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ABSTRACT The effect of fluctuations in rate constants on
the kinetic behavior of cyclic reacting systems, caused by a
fluctuating external parameter, is studied. It is shown (i) that
the stochastic properties of the system can be analyzed analyti-
cally by using the usual master equation approach when the
external parameter is fluctuating with discrete square pulses
and (ii) that the system is equivalent to an expanded chemical
kinetic system with no fluctuation in rate constants. When ap-
plied to a linear four-state cyclic enzyme system, the formalism
can be used to prove analytically the finding that an enzyme
can extract the free energy from an externally applied fluctu-
ating membrane potential and perform active free energy
transduction. The formalism also can be used to assess the
asymmetry constraints imposed on the values of the rate con-
stants in order for the model to work.

In a recent paper (1), it has been demonstrated by model
calculations that enzymes undergoing cyclic reactions inside
a membrane may be able to absorb free energy from an oscil-
lating electric field applied externally across the membrane
and transduce that energy into chemical or transport work.
That is, the cyclic reactions of the enzymes can be made to
prefer one direction over the other so that a net flux around
the cycle is produced, even against a load, by oscillating the
external parameter of the system. The conditions sufficient
for the enzyme to work are: (i) some of the rate constants of
the reactions must be dependent on the potential, and (ii) the
stability of the enzyme states involved must be asymmetric
(see below). For example, if the enzymes are charged (posi-
tive or negative) and their binding and dissociation with lig-
ands from the bathing solutions are not symmetric at the two
sides of the membrane, they are able to pump the ligand
across the membrane against a gradient under an externally
applied oscillating membrane potential (see ref. 1 or below).
The study was motivated by the experimental and theoreti-
cal studies of Tsong and his colleagues (2-4) that active
transport of Rb+ ions across erythrocyte membranes with
Na+/K+-ATPase could be achieved by applying a regularly
alternating electric field across the membranes.

For the cases studied in ref. 1, the oscillation of the field
(or potential) across the membrane was "regular" or "peri-
odic" in that it was either a sine (or cosine) function of time
or a train of alternating square pulses with a constant pulse
duration. In this and the parallel paper (5), studies are report-
ed on the case that the oscillations of membrane potential are
not regular but random. The main purpose is to examine
whether external random fluctuations (noise) in membrane
potential can also be used to do work. In ref. 5, we have
demonstrated that this is indeed the case when the same
model as studied in ref. 1 is used with the same set of asym-
metric rate constants. In this paper, I examine the funda-
mental questions of why asymmetric rate constants are re-
quired and what are the necessary and sufficient asymmetry

conditions for a model to have noise-induced free energy
transductions.
The paper is divided into two main parts. The first part

deals with the study of stochastic properties of an arbitrary
chemical reacting system in the presence of external parame-
ters that are not constant but are fluctuating between dis-
crete levels. The purpose is to show that the system can be
treated as an expanded, nonfluctuating chemical system so
that its kinetic properties can be studied analytically. The
second part deals with the application of the formalism to the
study of necessary conditions for a linear four-state model to
have noise-induced free energy transductions. I shall show
that there are many sets of asymmetric rate constants other
than that used in ref. 1 that are sufficient to make the model
work.

STOCHASTIC PROPERTIES OF EXTERNAL
NOISE INFLUENCED KINETIC SYSTEMS

In this section, we study the master equation of an arbitrary
kinetic system whose rate constants are not constant but
randomly fluctuating between discrete levels, caused by dis-
crete fluctuations in external parameters. For simplicity, we
shall consider the case that the external parameter is fluctu-
ating between two levels only (the dichotomous noise). That
is, the parameter V can take two finite values (A and -A),
and the time of being in A or -A is a random variable. A
random dichotomous V can be represented by a first-order
process as

[1]

in which y-' is the mean time of being in A or -A.
Let us consider a kinetic system containing A1, A2,

Ax species (or states) of molecules undergoing a total of s
elementary reactions:

VriAj + vr2A2 + . .. + VrxAx
k,

vri4A1 + Vi2A2 + . . . + vrxAx [2]

