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Abstract: It is shown that biological networks with serial regulation (each node regulated by at most one other
node) are constrained to direct functionality, in which the sign of the effect of an environmental input on a target
species depends only on the direct path from the input to the target, even when there is a feedback loop allowing
for multiple interaction pathways. Using a stochastic model for a set of small transcriptional regulatory networks
that have been studied experimentally, it is further found that all networks can achieve all functions permitted by
this constraint under reasonable settings of biochemical parameters. This underscores the functional versatility of
the networks.
1 Introduction
A driving question in systems biology in recent years has been
the extent to which the topology of a biological network
determines or constrains its function. Early works have
suggested that the function follows the topology [1–4], and
this continues as a prevailing view even though later
analyses (at least in a small corner of biology) have
questioned the paradigm [5, 6]. It remains unknown if a
small biochemical or regulatory network can perform
multiple functions, and whether the function set is limited
by the network’s topological structure. To this extent, in
this paper, we develop a mathematical description of the
functionality of a certain type of biological networks and
show that the answer to both questions is ‘yes’: the
networks can perform many, but not all possible functions,
and the set of attainable functions is constrained by the
topology. We illustrate these results in the context of an
experimentally realised system [1].

Following [1] and our earlier work [6], we focus on the
steady-state functionality of transcriptional regulatory
networks. In this case, the input is the ‘chemical
Syst. Biol., 2008, Vol. 2, No. 5, pp. 313–322
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environment,’ that is a binary vector of presence/absence of
small molecules that affect the regulation abilities of the
transcription factors; and the output is the steady-state
expression of a particular gene, hereafter called the reporter.
Different functions of the network correspond then to
different ways to map the small molecule concentrations
into the reporter expression.

In our setup, the effect of introducing a small molecule Sj

specific to a transcription factor Xj is to modify the affinity of
Xj to its binding site. Equivalently, one can think of Sj as
modulating or renormalising the transcription factor
concentration Xj by some factor sj, making the effective
concentration xj ¼ xj(Xj , sj). A simple example of such a
modulation function is

xj(Xj , sj) ;
Xj

sj

(1)

in which the presence of the small molecule reduces the
effective concentration of the transcription factor by the
factor sj.
313
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The function of the circuit will depend on how the steady-
state expression G� of the reporter gene G changes as the
modulation factor sj is varied from some ‘off ’ value s�j to
some ‘on’ value sþj

DG�

Dsj

¼
G�(sþj )� G�(s�j )

Dsj

¼
1

Dsj

ðsþj

s�
j

dG�

dsj

dsj (2)

where Dsj ¼ sþj � s�j . For example, if xj ¼ Xj=sj , then
s�j ¼ 1, indicating that the small molecule is absent, and
sþj . 1 is the factor by which effective concentration is
reduced when the small molecule is present.

If the sign of dG�=dsj does not change for sj [ [s�j , sþj ],
then the sign of DG� is fixed. For networks with only serial
regulation, that is, each gene is regulated by at most one
other gene, we will show that the sign of dG�=dsj is unique
and in accord with the direct path from Sj to G, a property
we term direct functionality. This constrains the possible
responses and hence the functionality of serial networks.
Importantly, we will then show that all admissible
functions indeed can be attained by all the networks we
studied operating at different parameter values. Although
throughout this work we focus on the setup pioneered
experimentally by Guet et al. [1], we also show that the
constraint to direct functionality holds for any network
with serial regulation.

2 Direct functionality in small
networks
As in Guet et al. [1], we consider networks with N ¼ 4
genes (three transcription factors plus a reporter G), in
which each gene is regulated by exactly one other gene.
This admits three topologies and a total of 24 networks, as
described in Fig. 1. All three topologies consist of a cycle
and a cascade that begins in the cycle and ends at the
reporter gene G. Once outside the cycle, there is only one
path to G, so it suffices to study a topology consisting of an
n-gene cycle with a gene G immediately outside (Fig. 1c is
an example with n ¼ 3), and extensions to topologies
where the cycle is connected to the reporter by a linear
cascade are trivial.

