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Potential and field singularity at a surface point charge
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The behavior of the magnetic potential near a point charge~fluxon! located at a
curved regular boundary surface is shown to be essentially different from that of a
volume point charge. In addition to the usual inverse distance singularity, two
singular terms are generally present. The first of them, a logarithmic one, is axially
symmetric with respect to the boundary normal at the charge location, and propor-
tional to the sum of the two principal curvatures of the boundary surface at this
point, that is, to the local mean curvature. The second term is asymmetric and
proportional to the difference of the two principal curvatures in question; it is also
bounded at the charge location. Both terms vanish, apparently, if the charge is at a
planar point of the boundary, and only in this case. The field in the charge vicinity
behaves accordingly, featuring generally two singular terms proportional to the
inverse distance, in addition to the main inverse distance squared singularity. This
result is significant, in particular, for studying the interaction of magnetic vortices
in type II superconductors. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1605497#

Magnetic vortex lines are formed in type II superconductors.1 When crossing the supercon
ductor boundary, they create strongly localized surface sources of magnetic field~fluxons!, which
may play an important role in various physical situations. For instance, two space tests o
stein’s General Relativity, Gravity Probe B,2,3 and STEP~Space Test of the Equivalenc
Principle!,4 are based on low temperature technology with type II superconductors, and their
is significantly affected by fluxons.

The size of a surface magnetic spot is about the microscopic London length,1 i.e., it is
typically much smaller than characteristic macroscopic sizes involved. Thus thepoint charge
approximation appears naturally and proves to be sufficient for many applications. Within
approximation, the magnetic potential,c5c(R), satisfies the Neumann boundary value probl

Dc50, RPD, ~1!

]c

]n U
S

5(
j 51

N

n jF0dS~R2Rj !, R, RjPS . ~2!

Here the domainD is the empty space, surfaceS is the superconductor boundary,F05h/2e is the
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magnetic flux quantum in SI units, and the magnetic field isB52¹c. Moreover,dS(R2Rj )
denotes the surface delta-function at the position,Rj , of a vortex, andn j is either plus or minus
one, depending on whether the field line enters the domainD (n j511), or exits it (n j521). We
assume that the boundaryS is smooth enough~at leastC3) near every charge. Outside the char
vicinities it may have any singularities compatible with the finite local energy condition, mea
(¹c)2 is locally integrable.

If D is bounded, then each vortex line starts and ends at the boundary, the number of c
is even, and the total charge vanishes,( j 51

N n j F050, which condition is the solvability criterion
of the problem, Eqs.~1! and~2!. If the domainD is infinite, some field lines may end at infinity
and this condition may not hold; in any case, we do not use it in the following analysis, wh
entirely local.

An immediate question regarding the above boundary value problem is how does its so
behave near a surface charge? For a curved boundary, an answer based on the similarity
volume point charge turns out incorrect. This is seen from the simplest example, a sph
domain. A closed-form exact solution to Eqs.~1! and~2! in the exterior of a sphere was obtaine
in Ref. 5. It shows that a new logarithmic singular term, inversely proportional to the radius o
sphere, is added to the main inverse distance singularity in the expansion of the potential n
charge. So, what happens with the singularity for a generally curved smooth surface?

Our search for the answer to this natural and, in fact, classical question covered boo
papers in both mathematical physics and in the field of vortices in superconductors, as w
communications with colleagues in both fields. We also talked with high energy theorists e
ing to find perhaps some relevant results in view of the discussions of the magnetic mon
However, no ready answer was found, which might not be so surprising. Indeed, the Neu
boundary value problem with surface charges is not relevant to the design of electrostatic sy
On the other hand, its magnetostatic implementation became available only with the wide
technical use of superconductors in the recent years. Last but not least, the answer proves t
that simple.

In this paper we fill the gap by deriving a complete singular part of the expansion o
solution to Eqs.~1! and~2! near a charge at an arbitrary curved smooth boundary. As compar
the case of a sphere, one more singular term, proportional to the difference of the two pri
curvatures, appears in the general case.

