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Abstract Biological information processing networks consist of many com-
ponents, which are coupled by an even larger number of complex multi-
variate interactions. However, analyses of data sets from fields as diverse as
neuroscience, molecular biology, and behavior have reported that observed
statistics of states of some biological networks can be approximated well by
maximum entropy models with only pairwise interactions among the com-
ponents. Based on simulations of random Ising spin networks with p-spin
(p > 2) interactions, here we argue that this reduction in complexity can
be thought of as a natural property of densely interacting networks in cer-
tain regimes, and not necessarily as a special property of living systems. By
connecting our analysis to the theory of random constraint satisfaction prob-
lems, we suggest a reason for why some biological systems may operate in
this regime.

Keywords collective dynamics · p-spin models · numerical simulations

1 Introduction

The increased throughput of biological experiments now allows joint mea-
surements of activities of many basic components underlying collective in-
formation processing in biological systems. Such multivariate data must be
interpreted within models. Within this context, Maximum Entropy (MaxEnt)
models [1] have been some of the most successful. The logic of such models
is that, ultimately, one wants to find an approximation Q(x) to the joint
probability distribution P (x) of the observed multivariate data {xi} = x,
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i = 1, . . . , N . Unfortunately, for a large number of components, N , the
datasets can never be large enough to estimate P directly from data. One
may only be able to estimate various expectation values of functions of the
data, 〈fκ(x)〉P = f̃κ, κ = 1, . . . ,K. Then one can search for Q that matches
the reliable estimates. If additionally one requests that Q has no structure
beyond that required by the matching, then this is equivalent to asking for
Q with the maximum entropy, subject to the constraints imposed by the
matching,

Q = arg maxS(Q)−
∑
κ

λκ(〈fκ〉Q − f̃κ), (1)

where the entropy S is defined as

S(Q) ≡ S(x) = −
∑
x

Q(x) log2Q(x). (2)

A common special case of this general formulation is when the variables
are binary, which we will denote as xi = σi ∈ {−1, 1}, and the data constrain
their various low-order correlation functions, such as 〈σi〉 or 〈σiσj〉. In this
case, the MaxEnt approximation Q is [2]:

Q(σ) =
1

Z
exp

−∑
i

hiσi −
∑
ij

Jijσiσj −
∑
ijk

Kijkσiσjσk − · · ·

 . (3)

Here every constrained correlation function gets a term in the exponent, Z
is the partition function, and the Lagrange multipliers hi, Jij ,Kijk, . . . must
be chosen to satisfy the constraints. This is generally not an analytically
solvable problem, and even numerics are hard [3,4,5,6,7,8,9].

Equation (3) has the form of the Ising spin problem, allowing a wholesale
import of intuition from statistical physics to MaxEnt data analysis. Corre-
spondingly, these ideas have been applied to many biological systems in the
last decade [10], starting with neurophysiological recordings from salamander
retina [11]. There N was a few dozen neurons, and σi = ±1 corresponded
to the i’th neuron spiking/not spiking at a certain time. A surprising result
was that truncating Eq. (3) at the quadratic order in σi (or, in other words,
constraining Q up to pairwise correlations) provided a good fit to P . We will
refer to this finding as pairwise sufficiency from now on.

The pairwise sufficiency was later found in other neural systems [12,13,14]
(though it is violated at larger N [15]). It was observed further for natural
images [16]; for discrete, yet non-binary x in sequencing data [17,18]; and
for real-valued velocities of birds in flocking experiments [19]. Even for some
non-MaxEnt approaches, similar findings were also reported [20,21]. One can
interprete these observations in the context of biological systems operating
in a special regime [22,23]. However, the wide applicability of the findings
suggests an alternative: pairwise sufficiency may emerge for a wide class of
biological and non-biological networks generically. Indeed, sparse sampling
of variables in experiments is similar to decimation in statistical physics, and
the resulting renormalization group-like flow may decrease the importance
of the higher order couplings [24]. Further, in a perturbative regime, where
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fluctuations away from the independence are small, the pairwise sufficiency
also appears [25]. Here we propose one more possibility, arguing that the
pairwise sufficiency arises naturally in strongly coupled multivariate systems.