In this section, we will perform the steady-state analysis of
such single-cycle networks to lay the groundwork for
understanding the effect of topology on allowed functionality.

The process of protein expression has been modelled with
remarkable success by combining transcription and
translation into one step and directly coupling genes by a
deterministic dynamics [7–9]. Accordingly, we model
mean expressions �X i with the system of ordinary
differential equations [we later distinguish between entire
probability distributions P(Xi) and the means of these
4
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distributions �X i; cf. appendix]

d �X 1

dt
¼ ã1(x̄n)� r1X̄ 1 (3)

d �X i

dt
¼ ã i(x̄ i�1)� riX̄ i (2 � i � n) (4)

d �G

dt
¼ ãnþ1(x̄n)� rnþ1Ḡ (5)

where ã i are the creation rates for the species Xi (and
Xnþ1 ; G), each monotonically regulated by the effective
concentration x̄pi

of its parent pi and the ri are the decay
rates. Note that we have set

p1 ¼ n (6)

pi ¼ i � 1 (2 � i � nþ 1) (7)

to create the n-gene cycle with one gene immediately outside.
The regulation functions ã i will be up- or down-regulating
according to the network topology. A common example is
the familiar Hill functions

~a( �x) ¼ a0 þ a
�x h

K h þ �xh
(up-regulating) (8)

~a( �x) ¼ a0 þ a
K h

K h þ �xh
(down-regulating) (9)

with basal and maximal expression levels a0 and a0 þ a,
respectively, Michaelis–Menten constants K and
cooperativities h. Although we use the functional forms in

Figure 1 Four-gene networks (three transcription factors Xi

plus one reporter gene G) in which each gene is regulated
by one other gene, as studied in [1, 6]

Transcription factor efficacies are influenced by small molecules Si.
Regulation functions ãi are assigned to the edges. The three edges
ã1, ã2 and ã3 can be up-regulating or down-regulating, giving
3 � 23 ¼ 24 possibilities; the reporter gene is repressed in all
cases
IET Syst. Biol., 2008, Vol. 2, No. 5, pp. 313–322
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(8) and (9), as well as the functional form for the modulation
function in (1), for our numerical experiment (cf. Section 3),
the analytic result derived in this section will be valid for any
monotonic functions ã(x̄) and any function x̄(X̄ , s).

Fixed points of the dynamical system in (3)–(5) satisfy

�X
�

1 ¼ a1(x̄�n) (10)

�X
�

i ¼ ai( �x�i�1) (2 � i � n) (11)

�G
�
¼ anþ1(x̄�n) (12)

where we define

ai ;
~ai

ri

(13)

We may now, as in [10, 11], use the chain rule to calculate
the derivative of �G

�
with respect to a particular input factor

sj. For illustration, we will do so first for the concrete
example in Fig. 1c, in which n ¼ 3. Let us consider the
derivative of �G

�
with respect to s1

d �G
�

ds1

¼
@a4

@ �X 3

@a3

@ �X 2

@a2

@s1

þ
@a2

@ �X 1

d �X
�

1

ds1

" #
(14)

where all derivatives are evaluated at the fixed point, and it is
understood that ai depends on either �Xpi

or spi
through x̄pi

,
that is, that

@ai

@ �Xpi

¼
@ai

@x̄pi

@x̄pi

@ �Xpi

and
@ai

@spi

¼
@ai

@x̄pi

@x̄pi

@spi

(15)

If we introduce the notation

a0i ;
@ai

@ �Xpi

(16)

ȧ i ;
@ai

@spi

(17)

then (14) becomes

d �G
�

ds1

¼ a04a
0
3 _a2 þ a02

d �X
�

1

ds1

" #
(18)

The first term reflects the direct chain to G from S1, and the
second term incorporates further contributions around the
cycle and will need to be evaluated self-consistently.

