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Potential and field singularity at a surface point charge

Alexander Silbergleit?
Gravity Probe B, W. W. Hansen Experimental Physics Laboratory, Stanford University,
Stanford, California 94305-4085

llya Mandel”
Physics Department, Mail Code 103-33, California Institute of Technology,
Pasadena, California 91125

llya Nemenman®
Kavli Institute for Theoretical Physics, University of California,
Santa Barbara, California 93106

(Received 14 May 2003; accepted 13 June 2003

The behavior of the magnetic potential near a point chéflgeon) located at a
curved regular boundary surface is shown to be essentially different from that of a
volume point charge. In addition to the usual inverse distance singularity, two
singular terms are generally present. The first of them, a logarithmic one, is axially
symmetric with respect to the boundary normal at the charge location, and propor-
tional to the sum of the two principal curvatures of the boundary surface at this
point, that is, to the local mean curvature. The second term is asymmetric and
proportional to the difference of the two principal curvatures in question; it is also
bounded at the charge location. Both terms vanish, apparently, if the charge is at a
planar point of the boundary, and only in this case. The field in the charge vicinity
behaves accordingly, featuring generally two singular terms proportional to the
inverse distance, in addition to the main inverse distance squared singularity. This
result is significant, in particular, for studying the interaction of magnetic vortices
in type Il superconductors. @003 American Institute of Physics.
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Magnetic vortex lines are formed in type Il superconductorghen crossing the supercon-
ductor boundary, they create strongly localized surface sources of magnetiglfietths, which
may play an important role in various physical situations. For instance, two space tests of Ein-
stein’s General Relativity, Gravity Probe %8, and STEP(Space Test of the Equivalence
Principle),* are based on low temperature technology with type Il superconductors, and their setup
is significantly affected by fluxons.

The size of a surface magnetic spot is about the microscopic London fength,it is
typically much smaller than characteristic macroscopic sizes involved. Thupdiné charge
approximation appears naturally and proves to be sufficient for many applications. Within this
approximation, the magnetic potentigl= /(R), satisfies the Neumann boundary value problem

Ay=0, ReD, (1)

| &
% S:gl V]¢)055(R_Rl), R! RJES (2)

Here the domaiiD is the empty space, surfagas the superconductor boundadyy= h/2e is the
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magnetic flux quantum in Sl units, and the magnetic fiel@ts—V. Moreover, 65(R—R;)
denotes the surface delta-function at the positR®n, of a vortex, andy; is either plus or minus
one, depending on whether the field line enters the do@gin;= +1), or exits it (/;=—1). We
assume that the bounda®yis smooth enougkat leastC®) near every charge. Outside the charge
vicinities it may have any singularities compatible with the finite local energy condition, meaning
(V)? is locally integrable.

If D is bounded, then each vortex line starts and ends at the boundary, the number of charges
is even, and the total charge vanishﬁgx1 v; ®,=0, which condition is the solvability criterion
of the problem, Eqs(1) and(2). If the domainD is infinite, some field lines may end at infinity,
and this condition may not hold; in any case, we do not use it in the following analysis, which is
entirely local.

An immediate question regarding the above boundary value problem is how does its solution
behave near a surface charge? For a curved boundary, an answer based on the similarity with the
volume point charge turns out incorrect. This is seen from the simplest example, a spherical
domain. A closed-form exact solution to Eq%) and(2) in the exterior of a sphere was obtained
in Ref. 5. It shows that a new logarithmic singular term, inversely proportional to the radius of the
sphere, is added to the main inverse distance singularity in the expansion of the potential near the
charge. So, what happens with the singularity for a generally curved smooth surface?

Our search for the answer to this natural and, in fact, classical question covered books and
papers in both mathematical physics and in the field of vortices in superconductors, as well as
communications with colleagues in both fields. We also talked with high energy theorists expect-
ing to find perhaps some relevant results in view of the discussions of the magnetic monopole.
However, no ready answer was found, which might not be so surprising. Indeed, the Neumann
boundary value problem with surface charges is not relevant to the design of electrostatic systems.
On the other hand, its magnetostatic implementation became available only with the widespread
technical use of superconductors in the recent years. Last but not least, the answer proves to be not
that simple.

