Pareto fronts for each model (solid lines on right plot) indicating the maximal correlation for a given mean

Np.

an estimate of the probability that M is the model that produced a given set of data {y
i

} with

corresponding error estimates {�
i

} (measured at a set of timepoints {t
i

}), and i = 1, . . . , N , so that

there are N measurements. Since the parameters ↵ are unknown aside from a prior distribution

P (↵), we must integrate over all possible values:
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where the normalization constant Z

↵

=
R
d

Np
↵ P (↵) and N

p

is the number of parameters. In
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terms of the output given the model, Bayes rule states
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Assuming that the model output has normally distributed measurement errors,
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where �

2 is the usual goodness-of-fit measure consisting of the sum of squared residuals, and Z

�

is

the normalization constant
Q

N

i=1

q
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. Thus we have:[32]
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where C ⌘ 2P (M)/Z
�

P ({y
i

}) and �̃

2(↵) = �

2(↵)�2 logP (↵). Since we will be comparing models

fitting the same data, and we assume all models have the same prior probability P (M), C will be

assumed constant in all further comparisons (but see Ref. [16] for the discussion of this assumption).

If there are enough data to su�ciently constrain the parameters (as is the case for ideal data

in the limit N ! 1), then the integral will be dominated by the parameters near the single set

of best-fit parameters ↵

best

. To lowest order in 1/N , we can approximate the integral using a

saddle-point approximation [14]:
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where H is the Hessian:[33]
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If we assume normally distributed priors on parameters with variances &2
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, the log posterior prob-
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where �

µ

are the eigenvalues of H, and the last term comes from Z
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. We thus use as our measure

of model quality
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Eq. (S25) is a generalization of the Bayesian Information Criterion (BIC) [15] when parameter

sensitivities and priors are explicitly included.[34] The first term is the familiar �

2 “goodness of

fit,” and the last two terms constitute the fluctuation “penalty” for overfitting or complexity. Note

that here the goodness of fit and the complexity penalty are both functions of the entire dynamics,

rather than individual samples, which is not a common application of Bayesian model selection

techniques.

VI. FITTING ALGORITHM

We are given N data points x
i

at known times t

i

and known exogenous parameters I

i

, and

with known or estimated variances �2
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. We are approximating the functions ~
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X

and ~
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in Eq. (1),

where y are hidden dynamic model variables, and x = x(t, I) and y = y(t, I) in general depend

on time t and inputs I. As described in Section V, we fit to the data x
i

using a combination of

squared residuals from the data and priors P (↵) on parameters ↵, which we assume to be Gaussian

and centered at zero:
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where F ’s are integrated to produce the model values x and y:

x(t, I) = x
0

(I) +

Z
t

0

~

F

X

(x(s, I),y(s, I)) ds (S27)

y(t, I) = y
0

(I) +

Z
t

0

~

F

Y

(x(s, I),y(s, I)) ds. (S28)

To fit parameters, we use a two step process akin to simulated annealing that uses samples

from a “high temperature” Monte Carlo ensemble as the starting points for local optimization

performed using a Levenberg-Marquardt routine. The phenomenological models are implemented

using SloppyCell [7, 8] in order to make use of its parameter estimation and sampling routines.
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Following is a high-level description of the fitting algorithm, with choices of parameters for the

examples in the main text listed in Table V.

1. Choose a model class, consisting of a sequence of nested models indexed by i, where the

number of parameters N
p

monotonically increases with i. Choose a step size �p.

2. Given data at N
total

timepoints, fit to data from the first N timepoints, where N is increased

to N

total

in steps of �N .

3. At each N , test models of increasing number of parameters N

p

(stepping by �p) until L

consistently decreases (stopping when the last i

overshoot

models tested have smaller L than

the maximum). For each model, to calculate L:

(a) Generate an ensemble of starting points in parameter space using Metropolis-Hast-

ings Monte Carlo to sample from P (↵) / exp(��̃

2(↵)/2TN
D

) with �̃

2 from (S26).

The temperature T is set large to encourage exploration of large regions of parameter

space, but if set too large can result in a small acceptance ratio. Infinities and other

integration errors are treated as �̃2 = 1.

i. Use as a starting point the best-fit parameters from a smaller N
p

if a smaller model

has been previously fit, or else default parameters.

ii. As a proposal distribution for candidate steps in parameter space, use an isotropic

Gaussian with standard deviation
p
TN

D

/�

max

, where N

D

is the total number of

data residuals and �

max

is the largest singular value of the Hessian [Eq. (S23)] at

the starting parameters.

iii. If this model has previously been fit to less data, use those parameters as an

additional member of the ensemble.

(b) Starting from each member of the ensemble, perform a local parameter fit, using

Levenberg-Marquardt to minimize �̃

2 from (S26). Stop when convergence is detected

(when the L1 norm of the gradient per parameter is less than avegtol) or when the
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number of minimization steps reaches maxiter. The best-fit parameters ↵⇤ are taken

from the member of the ensemble with the smallest resulting fitted �̃

2.

(c) At ↵⇤, calculate L from (S25).