In what follows, we first introduce the idea in an intuitive toy model, and
then develop it numerically by analyzing randomly generated networks. We
show that the pairwise MaxEnt models approximate such random networks
surprisingly well. Further, we explore distributions of states of these networks
and their models, leading to an explanation of the pairwise sufficiency. Fi-
nally, we discuss why diverse biological systems may find themselves in the
pairwise-sufficient regime, but we live it for the future to investigate if this
mechanism is responsible for the sufficiency in experimental networks.

2 Results

2.1 Building Intuition: Networks of XORs

For a tractable example of emergence of the pairwise sufficiency, we focus
on Boolean gates. These are the limit of Ising spin networks in the low tem-
perature (strong coupling) regime [2,26]. For example, σ3 = σ1 ORσ2 can
be written as P (σ3|σ2, σ1) = 1

Z exp[J(σ1σ3 + σ2σ3 + σ3)] with J → ∞. If
also P (σ1 = ±1) = P (σ2 ± 1) = 1/2, then 1/4P (σ3|σ2, σ1) = P (σ1, σ2, σ3).
Thus the joint probability distribution for OR has the pairwise MaxEnt form,
Eq. (3). Similarly, for J →∞, σ3 = σ1 ANDσ2 is equivalent to P (σ1, σ2, σ3) =
1
Z exp[J(σ1σ3 + σ2σ3 − σ3)]. This is again a pairwise MaxEnt distribution.

However, σ3 = σ1 XORσ2, is equivalent to P (σ1, σ2, σ3) = 1
Z exp(−Kσ1σ2σ3),

K → ∞. This is an example of a purely third-order gate, with no pairwise
contributions to its MaxEnt representation.

In Fig 1, we now couple of a few such third-order gates to each other.
The spins σ1, σ2, σ3 are connected by an XOR (left column, first row), and
there is no simpler effective representation of the network (right column,
first row). We then add the fourth spin, σ4 = σ2 XORσ3 (left column, second
row). However, then σ4 = σ1. This can be represented as an effective model
P (σ4|σ1, . . . , σ3) = P (σ4|σ1) = 1

Z exp(Jσ1σ4), J →∞. Thus the third order
XOR interaction is equivalent to a pairwise EQUAL interaction (right column,
second row). The latter is effective and nonlocal, in the sense that σ4 is
coupled to σ1, with which it does not interact in the true model. We fur-
ther add σ5 = σ2 XORσ4 (third row), and this is equivalent to an effective
model σ5 = σ3. In short, of the three third order interactions, each con-
straining one spin and hence “carrying” 1 bit of information, two can be
represented without any error as pairwise interactions. Now the network can
exist in four distinct global states out of 25 = 32, determined by σ1,2 = ±1

(namely, σ(1) = {−1,−1,−1,−1,−1}, σ(2) = {−1,+1,+1,−1,+1}, σ(3) =
{+1,−1,+1,+1,+1}, and σ(4) = {+1,+1,−1,+1,−1}). Thus it is far from
the perturbative regime of Ref. [25]. We can grow the network further so that
each new spin is coupled by a third order interaction to two existing spins.
Then the number of spins, N , and the number of interactions, M , are related
as N = M + 2, and all but one third order interaction can be represented as
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Fig. 1 Emergence of pairwise interactions in a network of XOR gates. On
the left, we show small networks of spins σi (grey circles). The spins interact (yellow
squares) by means of third order XOR interactions. On the right, an equivalent
network is shown, where some of the XORs get replaced by EQUAL and assignment
operations, which are the second and the first order interactions, respectively.

a second order one. In other words, an effective pairwise model has an error
of only 1/(N − 2) when accounting for the statistics of the network states.

Alternatively, we can add more XORs without adding new nodes. This
may be inconsistent or redundant with already existing couplings. Or in a
case such as σ1 = σ2 XORσ4 (fourth row), this sets σ2 = −1 (thus adding the
bias, or the first order term), and all other spins are equal to each other, so
that the pairwise effective model is exact. Finally, adding σ3 = σ4 XORσ5 sets
every spin to -1, and makes even the first-order model exact (bottom row).

