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We construct a unifying theory of geometric effects in mesoscopic stochastic kinetics. We demonstrate
that the adiabatic pump and the reversible ratchet effects, as well as similar new phenomena in other
domains, such as in epidemiology, all follow from very similar geometric phase contributions to the
effective action in the stochastic path integral representation of the moment generating function. The
theory provides the universal technique for identification, prediction, and calculation of pumplike
phenomena in an arbitrary mesoscopic stochastic framework.
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Introduction.—A number of effects in classical statisti-
cal physics, such as the reversible ratchet [1–3] and the
adiabatic pump [4,5], are known (or anticipated) to have a
geometric origin. The distinct feature of these effects is
that, under a slow perturbation, transport coefficients are
not a simple average of those in the strict static case, but
contain an extra component, which changes its sign under a
time-reversal of the perturbation. Examples and applica-
tions can be found in various fields, such as metrology,
motility at low Reynolds numbers, ion pumping through
cell membrane, and dissipative chemical kinetics [6].
Although these effects have been well studied in their
respective fields (cf. [7]), in our opinion, a general theory
for stochastic kinetics that would clearly disambiguate the
pump (or ratchet) currents from other nonequilibrium
transport, provide a unified view of disparate pumplike
phenomena, and suggests universal quantitative methods
to calculate statistics of pump fluxes is still missing.

In this Letter, we address this problem using a recently
introduced stochastic path integral representation of the
moment generating functional (MGF) for fluxes in meso-
scopic stochastic systems [8,9]. We demonstrate that the
technique can be employed to calculate the moments of
pump fluxes in a general stochastic system in a mesoscopic
(many particles) and adiabatic (slowly varying external
driving) regimes, and that it makes a clear distinction
between the pump fluxes and other currents by relating
the former to a geometric phase contribution to the flux
MGF. To demonstrate the universality of the effect we
derive the geometric phase in three distinct applications.

Pump current from particle exclusion.—Let two absorb-
ing states S and P (substrate and product in a Michaelis-
Menten enzymatic reaction [5], cellular compartments,
cities), exchange particles (molecules, humans) via an
intermediate system B (bin, enzyme, channel, transporta-
tion hub). Our goal is to find the S! P flux J and its
fluctuations in the mesoscopic regime (the number of
particles in the bin N � 1) and on time scales much longer
than the fluctuation time in B.

Particles interact, and the in- and outgoing transition
rates may depend on the number of particles in the bin,

N�t�. The simplest example of this kind is when the bin has
a finite size, so that N � NB � const<1. Then the in-
rates are proportional to the number of empty spaces in the
bin, while the per particle outrates are not affected by the
occupancy. The full kinetic scheme is

(i) S! B; rate k1�N; t� � q1�t��NB � N�;
(ii) B! S; rate k�1�N� � q�1N;
(iii) P! B; rate k�2�N; t� � q�2�t��NB � N�;
(iv) B! P; rate k2�N� � q2N.
We allow q1 and q�2 to undergo a slow periodic modu-

lation with a frequency !, which can be achieved in the
biochemical context by coupling S and P to particle baths
with modulated chemical potentials. In other transport
problems, such as transportation systems, the same modu-
lation may be produced by time-of-day variations. We note
that, unlike in [8], our formulation has three time scales:
fast instantaneous jumps among states, equilibration of the
bin, and adiabatic changes of the rates.

Now the path integral technique of [8] can be applied.
SinceN � 1, there exists a time scale �t, over which many
transitions into and out of B happen, but the fractional
change in the bin occupancy remains small, 1� �N �
N. Then the rate changes �ki, i � �2, �1, 1, 2 are also
small, and all transitions are uncorrelated and Poissonian.
Thus the probability of the number of particle transitions
for the ith reaction over time �t, denoted by �Qi, is
P��Qi; t� �

1
2�

R
�
�� d�ie

�i�i�Qi�NBHi��i;t��t, where
NBHi�t � ki�N; t�	exp�i�i� � 1
�t � ki�N; t�e�i�t is the
MGF of a Poisson distribution with the mean ki�t. Note
that we define ex � eix � 1 for any x.