4. For each N , the model with largest log-likelihood L is selected as the best-fit model.

�p (gravitation and phosphorylation examples) 2

�p (yeast example) 5

i

overshoot

3

Ensemble temperature T (full phosphorylation model)a 10

Ensemble temperature T (all other models) 103

Total number of Monte Carlo steps (full phosphorylation model)a 102

Total number of Monte Carlo steps (all other models) 104

Number of ensemble members used 10

avegtol 10�2

maxiter 102

TABLE V. Adaptive inference algorithm parameters. 1In the full phosphorylation model, we fit parameters

in log-space since they are known to be positive. This makes the model more sensitive to large changes in

parameters, meaning that we are forced to be more conservative with taking large steps in parameter space

to achieve reasonable acceptance ratios.

VII. SCALING OF COMPUTATIONAL EFFORT

In FIG. S10, we plot the number of model evaluations used in each search for the best-fit

phenomenological model. We define a model evaluation as a single integration of a system of

ODEs. (Note that the amount of necessary CPU time per integration is dependent on the size

and sti↵ness of the system.) This includes both integration of model ODEs and the derivatives of

model ODEs, used in gradient calculations [35]. Note that in FIG. 4, to indicate the total number
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FIG. S10. The number of model evaluations (integrations) used at each N , for the multi-site phosphorylation

and yeast glycolysis examples. Once the size of model has saturated, we expect the number of evaluations

to scale linearly with N (black lines). If the selected model size is growing with N , as in the yeast glycolysis

example below N = 20 (see FIG. S11), we expect faster than linear growth.

of evaluations used as N is gradually increased to its final value, we plot the cumulative sum of the

number of model evaluations depicted in FIG. S10. We see that the number of model evaluations

scales superlinearly with N if the selected model size is growing with N , as is the case in the yeast

glycolysis model below about N = 20 (FIG. S10 and FIG. S11). When the model size saturates,

the number of model evaluations scales roughly linearly with N .

VIII. COMPARISON TO BAYESIAN NETWORK APPROACHES

A related set of methods for inferring causal structure from time series data comes from the field

of Bayesian Networks (BN), and specifically Dynamic Bayesian Networks (dBN). Implementations

typically make the following assumptions:

1. Variables are updated at a discrete set of times, rather than continuously.

2. Latent variables are not allowed, or their number is known a priori.

3. The state space of dynamical variables is itself discrete (and often of low cardinality, such as

binary or ternary).
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FIG. S11. Fitting sigmoidal models to the yeast glycolysis oscillation data, the number of total parameters

in the selected model, plotted with red open squares, saturates to roughly 65. Plotted with red solid squares

is the e↵ective number of parameters, which we define as the number of directions in parameter space that

are constrained by the data such that the corresponding Hessian eigenvalue � > 1 (compared to parameter

priors with eigenvalue 10�2). Corresponding values for the simple sinusoidal model are plotted in blue. Since

the blue curve does not grow for N � 5, we conclude that the simple model does not have the statistical

power to fit the data and is too simple for this case. For comparison, the solid black line indicates the number

of data points ND = 3N used to infer the model. We expect the optimal e↵ective number of parameters to

stay below ND. Shown are the median and full range of values over 5 data realizations.

Many generalizations of (d)BNs have been presented that lift each of these assumptions. Below

we include a brief literature review of current implementations of (d)BNs that address each issue.

However, our method is distinct from (d)BNs in that it is designed to perform inference simultane-

ously for continuous variables, in continuous time, with potentially a very large number of unknown

hidden nodes, and we are not aware of an approach that is able to lift all three assumptions in

order to analyze the type of data handled by Sir Isaac.

Continuous time: It is known that exact inference is intractable in continuous time versions

of dBNs because calculating a node’s distribution at a given time step does not easily factor into

conditionally independent subsets, as it does in cases with discrete time. Instead, each node’s

distribution will in general depend on the entire history of all other variables [17]. Approximate

methods have been developed to deal with such Continuous Time Bayesian Networks (CTBNs)

[17, 18]. Conversely, converting a set of ODEs, such as those explored by Sir Isaac, into the dBN
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framework generally leads to an exponentially large model [19] that cannot be readily inferred from

data.

Continuous states: Most implementations deal with discrete state variables, to avoid the

need to infer multidimensional distributions over continuous variables, which can require very

large data sets. It is also relatively common to use continuous variables by specifying the state of

nodes as finite-parameter continuous distributions, such as Gaussians. However, these di↵er from

Sir Isaac in that they are typically parameterized with means that are simply linear combinations

of parent nodes (e. g., [20, 21]). One approach uses biochemically inspired functions relating means

of continuous-valued nodes [22], but does not use continuous time.

Unspecified network size: Though some approaches attempt to discover that hidden nodes

are necessary for a better description of a system (e. g., [22–24]), this is not a typical feature of

Bayesian network implementations. Approaches that are complete, in the sense that they allow,

in principle, infinitely many latent variables, are relatively rare (e. g., [25]), and do not address

continuous space-time requirements.
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Scaling of computational effort
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