We are interested in the behavior of the potential near a single surface charge at someRj . For
brevity, we thus drop the charge index in the following calculation. We put the origin
Cartesian coordinate system atRj , so thatr[R2Rj . We point thez axis along the outward
normal to the surfaceS ~that is, into the superconducting bulk!, choosing thex andy axes in the
tangent plane, so that the unit vectors$x̂,ŷ,ẑ% form a right orthogonal triplet. Along with Cartesia
$x, y, z%, we will use the corresponding spherical,$r , u, f%, and cylindrical,$r, f, z%, coordinate
systems~see Fig. 1!.

The shape of the smooth boundary surface in the vicinity of the charge can be described
equationz5F(x,y). The Taylor expansion of the functionF(x,y) aroundx5y50 apparently has
no terms linear inx or y, sincez is oriented along the normal. Moreover, by an appropri
rotation of the coordinate axesx̂,ŷ in the tangent plane, we can ensure that the second c
derivative ofF vanishes at the origin, hence the expansion acquires the form

z5F~x,y!5
k(x)

2
x21

k(y)

2
y21O~r3![ f ~x,y!1O~r3! , ~3!

where

k(x)5
]2F

]x2 U
x5y50

, k(y)5
]2F

]y2U
x5y50

~4!

are the two principal curvatures of the boundary surface at the charge location.
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Since, nearr50,

dS~r !5d~x!d~y!/J,

]/]n5n̂•¹5~1/J!~]/]z2Fx ]/]x2Fy ]/]y! ,

J[A11Fx
21Fy

2 ,

the boundary condition, Eq.~2!, in the vicinity of the charge can be written in terms of variab
x,y,z as6

]c

]z U
z5F(x,y)

5nF0d~x!d~y!1S Fx

]c

]x
1Fy

]c

]y D U
z5F(x,y)

. ~5!

The partial derivatives of the functionF(x,y) near the origin are given, to the order we a
interested in, by

Fx5k(x)x1O~r2!, Fy5k(y)y1O~r2!. ~6!

Once again, we only care about the vicinity of the charge wherez5F(x,y) is small, so we can
use perturbation of the boundary to move the boundary condition, Eq.~5!, to the planez50. This
is done by means of the following Taylor expansion of an arbitrary functionw5w(x,y,z):

wuz5F(x,y)5wuz501F
]w

]z U
z50

1
F2

2

]2w

]z2U
z50

1¯ .

Applying this to the derivatives ofc in Eq. ~5! we write it, to the proper order, in the form:

]c

]z U
z50

5nF0d~x!d~y!1S Fx

]c

]x
1Fy

]c

]y
2F

]2c

]z2 D U
z50

1¯ . ~7!

The final step of this derivation is to expandc in a series of successively smaller~that is, less
singular at the origin! functionsc ( i ),

c5c (0)1c (1)1c (2)1¯ . ~8!

FIG. 1. Definition of coordinate systems near a charge.
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Introducing this expansion in the boundary condition Eq.~7! and then matching the terms of th
same order, we end up with the following sequence of boundary conditions forc ( i ),
i 50,1,2,. . . , atz50:

]c (0)

]z U
z50

5nF0d~x!d~y!, ~9!

]c (1)

]z U
z50

5Fk(x)x
]c (0)

]x
1k(y)y

]c (0)

]y
2 f ~x,y!

]2c (0)

]z2 GU
z50

, ~10!

and so on. Here we have dropped higher order terms on the right-hand sides by replacingF and
Fx , Fy with their main term expressions from Eqs.~3! and ~6!, respectively. Of course, al
functionsc ( i ) are subject to the Laplace equation, Eq.~1!.

Thus,locally we have successfully replaced the boundary value problem of Eqs.~1! and~2! in
the domainD by a sequence of problems for functionsc ( i ), i 50,1,2,. . . , harmonic in the
half-spacez,0 and satisfying the above boundary conditions, Eqs.~9!, ~10!, etc. We now need to
solve these problems for the half-space one by one, until the normal derivative of the so
becomes finite at the boundary.

The zero-order solutionc (0) obeying the boundary condition of Eq.~9! is, of course,

c (0)5
nF0

2p

1

r
. ~11!