For a cycle of arbitrary length n and for an arbitrary input
factor sj (1 � j � n), (18) generalises to

d �G
�

dsj

¼ _ajþ1 þ a0jþ1

d �X
�

j

dsj

" # Ynþ1

k¼jþ2

a0k (19)
ET Syst. Biol., 2008, Vol. 2, No. 5, pp. 313–322
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where we use the convention that

Yb

k¼a

[ � ] ¼ 1 if a . b (20)

We may also use the chain rule for d �X
�

j =dsj

d �X
�

j

dsj

¼ _a( j mod n)þ1 þ a0( j mod n)þ1

d �X
�

j

dsj

" # Qn
k¼1 a

0
k

a0(j mod n)þ1

(21)

and now we may solve for d �X
�

j =dsj self-consistently

d �X
�

j

dsj

¼
_a( j mod n)þ1

a0( j mod n)þ1

Qn
k¼1 a

0
k

1�
Qn

l¼1 a
0
l

(22)

For the special case of j ¼ n, where ( j mod n)þ 1 ¼ 1,
substituting (22) into (19) obtains

d �G
�

dsn

¼
1

1�
Qn

l¼1 a
0
l

� �
_anþ1 þ ( _a1a

0
nþ1 � _anþ1a

0
1)
Yn

k¼2

a0k

" #

(23)

¼
1

1�
Qn

l¼1 a
0
l

� �
_anþ1 (24)

where the second step follows from

_a1a
0
nþ1 ¼

da1

d �xn

@ �xn

@sn

� �
danþ1

d �xn

@ �xn

@ �X n

� �
(25)

¼
da1

dx̄n

@x̄n

@X n

� �
danþ1

dx̄n

@x̄n

@sn

� �
(26)

¼ a01 _anþ1 (27)

in which the first step recalls (15). For 1 � j � n� 1, where
( j mod n)þ 1 ¼ j þ 1, substituting (22) into (19) obtains

d �G
�

dsj

¼
1

1�
Qn

l¼1 a
0
l

� �
_ajþ1

Ynþ1

k¼jþ2

a0k (28)

which, upon inspection of (24), is valid for j ¼ n as well.

Stability of the fixed point �X
�

j requires that the Jacobian of
(3) and (4)

J ¼

�r1 ~a01
~a02 �r2

~a03 �r3

. .
. . .

.

~a0n�1 �rn�1

~a0n �rn

2
66666664

3
77777775

(29)

be negative definite or, since the determinant is the product
315
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of the eigenvalues, that

0 , (�1)n det ( J ) (30)

¼
Yn

k¼1

rk �
Yn

l¼1

ã 0l (31)

¼
Yn

k¼1

rk 1�
Yn

l¼1

a0l

 !
(32)

Since the decay rates rk are positive, (32) states that the term
inside the brackets in (28) is positive for stable fixed points.

For the networks in Fig. 1, where in the one- and two-
cycles, the reporter is attached by means of intermediates,
the analogue of (28) is calculated similarly to be

d �G
�

dsj

¼
1

1� u(n� j)
Qn

l¼1 a
0
l

� �
_ajþ1

YN
k¼jþ2

a0k (33)

where N ¼ 4 is the number of genes, 1 � j � N � 1 for each
of the three possible small molecule inputs and n is the length
of the cycle (1 � n � N � 1). Here, u is the Heaviside
function, for which we use the convention u(0) ¼ 1. Its
presence reduces the bracketed term to 1 when the input Sj

is outside the cycle, leaving only the contribution
corresponding to the cascade from Sj to G, as must be the
case.

In (33), the term outside the brackets represents the direct
(i.e. the shortest) path from Sj to G and fixes the sign of
d �G
�
=dsj (since the term inside the brackets is positive at a

stable fixed point). If the creation rates are monotonic
(which is the usual model for transcriptional regulation, but
may be violated in protein signalling due to competitive
inhibition and other effects), this sign is unique and fixes
the sign of D �G

�
=Dsj via (2). Importantly, this shows that

the feedback in each of the topologies in Fig. 1 is irrelevant

in determining the sign of D �G
�
=Dsj for a steady-state

analysis. As an example, for the network in Fig. 2a (inset),
�G
�

changes with increasing s1 according to _a2a
0
3a
0
4, which,

since S1 inhibits the activation, is negative � positive �
negative ¼ positive, just as one would expect if the
feedback was ignored.