We see that a network of XORs can exhibit the pairwise sufficiency non-
perturbatively. Of course, more realistic physical or biological systems are
stochastic (J,K < ∞), and such simple arguments will not work. How-
ever, the example suggests that effective pairwise models can approximate
more complex networks well when nodes in the network interact strongly
and densely, and the space of network states is sufficiently constrained. In
such cases, there are many pairs of nodes that are relatively strongly cor-
related simply by chance, allowing replacement of higher order interactions
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with pairwise ones. In what follows, we will develop this intuition further
using numerical studies.

2.2 Pairwise approximations to random networks with higher order
interactions

To verify our intuition, we proceed by generating random networks that
have only higher order nondeterministic interactions among spins (p-spin
models, p > 2 [27]). We then quantify the accuracy with which lower order
MaxEnt models approximate these networks. We explore networks with p =
3, 4 to ensure that our findings do not depend on the exact structure of
the true higher order interactions. Further, systems with only fourth order
couplings have the Z2 symmetry, and thus cannot include any first order
terms in their MaxEnt approximations, Eq. (3). Studying them will allow us
to understand if the eventual freezing to a single well-defined state, as in the
last row of Fig. 1, is crucial for the pairwise sufficiency, or if it emerges even
for nonperturbative networks with more than one highly probable state.

To generate the random networks, we first specifyN , the number of nodes,
and M the number of interactions. Then for each interaction µ = 1, . . . ,M ,
we generate its coupling constant Kµ from a zero-mean Gaussian distribution
with a certain variance s2. We then choose three or four spins at random to
couple. The overall probability of states for these networks is

P3(σ) =
1

Z
exp

(
−

M∑
µ=1

Kµσµ1
σµ2

σµ3

)
, 3-spin model, (4)

P4(σ) =
1

Z
exp

(
−

M∑
µ=1

Kµσµ1
σµ2

σµ3
σµ3

σµ4

)
, 4-spin model, (5)

where µ1 < µ2 < µ3 < µ4, so that the spins do not self-interact. To specify
these distributions (and later calculate various errors of approximations), we
need to know Z. To decouple studying the problem of the pairwise sufficiency
from a hard problem of efficient sampling, we focus on N ≤ 22, which allows
us to estimate Z by direct summation fast enough to do it many times and
collect statistics. We generate many such distributions P3 and P4, every time
picking random N ∈ [10, 22], M ∈ [1, 250], and s ∈ [0.2, 2.0].

For each generated distribution, we estimate its individual and pairwise
marginals P (σi), P (σi, σj) for all i, j = 1, . . . , N by direct marginalization
(hereafter we drop subscripts 3 or 4 for P if it does not cause confusion). We
then calculate the first order (or independent) MaxEnt approximation

Q(1)(σ) =

N∏
i=1

P (σi). (6)

Next we fit the pairwise MaxEnt model Q(2) to P . While good algorithms
exist for this purpose [3,4,5,6,7,8,9], it is unclear if their assumptions are
satisfied by our networks. Trying again to decouple the problems of efficient
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inference and the pairwise sufficiency, we choose a classic, well understood
Iterative Proportional Fitting Procedure (IPFP) algorithm [28]. That is, we
start with Q(1) as a guess for Q(2), calculate Q(2)(σi, σj), and redefine

Q(2)(σ)→ Q(2)(σ)
P (σi, σj)

Q(2)(σi, σj)
. (7)

We cycle through all pairs i, j, and iterate until Q(2)(σi, σj) ≈ P (σi, σj) up
to a relative error of 10−5. This is achieved within ∼ 100 . . . 104 iterations
depending on how close the final Q(2) is to Q(1). We verified that starting
with different initial conditions results in the same solution, as it should.