(r= 1, 2,. .,s),

where vri and v4i (i = 1, 2, . ., x) are the stoichiometric
coefficients, and kr and k' are the forward and the backward
rate constants; kr and kr are functions of V. Let N(t) be the
column matrix of the number of molecules of all species in
the system at time t. In the absence of external fluctuations,
the relaxation of the ensemble-averaged mean values, (N(t)),
toward their steady-state (or equilibrium) values, (N)55, fol-
lows the differential equation

dt= M-((N(t)) - (N)ss),dt [3]

where M is the phenomenological relaxation matrix of the
system (see ref. 6).
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In the presence of a fluctuating parameter with a dichoto-
mous distribution, the variables that characterize the kinetic
system are the set N(=N1, N2, . . ., Nx) plus the parameter
state (A or -lA). Thus, let P(N, A, t) be the probability of
finding the system with N1 in state 1, N2 in state 2, . . .,
in state x, and V in A at time t, and P(N, -A, t) be that with V
in -A. Then, the master equation for these two probability
functions can be expressed as

aP(N, A, t) = E P(N', A, t) Q+(N; N')
at N'

-P(N, A, t) Q+(N'; N)

+ P(N, -A, t)*y - P(N, A, t)ey, [4]

aP(N, -A, t) = I P(N', -A, t)-Q-(N; N')

at N'

- P(N, -A, t)Q-(N'; N)

+ P(N, A, t).y - P(N,-A, t)@W [5]

where Q+(N; N') and Q-(N; N') are the transition probabili-
ties from N' to N per unit time at V A and V = -A, respec-
tively. The last two terms on the right-hand side of Eqs. 4
and 5 represent the transitions due to the parameter V. Mul-
tiplying by N and taking summation over N on both sides of
Eqs. 4 and 5, we get (see ref. 6 for derivations)

d t(N+(t)))
dt(N-(t)))

M+ + yE - yE)

\ - yE M- + lyE|

.((N+(t))-(N+)ss-
U(N(t)) - (N-)ss [6]

where M+ and M- are the phenomenological relaxation ma-
trices of the system at v = A and V = -A, respectively, and

(N+(t)) = E NP(N, A, t) 17]
N

(N(t)) = E1 NP(N, -A,t)A [8]
N

The (N+),s and (N-),s are the steady-state (t = X0) values of
(N+(t)) and (N-(t)), and E is a unity matrix.
By comparing with Eq. 3, it becomes obvious that Eqs. 6

are exactly the phenomenological relaxation equations of the
kinetic system that contain the following elementary reac-
tions:

VriAt + v,2A+ + ... + VrxAx
kr+

a v4,1A + vr2A++ + vrxAx+ [9]

VriAj + vr2A- + ... + vrxAx
k7-

r±v +rAj+ ..2A .+ ..+ iAx- [10]
kr,

Y

Aj+ ;2 AJ (j = 1, 29 .11. ,x), [ill

where k+ and k7 are the forward rate constants of reaction
(2) at V = A and V = -A, respectively. In other words, a

chemical kinetic system in the presence of a dichotomous
fluctuation in an external parameter can be represented by
an expanded kinetic system with nonfluctuating rate con-
stants. As a result, the calculation of kinetic and stochastic
properties of the system can be carried out easily (see be-
low).

THE MODEL AND THE ASYMMETRY
CONDITIONS

As shown in Fig. 1 Left, the model system studied in ref. 1
consists of a membrane placed between two bathing solu-
tions that contain an uncharged ligand designated L. Inside
the membrane are a number of negatively charged enzyme
molecules that can undergo four-state cyclic reactions. The
kinetic diagram of the system at a constant transmembrane
potential is also shown in Fig. 1 Right. The k12, k14, . . .

etc., are the rate constants of the reactions at V = 0 (V is the
membrane potential, the potential in bath 1 relative to that in
bath 2). cl and c2 are the concentrations of ligand in the two
bathing solutions. For each complete forward (+) cycle, a
molecule of L is transported from bath 1 to bath 2. The 4'
and ptake into account the effect of transmembrane poten-
tial on the rate constants involved. 4 is defined as

h = exp(AE(V)/RT), [12]

where AE(V) is the change (increase or decrease) of free
energy of state 1 or state 2 due to the presence of a trans-
membrane potential V (see Fig. 2). (Note that the 4 here is
equal to the square of the 4 in ref. 1.) The change in the
activation energy between state 1 and state 4 is equal to
a AE(V) and equal to ,8-AE(V) between state 2 and state 3.
The value of AE(V) is negative when V = A and positive
when V = -A, because the enzyme is negatively charged.