2.1 Direct functionality corresponds to
specific orderings of output states

Consider the case in which there are only two small molecule
inputs, S1 and S2, as in Fig. 2a (inset). Since each input can
be absent or present, S1, S2 [ {� , þ }, there are four
chemical input states c ¼ S1S2 [ {��, �þ, þ�, þþ}.
Direct functionality admits only two orderings of the four
output states �G

�

c , and hence the functionality of the
network is severely limited by its serial topology. To see
6
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this, note that for Fig. 2a (inset) we have

D �G
�
=Ds1 � 0) �G

�

þ� �
�G
�

�� and �G
�

þþ �
�G
�

�þ (34)

D �G
�
=Ds2 � 0) �G

�

�þ �
�G
�

�� and �G
�

þþ �
�G
�

þ� (35)

These conditions permit only the following output orderings,
irrespective of biochemical parameters

�G
�

�� �
�G
�

�þ �
�G
�

þ� �
�G
�

þþ or

�G
�

�� �
�G
�

þ� �
�G
�

�þ �
�G
�

þþ

(36)

These two orderings nevertheless allow the realisation of a
significant subset of all possible logical functions that one
can build with two binary inputs, depending on the
distinguishability of the four output states, as described in
the next section. Quantifying the distinguishability
demands careful treatment of the noise with a stochastic
equivalent of our deterministic dynamical system, as
described in the appendix.

3 Numerical results
We numerically solved the system in (3)–(5) [with stochastic
effects given by (61)] with many parameter settings for all 24
networks represented in Fig. 1. In addition to verifying the
restriction to direct functionality, we find that all networks
can achieve all possible direct functions, suggesting that the
networks are still quite versatile within the functional
constraint.

For all networks, we consider the case of two small
molecule inputs S1 and S2, as in the experimental setup of
Guet et al. [1], and as shown for an example network in
Fig. 2a (inset). We take sj to be a multiplicative factor by
which the transcription factor concentration �X j is
effectively scaled, that is

x̄ j(X̄ j , sj) ;
X̄ j

sj

(37)

Then, s�j ; 1 for the ‘off ’ settings and sþj . 1 are the free
parameters for the ‘on’ settings.

We model the regulation using the familiar Hill form
(which is monotonic and thus satisfies the direct
functionality conditions)

~a( �x) ¼ a0 þ a
�xh

K h þ �xh
(up-regulating) (38)

~a( �x) ¼ a0 þ a
K h

K h þ �xh
(down-regulating) (39)

with basal and maximal expression levels a0 and a0 þ a,
respectively, Michaelis–Menten constants K and
IET Syst. Biol., 2008, Vol. 2, No. 5, pp. 313–322
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Figure 2 Direct functionality in a representative network with serial regulation [network shown in the inset in (a)]

a Histogram of logical functions, as defined by the ranking of the output distributions P (G�jc) (cf. Section 3)
Binary logic names are included after rankings when applicable, with ‘A’ and ‘B’ corresponding to inputs S1 and S2, respectively. Direct
functions are labelled in black and indirect functions in grey. Note that only direct functions are observed, and that all direct functions
can be attained by the network
b An example of each direct function
Two distributions are considered indistinguishable in rank when their means are separated by less than the smaller of their standard
deviations. For example, in (ix), the distributions for the first and second states (22 and 2 þ , respectively) are indistinguishable, so
they are tied in rank at 1.5 (the average of ranks 1 and 2). Note that all functions satisfy the ordering constraints in (36)
Syst. Biol., 2008, Vol. 2, No. 5, pp. 313–322 317
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cooperativities h. For the four-gene networks in Fig. 1, with
only two small molecule inputs S1 and S2, this gives 22
parameters in total (cf. Table 1).