Now we turn to the MGF of the net particle number QP
transferred into P over a long time interval (0, T). Closely
following [8], we write it as an integral over fluxes at each
moment of (discretized) time weighted by

Q
iP��Qi; t� and

constrained by particle conservation laws
 

hei�CQPi�
Z YT=�t

k�1

dN�tk�
Y

i��2;�1

d�Qi�tk�P	�Qi�tk�


ei�C��Q2�tk���Q�2�tk���	N�tk�1��N�tk�

��Q1�tk���Q�2�tk���Q�1�tk���Q2�tk�
: (1)
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Here we used the identity QP �
PT=�t
k�1 	�Q2�tk� �

�Q�2�tk�
, and we introduced a variable �C, which is
conjugated to QP and ‘‘counts’’ particle transfers into or
out of P. Now, using the Fourier representation of the
�-function, we integrate over �Qi�tk� and �i�tk� and reduce
(1) to a path integral over N and its conjugated �

 hei�CQPi �
Z
DN�t�D��t�e

R
T

0
dt�i� _N�NBH��;N;t��; (2)

where all prefactors are absorbed into the measure, and
 

H��;N; t� � 	q1�t�e�� � q�2�t�e�����C�
�1� N=NB�

� 	q�1e� � q2e����C�
N=NB: (3)

Equations (2) and (3) are a special case of the result in [8],
and the explicit time dependence of H is due to the slow
periodic changes in q1�t� and q�2�t�.

The exponent in (2) has a factor of NB in it. Thus for
NB ! 1, the path integral is dominated by the saddle point
or classical values �cl and Ncl,

 i _�cl�
@H��cl;Ncl;t�

@Ncl
; i _Ncl��

@H��cl;Ncl;t�
@�cl

: (4)

Since the Hamiltonian (3) is linear in N there are no higher
order in 1=N corrections.

Assuming adiabatic and periodic variation of q1 and q�2

and setting the derivatives in (4) to zero, we get

 e�i�cl �
K� � K

2�q1 � q�2e�i�C�
; (5)

 Ncl �
NB�q1 � q�2e�i�C�

q1 � q�2e
�i�C � �q�1 � q2e

i�C�e2i�cl
; (6)

where � denotes the accuracy of O�!=qi�, K� � q1 �

q�2 � �q�1 � q2�, and K � �K2
� � 4q1q2e�C �

4q�1q�2e��C�
1=2. Since the Hamiltonian is quadratic in

its arguments near the saddle point, corrections of the order
O�!=qi� in (5) and (6) lead to O	�!=qi�2
 contributions to
the MGF, setting the accuracy of our results. We have

 hei�CQPi � eNB	
R
c

A�dq�
R
T

0
H��cl;Ncl;t�dt
; (7)

where the vector A, Ai � i�cl�@qiNcl�=NB, is defined in the
space of parameters qi, and the contour c is given by qi�t�.
It generates a path-dependent phase, which makes the
crucial difference from the steady state contribution and
is the main object of our discussion in this work. For the
periodic driving, as we consider here, with a period T0 �
2�=! and with fixed q�1 and q2, we rewrite the contour
integral as the integral of Fq1;q�2

� @q1
A�2 � @q�2

A1 over
the surface Sc enclosed by c. Then

 Z � hei�CQPi � eNBSgeom�NBScl ; (8)

 Sgeom �
T
T0

I
c

A � dq �
T
T0

Z
Sc

dq1dq�2Fq1;q�2
�q�; (9)

 Fq1;q�2
�q� � �e��C�e

i�Cq2 � q�1�K�3; (10)

 Scl �
�T
2T0

Z T0

0
dt�K� � K�: (11)

The two-form Fq1;q�2
�q� is an analog of the Berry curvature

in quantum mechanics. Nonzero Berry curvature, as fol-
lows from (9), is responsible for the reversible component
in the particle fluxes. Its presence in our model is due to
particle exclusion within the central bin. If k1 and k�2 were
independent of N, Fq1;q�2

would be zero.
Now all cumulants of the flux into the P absorbing state

can be derived easily by differentiating (8) with respect to
�C. In particular, the average flux is

 J�Jpump�Jcl

�NB

�ZZ
SC
dq1dq�2

q2�q�1

T0K
3
�

�
Z T0

0
dt
q1q2�q�1q�2

K�T0

�
;

(12)

where the pump term is due to the particle interactions and
the corresponding geometric contribution, while the clas-
sical flux would exist even in the stationary limit. Notice
that J is NB times its value for a single driven Michaelis-
Menten enzyme [5]. The same holds for the entire MGF,
and hence for all flux moments. Thus we refer the reader to
[5] for further analysis of the model. Here we note that this
scaling is not a coincidence since the current model is
equivalent to NB independent enzymes, with N being the
number of enzyme-substrate complexes.

In [5], we used an analogy with the quantum mechanical
Berry phase to derive the pump flux (12). While formally
applicable to any stochastic system, this approach requires
diagonalization of an effective evolution Hamiltonian,
which is a complicated task for mesoscopic systems. In
contrast, the classical mesoscopic stochastic treatment
used now is simpler and more generally applicable, as we
show below. Existence of these alternative approaches is
not surprising because any discrete quantum mechanical
system can be mapped onto a mathematically equivalent
classical Hamiltonian system [10], and then the Berry
phase transforms into a dynamic contribution to the clas-
sical action [11]. Thus the present derivation shows that
one can derive the classical Hamiltonian for a discrete
Markov chain by considering many identical independent
copies of the system.