In this paper we fill the gap by deriving a complete singular part of the expansion of the
solution to Egs(1) and(2) near a charge at an arbitrary curved smooth boundary. As compared to
the case of a sphere, one more singular term, proportional to the difference of the two principal
curvatures, appears in the general case.

We are interested in the behavior of the potential near a single surface charge &;sdfoe
brevity, we thus drop the charge index in the following calculation. We put the origin of a
Cartesian coordinate system Rf, so thatr=R—R;. We point thez axis along the outward
normal to the surfac§ (that is, into the superconducting bilkchoosing thex andy axes in the
tangent plane, so that the unit vectfxsy,z} form a right orthogonal triplet. Along with Cartesian
{x,y, z}, we will use the corresponding spherical, 8, ¢}, and cylindrical{p, ¢, z}, coordinate
systemgsee Fig. 1L

The shape of the smooth boundary surface in the vicinity of the charge can be described by the
equatiorz=F(x,y). The Taylor expansion of the functidf(x,y) aroundx=y=0 apparently has
no terms linear inx or y, sincez is oriented along the normal. Moreover, by an appropriate
rotation of the coordinate axesy in the tangent plane, we can ensure that the second cross-
derivative ofF vanishes at the origin, hence the expansion acquires the form

k™) k)
z=F(xy)= 7X2+ 7y2+ O(p®)=f(x,y)+0(p%, ©)
where
K> F K >F (4)
=— , =
24 x=y=0 % x=y=0

are the two principal curvatures of the boundary surface at the charge location.
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superconducting bulk

y

empty space, D

FIG. 1. Definition of coordinate systems near a charge.

Since, near =0,
og(r)=a(x)a(y)lJ,

glon=n-V = (1/3)(3l 92— F, l ox—F, al ay),

I=\1+FZ+F2Z,

the boundary condition, Ed@2), in the vicinity of the charge can be written in terms of variables
X,y,z a®

Iy
%z =vdy8(x)d(y)+

z=F(xy)

I

z=F(x.y)

The partial derivatives of the functioR(x,y) near the origin are given, to the order we are
interested in, by

F=k®x+0(p?), F,=kWy+0(p?). (6)

Once again, we only care about the vicinity of the charge wherE(x,y) is small, so we can
use perturbation of the boundary to move the boundary conditionSEdo the planez= 0. This
is done by means of the following Taylor expansion of an arbitrary funatienw(x,y,z):

F2 9w
TS oz
0 2 0z

ow
W|Z=F(x,y) :W|z=0+ F 9z

z= z=0

Applying this to the derivatives of in Eq. (5) we write it, to the proper order, in the form:

I I 321#)

0z =0

z=0

The final step of this derivation is to expagdn a series of successively smallghat is, less
singular at the originfunctions ¢/,

b=+ yD 4y p ... (8)
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Introducing this expansion in the boundary condition Ef}.and then matching the terms of the
same order, we end up with the following sequence of boundary conditionsy/fdr
i=0,1,2,. .., atz=0:

671//(0)
0 =v®y5(x)5(y), (9
z=0
5‘//(1) 5(//(0) (9,7//(0) (92(/,(0)
—| k() ) _
7| . kXx o +kWy 7y f(x,y)?— » , (10

and so on. Here we have dropped higher order terms on the right-hand sides by replacidg
Fx, Fy with their main term expressions from Eq®) and (6), respectively. Of course, all
functions () are subject to the Laplace equation, ER.

Thus,locally we have successfully replaced the boundary value problem of(BEggnd(2) in
the domainD by a sequence of problems for functiogé”, i=0,1,2, .., harmonic in the
half-spacez< 0 and satisfying the above boundary conditions, E@s.(10), etc. We now need to
solve these problems for the half-space one by one, until the normal derivative of the solution
becomes finite at the boundary.