For a given parameter set, we numerically solve (3)–(5)
(using MATLAB’s ode15s) for each input state
c [ {��, �þ, þ�, þþ} to find mean steady-state
concentrations �G

�

c . We then solve (61) to find fluctuations
around these means, giving probability distributions P(G�jc)
(cf. appendix). The function is defined by the ranking of the
conditional distributions P(G�jc). That is, if two distributions
are distinguishable, then the one with the larger mean is
ranked higher. We consider two distributions to be
indistinguishable when their means are separated by less than
the smaller of their standard deviations (alternative definitions
do not change our results qualitatively), in which case they
both take on the average of their two ranks. When there are
only two distinguishable output states, this rank-based
classification reduces to that defining the familiar binary
logical functions AND, OR, XOR and so on [see, e.g.
Fig. 2b, (ii–v)]. More generally, for one, two, three and four
distinguishable responses, there are 75 total rankings (as listed
on the horizontal axis of Fig. 2a). However, only 12 of these
satisfy the ordering constraints for each network analogous to
those in (36) and therefore correspond to direct functions (for
the network in Fig. 2a these 12 are shown in black on the
horizontal axis).

We ran 50 000 trials for each of the 24 networks, in which
the parameters were randomly selected (using a distribution
uniform in log-space) from the ranges in Table 1. We
found the steady-state reporter expression distributions
P(G�jc) and classified the responses by ranking. All 24
networks displayed only direct functions. However, every
network was able to achieve all 12 of its direct functions
with parameters selected via Table 1, meaning that the
networks fully realised all the functionality allowed by the
constraint. This suggests that the networks studied are both
constrained and versatile, and that a cell may still use a
serial network to perform multiple logical functions by

Table 1 Parameters and ranges from which each is
randomly drawn, with 1 � i � 4 for the four genes, and
1 � j � 2 for the two small molecule inputs

Parameters Range

decay rates, ri 1024 –1023

Michaelis–Menten constants, Ki 100 –103

basal expression levels, a0,i 1023 –1022

expression level ranges, ai 100 –102

cooperativities, hi 100 –101

‘on’ input factors, sj
þ 102 –103

Ranges are representative of typical cell conditions [7, 12].
8
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varying biochemical parameters, despite the restriction to
direct functionality. Fig. 2 shows a histogram of functions
and an example of each type of direct function for a
representative network.

We note that Guet et al. experimentally observed both
direct and indirect functions [1]. However, they explicitly
call the indirect functions into question, citing several
possible unanticipated effects including RNA polymerase
read-through. We have not incorporated such effects into
the current model.

4 Multiple fixed points
For the 12 networks in which the overall sign of the feedback
cycle is positive, there are parameter settings that support
multiple stable fixed points. In this section, we evaluate the
extent to which the presence of multiple fixed points affects
the constraint to direct functionality, and we find that
violation of the constraint is possible but unlikely.

Although the function of a network has been defined in
terms of P(G�jc), the linear noise approximation (cf.
appendix) only gives us access to P(G�jc, �X

�

m), the
distribution expanded around a particular fixed point �X

�

m.
The two are related by a weighted sum

P(G�jc) ¼
X

m

pmP(G�jc, �X
�

m) (40)

where the probabilities pm of being near the mth fixed point
will depend on the basins of attraction and curvatures near
the fixed points. Numerical solution for P(G�jc) directly is
possible in principle, although computationally difficult.
Whether the statistical steady state distribution is calculated
numerically or is approximated as in this paper, if we
continue to define the function of the network by the
ranking of the means of the P(G�jc), we have

d �G
�

dsj

¼
d

dsj

ð
dG�G�P(G�jc) (41)

¼
X

m

d

dsj

pm

ð
dG�G�P(G�jc, �X

�

m) (42)

¼
X

m

pm

d �G
�

m

dsj

þ
dpm

dsj

�G
�

m

 !
(43)