To measure the quality of the MaxEnt models, we calculate the Kullback-
Leibler (KL) divergence between the true distribution P3,4 and each approx-
imation, normalized by the number of spins in the system:

D(1) =
D

(1)
KL

N
≡ 1

N

∑
σ P (σ) log2

P (σ)
Q(1)(σ)

, (8)

D(2) =
D

(2)
KL

N
≡ 1

N

∑
σ P (σ) log2

P (σ)
Q(2)(σ)

. (9)

Since our maximum N is rather small, this is done by direct summation.
Notice that both D(1) and D(2) are between zero (perfect fit) and one (the
worst fit) if single-spin marginals of Q and P are equal.

In Fig. 2, we plot the values of D(1) and D(2) measured over different
ensembles of random networks vs. the normalized entropy of the network’s
state space S = S(σ)/N , which also varies between 0 and 1. For all types
of networks and approximation, the quality of fit is high (D(·) is low) when
S ∼ 1, so that the networks are unconstrained, and nearly all states are
possible. This is trivial since even the zeroth order approximation (each spin
up or down with 50% probability) would work well here.

As S decreases, the fit errors increase. When S reaches small values, the
independent approximation, D(1), starts behaving differently for the different
network types. In the 4-spin case, by construction, P (σ) = P (−σ). Thus
〈σi〉 = 0 for any i, and the best independent approximation is the uniform
distribution. For this construction, the smallest possible entropy is S = 1/N ,
where the network exists in two mirror states, and there the error of Q(1) is

D(1)
4 = 1 − 1/N . In contrast, a 3-spin network freezes at S = 0, and each

spin is strongly biased (as in our XOR networks above). Thus the independent
approximation provides a perfect fit in this case.

The distinction between P3 and P4 vanishes for the pairwise MaxEnt
approximation. Here, for both 3- and 4-spin networks, the fit errors behave
similarly: for S decreasing from 1, D(2) grows from 0 and reaches its peak
at about D(2) ≈ 0.25 . . . 0.3 near S ≈ 0.5 . . . 0.6. This is already interesting:
D(2) almost never goes above 0.3 for all networks we tried. Thus even in some
of the worst cases, pairwise approximation is quite good! Further, for even
smaller entropies, D(2) rapidly drops, approaching zero faster than linearly in

S. For S ≈ 0.25, D(2)
3 ≈ 0.07. It is even smaller, D(2)

4 ≈ 0.04, for the quartic
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Fig. 2 Error of the MaxEnt fits vs. the normalized entropy of the net-
work state space, S. The left panel shows errors of the independent, D(1), and
the pairwise, D(2), approximations for 3-spin networks. We used ∼ 800 random
networks with 11 ≤ N ≤ 20 spins and with a varying number of interactions, M .
We partitioned all the networks by their S in bins of width of 0.1 and calculated
the mean and the standard deviation of D for each bin. These are indicated by tri-
angles and the error bars. Wherever the data points for individual networks showed
little scatter, we plotted these points instead of the bin averages. The middle panel
presents similar data, D(1) and D(2), for 4-spin networks. Here over 4000 random
networks were generated with 11 ≤ N ≤ 22. D(2) was again averaged within ten
bins, and the means and the standard deviations are plotted. For D(1), data for
individual networks are presented. These merge into a perfect straight line due to
the Z2 symmetry of 4-spin distributions. For both the 3- and the 4-spin cases, the
pairwise sufficiency is clear at low S. The right panel replots the D(2) data for
the 4-spin networks, but splits them according to α, which measures the average
strength of interactions per spin within a network. Large α curves are significantly
below their small α counterparts, indicating that, other things being equal, densely
and strongly interacting networks are more likely to be pairwise sufficient. Notice
that large α curves end abruptly since such networks cannot have large S.

case. This is because minS4 = 1/N , so that the whole D(2)
4 curve is slightly

shifted compared to D(2)
3 at low S.

In summary, for all the networks we have considered, pairwise sufficiency
emerges robustly at low (but not too low) entropy. In fact, at S ≈ 0.25, our
networks can be in more than 2S = 2NS ≈ 25 = 32 highly probable states.
Thus the networks are not totally frozen, and yet the pairwise approximation
is nearly sufficient! Crucially, this finding is robust to the changes in the
network size: D vs. S curves are stable over the entire range of N we explored.