It allows one to immediately calculate the right-hand side of Eq~10!. Indeed,

f
]2c (0)

]z2 U
z50

52
nF0f

2p S 1

r 3 2
3z2

r 5 D U
z50

52
nF0

2p

k(x)x21k(y)y2

2r3 ,

where the second term in the middle expression turns to zero atz50, contributing nod-like
singularities, due to the presence of the factorf 5O(r2). Also taking into account that]r 21/]x
52x/r 3, ]r 21/]y52y/r 3, we find the boundary condition forc (1) in its final explicit form:

]c (1)

]z U
z50

52
nF0

2p

k(x)x21k(y)y2

2r3 52
nF0

8p Fk(x)1k(y)

r
1

k(x)2k(y)

r
cos 2fG . ~12!

The two terms on the utmost right here have essentially different singularities at the origin
this reason, we treat them separately by splitting the problem in two in the following way:

c (1)5cs
(1)1c r

(1) , ~13!

]cs
(1)

]z
U

z50

52
nF0

8p

k(x)1k(y)

r
, ~14!

]c r
(1)

]z
U

z50

52
nF0

8p

k(x)2k(y)

r
cos 2f. ~15!

The Neumann problem forcs
(1) in the half-space does not have solutions bounded at infin

as one would expect in our investigation~we are actually looking for termsgrowingaway from the
charge, because a weaker singularity next to the inverse distance is most probably some lo
tending to infinity at both the charge and the infinite distance from it!. For this reason, no solution
can be found by means of standard techniques. However, a harmonic and regular in the ha
z,0 function
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cs
(1)5K1 ln@~r 2z!/d#5K1@ ln~r /d!1 ln~12cosu!#, ~16!

K6[nF0@k(x)6k(y)#/8p, ~17!

where d.0 is an arbitrary constant of the dimension of length, provides the needed sol
Indeed, it satisfies the boundary condition, Eq.~14!, in view of

] ln~r 2z!/]z5~r 2z!21~z/r 21!521/r→21/r, z→20.

The solution given by Eq.~16! is unique in the class of functions with the logarithmic growth
infinity, namely, those with the asymptotics

cs
(1)5K1 ln~r /d!1K1 ln~12cosu!1o~1!,

]cs
(1)

]r
5K1 /r 1O~1/r 2!, r→`.

Contrary to the previous one, the Neumann problem forc r
(1) ,

Dc r
(1)50, z,0,

]c r
(1)

]z
U

z50

52
K2

r
cos 2f, ~18!

has a unique, up to a constant, solution bounded at infinity@namely, a solution that obeys som
what unusual conditionsc r

(1)5O(1), ]c r
(1)/]r 5o(1/r 2), r→`]. The solution is obtained by the

standard separation of variables in cylindrical coordinates using the Hankel transform,
reads:

c r
(1)52K2 cos 2f E

0

`

J2~lr!exp~2luzu!
dl

l

52
K2 cos 2f

2 S r

r 2zD
2

52
K2

2

x22y2

~r 2z!2. ~19!

The value of the integral is found in Ref. 7, 4.14.~5!, and the constantK2 is defined in Eq.~17!.
Interestingly, this solution in spherical coordinates does not depend on the radius, being a fu
of the angles only@singular on the positive semiaxisz.0, same ascs

(1) in Eq. ~16!#:

c r
(1)52

K2

2

sin2 u cos 2f

~12cosu!2 ,
]c r

(1)

]r
50.

It is now straightforward to see that the Neumann boundary data for all higher order co
tions to the potential, starting withc (2), are finite at the origin~and dropping fast enough a
infinity!; accordingly, the solutions of the corresponding problems bounded at infinity are u
up to an additive constant. It also means that all the terms in the expansion, Eq.~8!, of the
potential, whose normal derivative are singular at the location of a surface charge, are given
solutions already found. Hence, combining the expressions from Eqs.~11!, ~16!, and~19!, we find
the desired formula for the magnetostatic potential near a surface charge (r→0):

c5c (0)1cs
(1)1c r

(1)1¯

5
nF0

2p F1

r
1

k(x)1k(y)

4
ln

r 2z

d
2

k(x)2k(y)

8

x22y2

~r 2z!2G1~nonsingular terms!. ~20!

It is easy to rewrite this in our general notations from Eqs.~1! and ~2! by replacingur u with
uR2Rj u, x with X2Xj , etc. Instead, we give the expression of the singular part of the mag
field near the charge. It can be written in the form:
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B52¹c5
nF0

2p F r̂

r 2 2
k(x)1k(y)

4r S r̂ 1
sinu

12cosu
û D2

k(x)2k(y)

4r

sinu

~12cosu!2 ~cos 2f û

1sin 2f f̂!G1~nonsingular terms!. ~21!