The expressions for the individual d �G
�

m=dsj are given by (33),
so the first term in (43) exhibits direct functionality. If the
weights pm do not depend appreciably on the sj, the
second term will be small, and the restriction to direct
functionality will be maintained. If, on the other hand, the
weights do change appreciably (an obvious case might be
the presence of a bifurcation at a particular value of sj),
then the second term may overpower the first enough to
change the sign of D �G

�
=Ds and violate the restriction to

direct functionality.
IET Syst. Biol., 2008, Vol. 2, No. 5, pp. 313–322
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We investigate this effect in two ways. First, we show
analytically that, in the case of a one-cycle, crossing a
bifurcation does not violate direct functionality. Second, we
subject all positive-feedback networks to a numerical test to
estimate the dependence of the weights pm on the sj. The
results of both techniques suggest that the likelihood of a
violation of direct functionality due to the presence of
multiple fixed points is low.

4.1 Bifurcations do not violate direct
functionality (1D)

Consider the case of a positive one-cycle with a gene G
immediately outside, as shown in Fig. 3a (inset). For
n ¼ 1, (10)–(12) become

�X
�
¼ a1(x̄�) (44)

�G
�
¼ a2(x̄�) (45)

where unnecessary subscripts are dropped and x̄ ¼ X̄=s as in
(37). With a1 of the form in (38), there are at most two stable
fixed points �X

�

1 and �X
�

2, with �X
�

1 , �X
�

2, as illustrated by an
example in Fig. 3a. As shown in Fig. 3b, bifurcations occur at
s1 and s2 such that only �X

�

2 exists when s , s1, only �X
�

1 exists
when s . s2, and �X

�

1 and �X
�

2 are found with (unknown)
probabilities ~p1(s) and ~p2(s) ¼ 1� ~p1(s), respectively, when
s1 , s , s2. These statements can be combined such that

p1(s) ¼ u(s � s1)u(s2 � s) ~p1(s)þ u(s � s2) (46)

and p2(s) ¼ 1� p1(s) define the probabilities of approaching
�X
�

1 and �X
�

2, respectively, for any s. Here, u is the Heaviside
function. As we go from an ‘off ’ value s2 to an ‘on’ value sþ,
let us assume that we hit both bifurcations, such that
s� , s1 , s2 , sþ. To test for direct functionality, we
investigate the sign of

D �G
�

Ds
¼

1

Ds

ðsþ

s�

X
m

pm

d �G
�

m

ds
ds þ

1

Ds

ðsþ

s�

X
m

dpm

ds
�G
�

m ds (47)

; T1 þ T2 (48)

obtained using (2) and (43). The first term T1 depends on

d �G
�

m

ds
¼

_a2

1� a01
(49)

[from (28); a0 ; @a=@ �X and ȧ ; @a=@s as before, both
evaluated at the mth fixed point], which, as previously
discussed, is always of the sign of _a2, consistent with direct
functionality.
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: 10.1049/iet-syb:20080097
The second term T2 can be written

T2 ¼
1

Ds

ðsþ

s�

dp1

ds
�G
�

1 þ
dp2

ds
�G
�

2

� �
ds (50)

¼
1

Ds

ðsþ

s�
�

dp1

ds
( �G
�

2 �
�G
�

1)ds (51)

and since

dp1

ds
¼ u(s2 � s) ~p1(s)d(s � s1)þ 1� u(s � s1) ~p1(s)

� �
d(s � s2)

þ u(s � s1)u(s2 � s)
d ~p1

ds
(52)

(where d is the Dirac delta function) we have

T2 ¼
1

Ds
� ~p1( �G

�

2 �
�G
�

1)
h i

s1
� ~p2( �G

�

2 �
�G
�

1)
h i

s2

(

�

ðs2

s1

d ~p1

ds
( �G
�

2 �
�G
�

1)ds

)
(53)

The first two terms in (53) represent the contributions from
crossing the bifurcations at s1 and s2, respectively. Using (45),
we may write them as