Within a single narrow bin of S, D(2) may still have a rather large range.
We explore this variability in the rightmost panel of Fig. 2. For this, we define
α = sM/N (recall that s is the standard deviation of the random couplings
used to generate the networks). α measures the strength of interactions (or
constraints) per spin, analogously to a similar parameter in the random con-
straint satisfaction problems [29,30]. For quartic networks, where we have
enough samples, we then plot D(2) vs. S for different ranges of α. Crucially,
we find that, for the same S, a larger α results in better pairwise fits. In
other words, a denser and stronger interacting network is more likely to be
pairwise sufficient. This is potentially a good news for MaxEnt approaches
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Fig. 3 The pairwise sufficiency emerges in the nonperturbative regime.
We select all highly probable states σµ, defined somewhat arbitrary as P (σµ) >
0.001. We then calculate the overlap for all pairs of such states. Finally, we plot the
histogram of the magnitudes of the overlaps from all 4-spin networks with N ≥ 20,
and with 0.1 ≤ S ≤ 0.3. Such networks can exist in many states, but still very
few compared to 2N . Most of the overlap magnitudes are away from 1, indicating
small to moderate similarity among the highly probable states. Thus these states
are broadly dispersed and do not cluster together.

to biological systems, which are known for the immense complexity of the
underlying biophysical interactions.

We conclude this section by stressing that high probability states of pair-
wise sufficient p-spin networks are not close to each other. To illustrate this,
we focus on the 4-spin case with N ≥ 20, and on small but not negligible
S. We then evaluate the magnitude of the overlap, |σµ · σν | /N , among all
highly probable network states and plot the distribution of the overlaps in
Fig. 3. For purely randomly distributed states, we would expect the standard
deviation of overlaps to be ∼ 0.22, and a peak near zero. And we would ex-
pect magnitudes of overlaps near 1 if all highly probable states were clustered
near a dominant one. Instead, the distribution in Fig. 3 is not concentrated
near 1, and the standard deviation is ≈ 0.39. Therefore, there is some clus-
tering of probable states, but certainly not strong clustering. Thus the state
space of our networks cannot be described as small fluctuations around a
dominant state, and the pairwise sufficiency here is not perturbative [25]. It
likely emerges due to a previously not investigated mechanism.

2.3 The structure of the state space of the pairwise sufficient networks

The toy example of the XOR network suggests that the pairwise sufficiency
may emerge when the network “freezes” to a few (but not necessarily just
one) highly probable states, and different relatively tightly coupled clusters
of spins decouple from each other. Is this also true for our networks with
a nonzero temperature? How do energy landscapes of the sufficient and the
insufficient networks differ from each other? And are the MaxEnt fits for
both cases structurally different?

To start exploring this, we estimate hi and Jij for Q(2) inferred using
IPFP. We do this by choosing � N(N + 1)/2 states with the highest proba-
bility from Q(2). We get the energy of each such state as E(σ) = − logP (σ)
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Fig. 4 Spectra of the pairwise coupling matrices Jij for MaxEnt approx-
imations to random 4-spin networks, N ≥ 20. We order eigenvalues from
the smallest (lowest energy) to the largest (highest energy). We then plot the mean
spectra (with standard deviations, where it does not obstruct the figures), averaged
over different subsets of 4000 networks. Low S subset corresponds to 0.1 ≤ S < 0.2.
Such networks are fit extremely well by pairwise models, with mean D(2) ≈ 6 ·10−3.
High S corresponds to 0.3 ≤ S < 0.4. Here the pairwise fits are bad, so that the
mean D(2) ≈ 0.15. Finally, for the intermediate range 0.2 ≤ S < 0.3, the quality
of fits is diverse. We further partition this range into well fitted, D(2) ≤ 0.06, and
badly fitted, D(2) ≥ 0.12, subsets, leaving intermediate fits off the plot. The four
average spectra show that the pairwise sufficiency is directly correlated with the
scale of the spectra, with larger magnitude eigenvalues resulting in smaller D(2).
The inset shows the averages for each of the four ranges, where each spectrum is
normalized by its largest magnitude negative eigenvalue. The four curves are very
close for much of their range.