The zero-order solutiog®) obeying the boundary condition of E¢)) is, of course,

V(I)O 1

(0) —
4 27

(11)

It allows one to immediately calculate the right-hand side of(Hg). Indeed,

52 lp(o)
97°

v®o kWx2+kWy?2
2 2p° '

vdof (1 32
T 2w\

z=0 z=0

where the second term in the middle expression turns to zem=&t contributing nos-like
singularities, due to the presence of the fadterO(p?). Also taking into account thatr ~*/dx
=—x/r3, or Y gy=—ylIr3, we find the boundary condition fas'V) in its final explicit form:

(gw(l)
0z

vdo kP +KWY? D,
2 2p° - 8w

KOO+ k) kO — k)
+

p CoS2p| . (12

z=0

The two terms on the utmost right here have essentially different singularities at the origin. For
this reason, we treat them separately by splitting the problem in two in the following way:

P =yM+ gy, (13
oy v o k¥ + KW
=-— —_— (14
iz |, , 8w p
I vy KO-k cos 2 15
Jz z:O_ 8m p '

The Neumann problem fap{") in the half-space does not have solutions bounded at infinity,
as one would expect in our investigatitwe are actually looking for terngrowingaway from the
charge, because a weaker singularity next to the inverse distance is most probably some logarithm
tending to infinity at both the charge and the infinite distance froni-ir this reason, no solution
can be found by means of standard techniques. However, a harmonic and regular in the half-space
z<<0 function
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M=K In[(r—2)/d]=K_[In(r/d)+In(1—cosb)], (16)
L =v®[kX¥ kW78, 17

whered>0 is an arbitrary constant of the dimension of length, provides the needed solution.
Indeed, it satisfies the boundary condition, Efy), in view of

aln(r—2)/9z=(r—z) " YzIr—1)=—1k——1lp, z——0.

The solution given by Eq.16) is unique in the class of functions with the logarithmic growth at
infinity, namely, those with the asymptotics

gy

S

o =K, /Ir+0O(1/?), r—o,

M=K In(r/d)+K, In(1—cosé) +0o(1),

Contrary to the previous one, the Neumann problemﬁf&?,

K_

FIcH
i =— 7(:05 20, (18

AytM=0, z<0,

z=0

has a unique, up to a constant, solution bounded at infiniynely, a solution that obeys some-
what unusual conditiong!®=0(1), 9y{"/dr =0(1/r?), r—oc]. The solution is obtained by the
standard separation of variables in cylindrical coordinates using the Hankel transform, and it
reads:

yM=—K_cos 2 fo Jo(Np)exp(—A|Z]) N

K_ cos 2 K. x2-y?
__Kocosf p |7 K- X7V 19
2 r—z 2 (r—2)
The value of the integral is found in Ref. 7, 4.8}, and the constar _ is defined in Eq(17).
Interestingly, this solution in spherical coordinates does not depend on the radius, being a function

of the angles onlysingular on the positive semiaxis>0, same aspgl’ in Eq. (16)]:

; (1)
lﬂ(l):_&smzecoszb P, o
r 2 (1-cos®)?’ or '

It is now straightforward to see that the Neumann boundary data for all higher order correc-
tions to the potential, starting witi(?), are finite at the originand dropping fast enough at
infinity); accordingly, the solutions of the corresponding problems bounded at infinity are unique
up to an additive constant. It also means that all the terms in the expansio@)Eof the
potential, whose normal derivative are singular at the location of a surface charge, are given by the
solutions already found. Hence, combining the expressions from(Efs(16), and(19), we find
the desired formula for the magnetostatic potential near a surface chiarg@) (

1 1
Y= l//(o)+ wg )4 '705 Y.

v®o[1 kW+KkW -z KO-k x2—y2
B e B (L

+ (nonsingular terms (20

It is easy to rewrite this in our general notations from E@9.and (2) by replacing|r| with
IR—R;|, x with X=X, etc. Instead, we give the expression of the singular part of the magnetic
field near the charge. It can be written in the form:
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N K09+ k) ., sing ) kO—kW sing 5
= V=S Ar ' 1-cosé Ar (1—cos€)2(00524S
+5in 2¢ ¢) | + (nonsingular terms (21)

Here are a few concluding remarks regarding the obtained result.