T2 ¼
1

Ds

X2

m¼1

p̃m �
Da2

Dx̄�

� �
Dx̄�

� �
sm

(

�

ðs2

s1

dp̃1

ds
( �G
�

2 �
�G
�

1)ds

)
(54)

where Da2 ¼ a2( �x�2)� a2( �x�1) and D �x� ¼ �x�2 � �x�1 ¼
( �X
�

2 �
�X
�

1)=s . 0. Since a2 is monotonic in �X , �Da2=Dx̄
�

at fixed s is of the same sign as �a02, which is of the same
sign as ȧ2 since s effectively reduces X [see (37)]. Therefore
the contributions to D �G

�
=Ds from crossing the bifurcations

do not violate direct functionality. A violation, at least in the
case of a one cycle, can only come from variations in the
probabilities p̃m within the region s1 , s , s2, as described
by the last term in (54). Next, we describe a numerical test
that suggests such violations are rare.

4.2 Numerics suggest violations from
multiple fixed points are rare

For each of the 12 positive-feedback networks, we numerically
found the steady state of the dynamical system with randomly
sampled parameters as before (cf. Section 3). However, now
for each parameter set, we solved the system many times with
randomly selected initial conditions. When multiple fixed
points were found, the fraction of trials approaching the mth
fixed point was used for the weight pm. This assumes that the
pm are determined only by the basins of attraction of each
fixed point and by the distribution of the initial conditions.
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Figure 3 Multiple fixed points in a one-cycle

a Solid: plot of regulation function a1 ¼ ã1/r (refer to inset network), as defined in (38) and (37), with parameters h ¼ 2, a0 ¼ 0.03,
a ¼ 10, K ¼ 2 and r ¼ 1
Dashed line shows a1 ¼ X̄ such that dotted lines indicate locations of stable fixed points X̄�1 and X̄�2 (take X̄�2 . X̄�1)
b Stable fixed points X�m (solid) and unstable fixed points (dashed) as a function of s, with a0/a ¼ 0.003 as in (a)
Dotted lines indicate locations of bifurcation points s1 and s2 such that only X̄�1 exists when s , s1, only X̄�1 exists when s . s2, and both X̄�1
and X̄�2 exist for s1 , s , s2
IET Syst. Biol., 2008, Vol. 2, No. 5, pp. 313–322
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However, different distributions of initial conditions do not give
qualitatively different results.

For each network, 2000 parameter sets were selected
(uniform randomly in log-space), at which the system was
solved 100 times with initial protein counts selected uniform
randomly from 0 to 1000 proteins per cell. Over all positive-
feedback networks, 37% of the parameter sets supported
multiple fixed points for at least one of the settings of S1 and
S2. However, only 0.46% of parameter sets produced
violations of direct functionality. Moreover, this number is
likely an overestimate, as no distinguishability criterion was
imposed as was done in the single-fixed point case (cf.
section 2). It is likely that this fraction would remain low if
the estimation of the pm was refined to incorporate the
curvatures of the fixed points, or if alternative distributions
were used for the sampling.

5 All networks with serial
regulation exhibit only direct
functionality
In this section, we extend our analytic constraint as derived in
the context of the system studied experimentally by Guet et al.
[1] to show that any network with only serial regulation – each
node having 0 or 1 parent – exhibits only direct functionality,
that is, any target node Xi changes with any input Sj according
to the direct path between them.

We first consider a connected directed graph in which every
node has in-degree 1, called a contrafunctional graph [13]. One
can show that a contrafunctional graph has exactly one cycle,
each of whose nodes is the root of a tree if the cycle edges are
ignored [13]. Now consider changing one node’s in-degree to
0, or equivalently, removing an edge. If the edge is in the
cycle, the graph remains connected and becomes a tree. If the
edge is not in the cycle, the graph is cut into two
components: a contrafunctional graph and a tree.

A tree exhibits only direct functionality since there is at
most one path from an input Sj to a gene Si, which is
therefore the direct path.