and then solve the linear regression problem to find the coupling constants
from the states and their energies. Finally, we calculate the eigenvalue spec-
tra of the inferred Jij , having set Jii = 0. The averaged spectra are shown

in Fig. 4 for different combinations of S and D(2). We see that the suc-
cess of Q(2) is correlated with the magnitude of the eigenvalues of Jij —
larger magnitudes, which correspond to stronger interactions and more con-
strained distributions, give the pairwise sufficiency. This is true irrespective
of S (though S and α are dependent, as we have discussed). Crucially, if one
rescales the spectra by their largest magnitude negative eigenvalue (Fig. 4,
inset), then all spectra collapse. Thus the Jij (or the energy landscapes) of
the pairwise sufficient and the pairwise insufficient fits are not intrinsically
different: a rescaling (change in temperature) can morph one into the other.

Having analyzed the pairwise sufficient and insufficient solutions, Q(2), we
now focus on the landscapes of the p-spin networks themselves. The freezing
that results in the decrease of D(2) and the growth of the eigenvalues of J
can create the landscapes of different types. For example, the highly probable
states may be essentially uncorrelated, reminiscent of the landscapes of the
Hopfield network in the ferromagnetic phase [31]. Alternatively, as in our XOR
network, entire blocks of spins can merge into strongly correlated clusters,
which then decouple from each other. Then the low energy network states
will be direct products of the states of the clusters. To disambiguate the

two scenarios, we calculate pairwise spin-spin correlation cij =
cov (σi,σj)
stdσistdσj
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Fig. 5 4-spin networks decouple into spin clusters in the pairwise suffi-
cient regime. The three panels show typical values of |cij | for N = 21, sorted into
correlated clusters. Left panel: a nearly perfectly pairwise sufficient network with
S = 2.05 bits and D(2) = 8.0 · 10−5. In accord with the entropy value, the network
splits into two clusters, with spins nearly perfectly correlated within each, but al-
most independent across. Middle panel: a good pairwise fit with S = 3.9 bits and
D(2) = 0.032. Correspondingly, four clusters of different sizes are seen. However,
now the spins also exhibit some correlations across clusters, which presumably leads
to the increase in D(2). Right panel: a network with S = 5.7 bits and D(2) = 0.16 –
a bad (though not disastrous) pairwise fit. There are now many small clusters, but
correlations within and across the clusters are not very different.

by direct summation of P (note that, for 4-spin networks, the correlation is
equal to the covariance since 〈σi〉 = 0). We then cluster the spins based on
the absolute value of their correlations. Figure 5 shows the clusters for 4-
spin networks (note that since the number, the size, and the spin assignment
for clusters are different for each network, we only show typical cases). A
network with a near-zero D(2) (left panel) shows a perfect partitioning into
two clusters; S(σ) ≈ 2 bits is a result of this partitioning. As networks with
larger entropies are considered, the number of clusters increases, and their
boundaries become fuzzy, leading to worse MaxEnt fits. When the definite
cluster structure disappears, D(2) grows dramatically. Thus the existence of
well-defined spin clusters is correlated with the pairwise sufficiency.

For 3-spin networks, in addition to the pairwise interactions, there are
also nonzero single spin biases in the MaxEnt fits. Thus the entropy and
correlations among spins are generally smaller for the same D(2). Nonetheless,
as seen in Fig. 6, the (fuzzy) cluster structure for these networks is not that
much different from the 4-spin case.

To further explore the network landscapes, we point out that an inferred
symmetric Jij can be rewritten as

Jij =

N∑
ν=1

λ(ν)ξ
(ν)
i ξ

(ν)
j , (10)

where λ(ν) and ξ
(ν)
i are the eigenvalues and the eigenvectors, correspondingly.