The reversible ratchet effect.—Now we show that the
geometric contribution to MGF is responsible also for the
ratchet effect in a periodic potential. Consider a system of
noninteracting particles moving in a periodic potential
V�x; t�, which changes adiabatically with time so that
V�x; t� � V�x; t� T0� and V�x; t� � V�x� L; t�. In the
overdamped case, the average density of particles � sat-
isfies the Fokker-Plank equation

 @t��x; t� � �@x	A�x; t���x; t�
 �D@
2
x��x; t�; (13)
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where D is the diffusion coefficient, and A�x; t� �
�@xV�x; t� is the force. The current in this model under
an adiabatic deformation of the potential was previously
studied in [2], and the similarity of the final expression and
the quantum Berry phase was pointed out. The close con-
nection between the classical ratchets and the Berry phase
also has been anticipated in [1,3]. In our following reder-
ivation, we explicitly show that the ratchet current has its
origins in the geometric phase, emerging from the complex
geometric phase of the particle flux MGF.

To study diffusion without the external field, A�x; t� � 0,
Refs. [9] derived the path integral for the MGF by discre-
tizing the space into small intervals of length a� L,
indexed by i. Then Poisson transition rates among the
neighboring intervals are prescribed in a way that the
continuous limit a! 0 recovers the diffusion equation.
This reduces the path integral derivation to a solved prob-
lem of stochastic transitions among a discrete set of states.
To include the force A�x; t�, we assume that it creates an
asymmetry in the left and right transition rates. For ex-
ample, (13) can be recovered if the transition rates are such
that during a short time �t the average numbers of particles
transferred left and right are h�Qi!i�1i � D�i�t=a and
h�Qi!i�1i � D�i�t=a� A�xi��i�t, respectively. We then
repeat the same steps as in [9] to write the MGF of the
current in discrete time, as in (1):
 

Z��C� � hei�CQCi

�
YT=�t
K�1

YN
i�1

Z
d�i�tk�d��Qi!i�1�d��Qi!i�1�

 P	�Qi!i�1�tk�
P	�Qi!i�1�tk�


 �	conservation
ei�C��QN!1�tk���Q1!N�tk��: (14)

Here the net flux through the system is QC �P
k��QN!1�tk� � �Q1!N�tk��, �C is its conjugate, P	�


are Poisson distributions, and �-functions enforce particle
conservation on each site and at each moment of time.
Performing the usual transitions to and from Fourier rep-
resentations and taking a continuum limit, we find [12]:

 Z �
Z
D��x; t�D��x; t�e

R
T0
0
dt
R
L

0
dx	i� _��H��;��
; (15)

 H��; �� � �iA�@x�� iD@x�@x��D��@x��2: (16)

The dependence on the counting field �C in (16) is hid-
den in the boundary conditions on � [8], which, for a
periodic system with the spatial period L, are ��L� �
��0�, and ��L� � ��0� � �C. Now, solving the saddle
point equations and substituting the result back into the
action in the path integral, we write the MGF in a fa-
miliar form Z��C� � exp	Sgeom��C� � Scl��C�
, where
Sgeom��C� �

RT0
0 dt

R
L
0 dx�i�cl _�cl�, and Scl��C� �RT0

0 dt
R
L
0 dxH��cl��C�; �cl��C��.

The analysis simplifies if we are interested only in
mean currents, rather than in their fluctuations. Then
we consider �C � 1 and find the contribution to logZ
that is linear in it. In fact, only Sgeom has this contribution
in our case. To determine it, it is sufficient to find �cl�x; t�
to the zeroth order and �cl�x; t� to the first order in �C.
This results in �cl�x; t� � 	Q0=R��L; t�
e�V�x;t�=kBT ,
�cl�x; t� � ��CR��x; t�=R��L; t�, where R��x; t� �R
x
0 e
�V�x0;t�=kBTdx0, and Q0 �

R
L
0 �cl�x; t�j�C�0dx is the

number of particles per unit cell. This leads to Z��C; T0� �
exp	i�CJT0 �O��

2
C�
, where the terms in O��2

C� can re-
veal the higher order cumulants, and the average current
J � ��i=T0��@�C logZ��C�0 is

 J �
Q0

T0

Z T0

0
dt
Z L

0
dx�@tu�@xu��; (17)

where we introduced u��x; t� � R��x; t�=R��L; t�.
For a uniformly shifting potential V�x; t� � V�x�

tL=T0�, R��L; t� are time-independent, and J � Q0=T0 �
�Q0=T0�L2=	R��L�R��L�
. The first term in this expres-
sion is the quantized contribution, dominant in the limit of
a large potential amplitude. In [3], this quantization of the
classical ratchet current was connected to the Chern num-
ber of the Bloch band for the potential V�x�. This reversible
ratchet example points to the importance of the geometric
phase to the general theory of molecular motors.