First, notice that the leading order contribution to the potential,(E), is twice that of the
point charge located in a volume away from its boundaries. This is clearly explained by the fact
that the field lines and the flux from the surface charge emanate only into the half-space, versus the
full space for the volume charge.

The two singular corrections to the usual inverse distance singularity of the potentie20EqQ.
are very different. The first one is logarithmic, axially symmetric about the direction of the normal
to the boundary at the charge location, and proportional to the sum of two principal surface
curvatures there, i.e., to the mean boundary curvature. Thus, it vanishes if the charge sits at a
symmetric saddle point of the boundary. The second additional singularity is asymmetric, propor-
tional to the difference of the principal curvatures, and vanishes thus when the latter are equal, i.e.,
when the charge is at a spherical point of the boundary. This second term is bounded at the charge
location[giving unbounded field components, see &4)], but is not uniquely defined there, with
the limiting values depending on the direction along which the limit is taken. Note that both
corrections vanish simultaneously if and only if the charge is at the planar point of the boundary.

In a particular case when the domdinis the exterior of a sphere of the radias one has
k® =k =1/a. If there is just one surface chardé=j=1 andv=1 (so that the incoming vortex
line ends at infinity, Eq. (20) becomes

_do 1 1 RERISARIRY tant nonsingular t 22
zﬂ—ﬁ R_R,| 2a n d (nonconstant nonsingular terims (22)

in complete agreement with the exact solution obtained in Ref. 5 dvtl2a.

Finally, the obtained singular expansion of the potential can be used in the derivation of the
force acting on a charge in a fashion similar to the one developed in the case of volume point
charge$.i.e., by means of the geometrical regularization of energy and, henceforth, the force, as
the energy gradient in the charge location. However, in a striking contrast with the volume case,
the force here is found to depend on the gradient of the curvature at the charge location. Namely,
due to the first additional singular term in the potential, &), there appears a tangential force
on the charge which tries to move it toward the point of the stationary mean curvature of the
boundary, and which diverges in the regularization limit. If confirmed, this divergence would
mean that either the approximation of theint surface charges does not completely describe real
microscopic, but finite size fluxons, or, strangely enough, that the fluxons cannot reside at arbitrary
points of a curved boundary, or perhaps even something else.

A detailed study of fluxon interactions will be carried out in a separate publication. However,
it is clear that it will necessarily use the results of this paper, in view of the relation

lﬂ(r,ﬂ):fsds@) w(é) Y(r—8&),

where (r,u) is the potential created by the surface charge densif), £ S, and ¢(r) is the
potential from Eq(20). For small, yet finite size fluxons the divergent asymptotics derived above
will have an explicit short scale cutoff defined by the spatial extent of the deipségumably, the
London length. However, the detailed analysis will require a deeper insight in the real structure of
magnetic vortex lines near a boundary. Without such an analysis one cannot, in fact, speculate
about the strength and importance of these surface interactions; we will thus limit ourselves to just
a few short comments.
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First, one compares, naturally, the surface force coming from the logarithmic term in the field
potential to the strength of the random pinning force that defines the fluxon’s posihom latter
depends on the flux tube length and the former does not. So, allowing for a physical regularization
of the mathematically divergent surface effects, one will in any case come up with some charac-
teristic lengthL, below which the surface force will dominate. The description of the vortex line
dynamics that does not account for surface effects at distances from the surface smalleisthan
necessarily incomplete.

Second, forces between two vortices in a superconducting bulk are exponentially small if the
vortex line separation is larger than the London lengttecisely the regime we are discussing
These forces can be neglected. Thus, the surface effects we have found will be the leading
interaction terms. Such effects are significant and translate into an experimentally relevant mag-
netic “friction” between superconducting bodi&%.
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