The eigenvalues take both large positive and large negative values for the
pairwise sufficient networks (cf. Fig. 4). The negatives correspond to wells
in the landscape, and the positives correspond to peaks. If the wells and the
peaks were clearly separated, then spin configurations in the vicinity of the
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Fig. 6 A 3-spin network also decouples into spin clusters in the pairwise
sufficient regime. For brevity, here we show |cij | only for one network similar to

the middle panel in Fig. 5: S ≈ 3.5, D(1) ≈ 0.58, and D(2) ≈ 0.038. Four to seven
partially overlapping clusters can be seen.

well center, distinct from it by just a single spin flip, would have similar high
probabilities (this is what allows an eigenvector to act as a broad attractor in
the Hopfield network [31]). The repulsive peaks far away from the wells would
have little effect on D(2) since the probability of states away from the wells
is small in the low temperature regime even without the peaks. In contrast,
were spins to form tight clusters, flipping a single spin would not be allowed.
Peaks would be needed to decrease the probability of such cluster-breaking
states, and thus positive eigenvalues would affect D(2) strongly.

To verify which of the two scenarios holds, for 4-spin networks, we con-
struct the coupling matrix and the pairwise MaxEnt distribution from only
n ≤ N eigenvalues,

Jij(n) =

n∑
ν=1

λ(ν)ξ
(ν)
i ξ

(ν)
j , (11)

Q(2)(n) =
1

Z
exp

(
−
∑
i,j

Jij(n)σiσj

)
. (12)

We then evaluate D(2) between P and Q(2)(n) as a function of n. Figure 7
shows this dependence for a typical pairwise-sufficient distribution and for
two different ways of including eigenvalues into J . In the first, we proceed
from the most negative eigenvalue to the most positive one. In the second,
we proceed from the largest magnitude eigenvalue to the smallest one. Since
sorting by magnitude (which includes large positive eigenvalues earlier) ap-
proaches the terminal D(2) faster, wells and peaks must both affect close spin
configurations. This is again consistent with the clustering picture.

2.4 The mechanism of emergence of the pairwise sufficiency

The clustered structure of the network landscapes allows us to propose a
hypothesis for why densely coupled p-spin networks exhibit the pairwise
sufficiency. We re-group terms in the energies, which define P3 and P4 in
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Fig. 7 Positive eigenvalues of the MaxEnt coupling matrix Jij contribute

to the approximation error. We plot the fit error, D(2), as a function of the
number of the eigenvalues of Jij included in the fit for a 4-spin distribution with

N = 21, S ≈ 0.1, and D(2) ≈ 0.014. The blue line includes eigenvalues in the order
from the most negative to the most positive, and the red one includes them in
the order of their absolute values. The red line reaches the limiting value of D(2)

quicker, while the blue one requires inclusion of all eigenvalues for this to happen.
As explained in the text, this is a signature of emergence of spin clusters.

Eqs. (4, 5). For example, all terms that couple σi and σj for the 4-spin net-
work can be rewritten as

σiσj
∑
µ

Kµσµ3
σµ4

δi,µ1
δj,µ2

≡ σiσjJij , (13)

where δ·,· is a Kronecker delta. (Here we slightly abused the notation and
imposed that i, j only occur in µ1 and µ2.) This equation defines a ran-
dom coupling Jij , which depends both on the current network state and on
the quenched randomness that went into building the network. For a large
number of couplings, fluctuations in Jij will be large enough so that, aver-
aged over the accessible network states, Jij stays far from zero compared
to its standard deviation σJij

. This creates large effective pairwise coupling
among spins, so that clusters of spins start behaving coherently. Then the
state of every spin in the cluster can be defined by choosing a cluster rep-
resentative, setting its value, and then coupling each cluster member to the
representative through a pairwise interaction — higher order couplings are
not needed! The pairwise MaxEnt fit is nearly exact, even though the net-
work is far from frozen since values of the cluster representatives are not
necessarily constrained. We illustrate this in Fig. 8, which shows that higher
order couplings average to produce large effective pairwise interactions for
correlated spins.