In a contrafunctional graph, we first consider the case
where the target node Xi is inside the cycle. Only inputs Sj

that are inside the cycle can affect Xi because the rest of the
graph consists of trees that all point away from the cycle.
Since we can start labelling nodes at any point in the cycle,
we may take i � j without loss of generality. Then, using
the chain rule

d �X
�

i

dsj

¼ _a( j mod n)þ1 þ a0( j mod n)þ1

d �X
�

j

dsj

" #

�

Qn
k¼1 a

0
kQj

l¼i a
0
(l mod n)þ1

(55)
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¼
1

1�
Qn

m¼1 a
0
m

� �
_a( j mod n)þ1

Qn
k¼1 a

0
kQj

l¼i a
0
(l mod n)þ1

(56)

where the second step follows from (22).

We next consider the case where the target node is outside
the cycle. An input Sj can only affect the node if it is either in
the cycle or above the node in its tree. The portion of the path
in the tree will exhibit direct functionality. Therefore in
looking for possible indirect functionality we may, without
loss of generality, take the node to be immediately outside
the cycle, as we did for G in the previous section. d �G

�
=dsj

is then given by (28).

In both (56) and (28), the term outside the brackets
represents the direct path from Sj to the target node, and
the term inside the brackets is positive for stable fixed
points. Therefore a contrafunctional graph exhibits only
direct functionality. Since each connected component of a
network in which every node has in-degree 0 or 1 is either
a contrafunctional graph or a tree, such networks exhibit
only direct functionality. Thus, in general, the possible
logical functions of topologies with at most one regulator
per node are severely constrained.
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8 Appendix: the stochastic model
The dynamical system in (3)–(5) provides a deterministic
description of mean expression levels but fails to capture
2
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fluctuations around these means. A full stochastic
description is given by the chemical master equation. For N
species participating in R elementary reactions in a system
with volume V, the master equation reads

dP(n, t)

dt
¼ V

XR

j¼1

YN
i¼1

E�Zij � 1

 !
fj (X , V)P(n, t) (57)

where P(n, t) is the probability of having the copy number
vector n ¼ VX ¼ V(X1, . . . , XN ) at time t, Zij is the
N � R stochiometric matrix, E�Zij is the step operator
which acts by removing Zij molecules from ni and fj is the
rate for reaction j. The fj are the ã j and rjXj of (3)–(5) in
the macroscopic limit.

As in previous work [6], we employ the much-used linear
noise approximation [14–17] to make (57) tractable by
expanding in orders of V�1=2. Introducing j such that
ni ¼ VXi þV1=2ji and treating j as continuous, the first
two terms in the expansion yield the macroscopic rate
equations [e.g. (3)–(5) in our case] and the linear Fokker–
Plank equation, respectively

XN

i¼1

@ �X i

@t

@P(j, t)

@ji

¼
XN

i¼1

XR

j¼1

Zij fj (X̄)
@P(j, t)

@ji

(58)

@P(j, t)

@t
¼ �

X
i,k

J ik

@(jkP)

@ji

þ
1

2

X
i,k

Dik

@2P

@ji@jk

(59)

where J ik ¼
PR

j¼1 Zij(@fj=@Xk) is the Jacobian matrix [e.g.
(29)] and Dik ¼

PR
j¼1 ZijZkj fj (X) is a diffusion-like matrix.

The steady-state solution to (59) is the multivariate Gaussian

P(j) ¼ (2p)N detJ
� ��1=2

exp �
jTJj

2

 !
(60)

where the covariance matrix J satisfies

JJþJ J T
þD ¼ 0 (61)

We solve for J using standard matrix Lyapunov equation
solvers (e.g. MATLAB’s lyap). Thus, fluctuations are
captured to leading order by Gaussian distributions with
means �X i given by the macroscopic equation and variances
given by the diagonal entries of J. For example, Gaussian
distributions P(G�jc) are shown in Fig. 2b for the steady-
state concentration of the reporter gene G under chemical
input states c. In [6], we have compared the distributions
P(G�jc) obtained using the linear noise approximation with
those obtained via direct stochastic simulations [18] and
found the results almost indistinguishable for molecular
copy number above 10–20.
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