Here are a few concluding remarks regarding the obtained result.
First, notice that the leading order contribution to the potential, Eq.~11!, is twice that of the

point charge located in a volume away from its boundaries. This is clearly explained by th
that the field lines and the flux from the surface charge emanate only into the half-space, ver
full space for the volume charge.

The two singular corrections to the usual inverse distance singularity of the potential, Eq~20!,
are very different. The first one is logarithmic, axially symmetric about the direction of the no
to the boundary at the charge location, and proportional to the sum of two principal su
curvatures there, i.e., to the mean boundary curvature. Thus, it vanishes if the charge s
symmetric saddle point of the boundary. The second additional singularity is asymmetric, p
tional to the difference of the principal curvatures, and vanishes thus when the latter are equ
when the charge is at a spherical point of the boundary. This second term is bounded at the
location@giving unbounded field components, see Eq.~21!#, but is not uniquely defined there, wit
the limiting values depending on the direction along which the limit is taken. Note that
corrections vanish simultaneously if and only if the charge is at the planar point of the boun

In a particular case when the domainD is the exterior of a sphere of the radiusa, one has
k(x)5k(y)51/a. If there is just one surface charge,N5 j 51 andn51 ~so that the incoming vortex
line ends at infinity!, Eq. ~20! becomes

c5
F0

2p F 1

uR2R1u
1

1

2a
ln

uR2R1u2n̂"~R2R1!

d G1~nonconstant nonsingular terms!, ~22!

in complete agreement with the exact solution obtained in Ref. 5 withd52a.
Finally, the obtained singular expansion of the potential can be used in the derivation

force acting on a charge in a fashion similar to the one developed in the case of volume
charges,8 i.e., by means of the geometrical regularization of energy and, henceforth, the for
the energy gradient in the charge location. However, in a striking contrast with the volume
the force here is found to depend on the gradient of the curvature at the charge location. N
due to the first additional singular term in the potential, Eq.~20!, there appears a tangential forc
on the charge which tries to move it toward the point of the stationary mean curvature o
boundary, and which diverges in the regularization limit. If confirmed, this divergence w
mean that either the approximation of thepoint surface charges does not completely describe
microscopic, but finite size fluxons, or, strangely enough, that the fluxons cannot reside at ar
points of a curved boundary, or perhaps even something else.

A detailed study of fluxon interactions will be carried out in a separate publication. How
it is clear that it will necessarily use the results of this paper, in view of the relation

c~r ,m!5E
S
dS~j! m~j! c~r2j! ,

wherec(r ,m) is the potential created by the surface charge densitym~j!, jPS, andc~r ! is the
potential from Eq.~20!. For small, yet finite size fluxons the divergent asymptotics derived ab
will have an explicit short scale cutoff defined by the spatial extent of the density~presumably, the
London length!. However, the detailed analysis will require a deeper insight in the real structu
magnetic vortex lines near a boundary. Without such an analysis one cannot, in fact, sp
about the strength and importance of these surface interactions; we will thus limit ourselves
a few short comments.
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First, one compares, naturally, the surface force coming from the logarithmic term in the
potential to the strength of the random pinning force that defines the fluxon’s position.9 The latter
depends on the flux tube length and the former does not. So, allowing for a physical regular
of the mathematically divergent surface effects, one will in any case come up with some c
teristic length,L, below which the surface force will dominate. The description of the vortex
dynamics that does not account for surface effects at distances from the surface smaller thL is
necessarily incomplete.

Second, forces between two vortices in a superconducting bulk are exponentially smal
vortex line separation is larger than the London length~precisely the regime we are discussing!.
These forces can be neglected. Thus, the surface effects we have found will be the l
interaction terms. Such effects are significant and translate into an experimentally relevan
netic ‘‘friction’’ between superconducting bodies.10

We thank Leonid Bakaleinikov, David Gross, Lev Kapitanski, Akakii Melikidze, And
Ruckenstein, Andrey Shytov, and Robert Wagoner for discussions and valuable reference
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