3 Discussion

In this numerical study, we showed that pairwise MaxEnt models are more
effective in approximating random p-spin networks (p = 3, 4) than one would
naively expect. Even in the worst cases, the error of such models was rarely
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Fig. 8 Formation of effective couplings in 4-spin networks. For the same
network as in Fig. 5, middle, we plot 〈Jij〉 (left) and 〈Jij〉 in units of the standard
deviation (right) for each pair of spins vs. cij . For correlated spins, higher order
coupling terms add up, on average, to strong pairwise couplings. Negative Jij ’s
typically correspond to positive correlations (and vice versa), as expected.

above D(2) ∼ 0.3, and it was much lower for densely coupled networks, with
lower entropy per spin. We traced the emerging pairwise sufficiency to for-
mation of coherent clusters of spins, largely decoupled among themselves,
resulting in a multitude of dependent attractors for the system. This is not a
perturbative effect and is a new proposal for explaining pairwise sufficiency.
Such collective behavior introduces substantial redundancy, and would allow
error correction. However, this error correction is of a very different nature
compared to, for example, the Hopfield network [31].

Does the mechanism presented here explain the pairwise sufficiency in
any real biological system? This is unclear since our analysis was limited
to specific simulated networks, which may or may not be good models of
real biology. Specifically, the network in the original paper that observed
the pairwise sufficiency [11] had much smaller entropy per spin (neurons
rarely fired), and correlations among spins rarely exceed 0.2. In contrast,
while 3-spin networks in our simulations had smaller S and smaller spin-
spin correlations than their 4-spin counterparts, these numbers were still
larger than those in the experiments. At the same time, pairwise MaxEnt
models do not fit experimental data perfectly (certainly worse than some
of our nearly perfect fits) [15]. It may be that some structural features of
real systems allow them to operate at higher D(2) for smaller S compared
to the simple models we investigated here — and exploring a wider class of
networks for signatures of behaviors that we observed would be the next step.
This is especially important since large coherent deviations from the most
probable state into 10 . . . 100 metastable states seems to be a crucial feature
of many experimental systems (such as bursts of neural activity in the retina
that predominantly stays quiet [15]). Such metastable states far away from
the ground state at least resemble the models that we studied. In addition,
MaxEnt models in other fields may have very different properties compared
to those in neuroscience, including different typical entropies and correlation
strengths. Therefore, we hope that our models and their generalizations will
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be able inform interpretation of experimental data, even if they do not match
the experiments in some important properties.

With (approximate) pairwise sufficiency seen in many collective biological
phenomena, it is important to ask why these systems operate in the regime
that allows it to hold. Indeed, within our model, the pairwise sufficiency
is not generic: low D(2) happens only for small S, and preferentially when
the strength of the interactions is high, α = Ms/N � 1 (cf. Fig. 2). The
need for redundancy and error correction is a potential explanation – but
there is no obvious reason why the redundancy must result in the pairwise
sufficiency (indeed, simple parity-based codes probably do not). Taking the
improvement in D(2) with the increase in α seriously, we propose a different
explanation (a similar argument was first suggested in Ref. [32]).

One can view evolution as trying to satisfy a growing list of constraints
imposed upon a biological network by its interactions with the environment.
These constraints can include efficient information processing, low energy
consumption, robustness to perturbations, fitting within a certain physical
size, responding quickly enough so that actions are relevant in the changing
world, etc. Some of these global constraints may be equivalent to a large
number of local constraints. For example, efficient information transmission
in the visual system typically includes removal of redundancy present in the
natural stimuli [33], which is equivalent to a multitude of constraints on ac-
tivities of nearby neurons. When contraints are added, fewer and fewer states
of the network remain accessible. Importantly, at least for certain abstract
constraint satisfaction problems [30,34], before there are no more states left,
the accessible states organize themselves in a handful of small, well-separated
groups. Whether these states are uncorrelated, or consist of collective flipping
of clusters of spins, they can be well represented by pairwise MaxEnt mod-
els. (In the former case, such MaxEnt model would have a Hopfield network
structure [31]; in the latter, pairwise interactions would determine cluster
assignments.) Therefore, it can be that the pairwise sufficiency is a signature
of a biological network nearing the unsatisfiability threshold, being pushed
towards it by evolution. Exploring landscapes of satisfiability problems with
more realistic ensembles of constraints (or interactions) and comparing them
to the landscapes observed in experiments would address this hypothesis.
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