Pump current in the SIS epidemiological model.—In a
final calculation, we show how the stochastic path integral
allows derivation of a pumplike effect in novel mesoscopic
scenarios, specifically where, unlike in our first example,
the system cannot be factored into noninteracting identical
stochastic subsystems, and where the technique of [5] is
not feasible. We consider the standard susceptible-in-
fected-susceptible (SIS) mechanism of an infection out-
break, which is a good model for influenza. State of the art
epidemiological modeling uses deterministic dynamics
[13]. However, it is understood that stochasticity may be
essential. Thus here we discuss if stochasticity, and espe-
cially effects due to slow variability of the infectivity and
the recovery rates, can effect disease outbreaks.

Let us denote infected individuals by I and their number
by N. The disease spreads due to a permanent infection
source and because it can be transmitted by the infected
individuals. All infected people eventually recover. Thus
the full kinetic scheme is

(i) ; ! I; rate k1 (permanent infection source);
(ii) I ! ;; rate per infected individual k2 (recovery);
(iii) I ! I � I; rate per infected individual k3 (infection

spread by contacts).
We assumed that outbreaks are small in comparison to

the total population size, so that k1 and k3 are independent
ofN and most of the population is always in the susceptible
state (still N � 1). This requires k2 > k3, so that, if sto-
chasticity is unimportant, the deterministic steady state
solution is Nst � k1=�k2 � k3�, and the stationary flux
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into and out of the infected state is Jst � k2Nst � k1k2=K�,
where now K� � k2 � k3.

This and similar birth-death processes with time-
independent rates have been extensively studied previ-
ously, and here we are interested in estimating (possibly
substantial) effects of rate time-dependence. The
Hamiltonian in the path integral for this model is

 H��;N; t� � k1�t�e�� � k2Ne����C� � k3�t�Ne��; (18)

where � is the conjugated variable to N, and �C counts the
flux out of I. For simplicity, we assume that only k1 and k3

vary, and the recovery rate k2 remains constant. With N �
1, we can use the saddle point analysis, which is exact since
H is linear in N.

Now consider a periodic time dependence of the rates ki,
which may be due to the time-of-day or seasonal effects.
As before, the MGF has both the classical and the geomet-
ric terms, i.e., Z � exp�Scl � Sgeom�. The classical one is
the average of the stationary MGF over the period of the
rates variation, T0, while the geometric one is again an
integral over the surface Sc inside the contour enclosed by
ki�t�:
 

Scl � Sgeom �
T
T0

Z T0

0
dtH	�cl�t�; Ncl�t�; t


�
T
T0

ZZ
Sc

dk1dk3Fk1;k3
�k�; (19)

 Fk1;k3
�k� �

k2�K� � 2k3e�C � ��

2k2
3�

2 ; (20)

 H��cl; Ncl; t� �
k1�K� � ��

2k3
; (21)

where ��
�������������������������������
K2
��4k2k3e�C

q
. This corresponds to the

mean flux J � Jpump � Jcl, where Jpump�1=
T0

RR
Sc
dk1dk3k2K�3

� is the pump current due to the geo-
metric contribution, and the classical flux is Jcl �
1=T0

R
T
0 Jstdt. Notice, in particular, that Jpump / K�3

� , and
it can become very large near K� � 0, potentially chang-
ing the system’s phase diagram. Fluctuations are also easy
to compute by further differentiating (19).

Conclusion.—Using the stochastic path integral tech-
nique, we built a universal theory of geometric fluxes in
mesoscopic classical stochastic kinetics, and we proposed
a general approach for identification and calculation of
pumplike currents for such systems, unifying familiar sto-
chastic pumps, reversible ratchets, and new phenomena. In
the adiabatic limit, the MGF of pump fluxes is provided by
the term that depends on the choice of the contour in the
parameter space, but does not depend on the rate of the
motion along this contour, and thus has a geometric origin.
The solution of the stationary saddle point equations is
sufficient for calculations of this geometric contribution in

the case of a large number of particles; this description is
complementary to the Berry phase approach in [5]. These
results will provide means to study such poorly understood
systems as ratchets with interacting diffusing particles, or
time-dependent epidemiological models on complex social
networks. Analysis in terms of stochastic path integrals and
geometric effects is possible for these and other systems
and will be reported elsewhere. Importantly, since the
approach provides a unifying geometric viewpoint, it will
open doors to a deeper understanding and cross-
fertilization among different subfields of physics.
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