Since the condition of detailed balance must be obeyed at
equilibrium (cl = c2), the rate constants k12, k2l, . . ., etc.,
should obey the Wegscheider relation (7):

kl2k23k34k4l = k2lk32k43kl4. [13]

If V is finite and constant (no fluctuation), 4 is a constant,
and the kinetic equations describing the relaxation of the
means can be represented by the diagram in Fig. 1 Right. No
net transport of ligands will be observed at cl = c2 because
the product of rate constants in the forward (+) direction is

Memb.k1a_Bath 2 Bath 1

4~~~~~~~~~~~~
La ~ jL k43 C2||k34 t+ k12cl|k2l

3 L 2220_
V2 0 , = V k324

FIG. 1. (Left) The enzyme-mediated ligand-transport model
studied in ref. 1. L is the ligand and V is the potential across the
membrane (the potential in bath 1 relative to that in bath 2). The
enzyme is negatively charged so that the translocation rate con-
stants between states 1 and 4 and between 2 and 3 are voltage-de-
pendent. (Right) The biochemical cycle diagram at a constant mem-
brane potential. The voltage-dependent part of the translocation rate
constants is explicitly expressed by the 4 defined in Eq. 12. a is the
ratio of change in free energy of the activated state between state 1
and 4 to that of state 1 caused by the membrane potential (see Fig.
2). f is the corresponding ratio between states 2 and 3. The plus sign
indicates that ligand L is transported from bath 1 to bath 2.
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within this cycle. That is, the fluctuating membrane potential
serves as a free energy driving source for this particular cy-
cle with a driving force equal to

E

= -A

STATE 4 ACTIVATED STATE STATE 1

FIG. 2. The effect of membrane potential V on the free-energy
profile of the reaction path from state 4 to state 1.

equal to that in the reverse direction according to Eq. 13.
When V is fluctuating between two fixed values (A and

-A), according to the formalism discussed in the previous
section the combined system (the kinetic system plus the
fluctuating V) can be represented by the diagram in Fig. 3 in
which the superscripts (or subscripts) + and - indicate
whether V is positive or negative. In general, AE(A) can be
different from AE(-A). Therefore, 4+ may not be equal to
1/0- (see Fig. 2).
From Fig. 3, one can see immediately that some of the

cycles in the diagram do not have a Wegscheider relation
(the product of rate constants in one direction is not equal to
that in the reverse direction) even at c1 = c2 = c and, there-
fore, would produce a net flux around that cycle at steady
state. For example, the products of rate constants in the two
directions of the cycle (1+ -2 2' - 3-p 3+ 4+
1+) are:

X = RT ln(o+/44). [17]

However, this result does not necessarily imply the exist-
ence of a net transport flux for the entire system because
some other cycles may have the opposite net flux. Thus, we
must examine all of the cycles before we can determine the
existence of a noise-induced transport flux.
There are a total of 28 cycles for this system. But 12 of

them have no net contribution to the transport of ligand L
(e.g., see the cycles 1+2- --+ 2- 1- 1+and 1+ 2+
3+3' -P 2- -- 1-+ 1+). The 16 cycles that can con-

tribute to the transport of ligands are shown in Fig. 4.
Among these, 8 (numbers 9-16 in the figure) are driven by
the chemical-potential gradient of the ligand and should have
no contribution to the total flux at cl = c2. Furthermore, the
force X defined in Eq. 17 drives the transport of ligand from
bath 1 to bath 2 in cycles 1-4 and from bath 2 to bath 1 in
cycles 5-8. The total transport flux of the system at cl =C2
= c is the sum of these 8 cycle fluxes:

J -1nHy2( 'w -41)
x {(44A-44) (2'y + k2l + ck12)

x (2y + k34 + ck43)

+ (2,y + k34 + ck43) [k14 +4f(4 ' _ 4e )

+ k230"O4(4 '-l'a
+ (2y + k2l + ck12)M[k32+ P!(O+ - 4a)

+ k4l +4+(cfW -+3)I
+ ,,I4a+ 0(471- 1_ ).(k32k14 - k23k41)} [18]

I+ = kl2Cc Rk23*0 +

H- = k2l*ayk32 * i3 *Yak43cCkl4'*' 1-

Thus,
11+ = +4 1
Hl- 07

[14]

[15]

[16]

This implies a net transport of ligand from bath 1 to bath 2

(4+)

(1) (2) (3) (4)

-/ k23+01jl
(3- ) - (2 )

k32+P

I~~~~~~~~~~~~~~~~~~

(5) (6) (7) (8)

y

FIG. 3. The biochemical (cycle) diagram of the model when the
membrane potential is fluctuating between two square pulses (+ A
and -A). The plus sign means that V = +A, and the minus sign
means that V = -A. For example, 4+ = exp(AE(A)/RT) and 4_ =

exp(AE(-A)/RT).

es) (10) O1) (12)

(13) (14) (15) (16)

FIG. 4. Cycles for the diagram in Fig. 3 with nonzero forces for
ligand transport. Cycles numbered 1-8 contain both X (Eq. 17) and
XL [= RT ln(c2/cl)] and are responsible for the fluctuation-induced
active transport of ligand L. Cycles numbered 9-16 involve only XL
and are responsible for the passive transport of ligand L.

(1+)
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where X is the sum of all directional diagrams of the system
(8), and H is the product of the four rate constants shown on
either side of Eq. 13. Both X and H are positive quantities.
Thus, in order to have a net transport flux (J 00), the quan-
tity inside the braces must be nonzero. As one can see easily
from Eq. 18, J becomes zero independent of y if a = 13,Ic4 =
k23, and k4l = k32. This implies that, in order for the model to
carry out free energy transduction, the "translocation" rate
constants of the model must be asymmetrical between lig-
anded and nonliganded enzyme molecules. In the following
treatment, we will assess the general asymmetry conditions
needed for the model to work.
Asymmetry Can Be Completely Absent from the Voltage-

Independent Part of the Rate Constants. For simplicity, let us
consider the case that all of the voltage-independent rate
constants are equal to unity (completely symmetrical). Then,
the J in Eq. 18 becomes
j = y-1 II Y2(0-1 - 441) (2y + c + 1)

x {(2y + c + 1)+(4a4 - 54+)
+ Oga~ta(O,18 + 0,1X-1 of_g~ O>-1)
+ Oi0,1(oa + .a-1 Oa Ea-1)} l+554 + +4 4-4a) [19]

From this equation, it can be shown that the only way to
make this J identically zero at all values of y is to let a be
equal to P3. Thus, as long as a is not equal to f3, J can become
nonzero. That is, noise-induced free energy transduction can
be achieved by the model, if the interaction between the po-
tential and the activated state (see Fig. 2) is different for lig-
anded and unliganded enzyme molecules. Since enzymes
with and without ligands are expected to be in different con-
formations, it should not be too uncommon for them to have
different a and / values.
Asymmetry Can Be Partially Absent from the Voltage-Inde-

pendent Rate Constants Even When a = .3. Next, let us con-
sider the case that asymmetry is absent between a and /3.
With a = /3, Eq. 18 becomes

-1II ,2 (¢1 _- 44-1)
X {+444(4'- 4W') (2y + k34 + ck43) (k14 - k23)

+ (4 -4+Of) (2y + k2l + ck12) (k32- k4l)
+ ¢-1a4(4l - 44') (k32kl4 - k3k4l)}. [20]

Table 1. Asymmetry requirement on rate constants for the
generation of fluctuation-induced free energy transduction

Voltage-dependent part Voltage-independent part

a s f3 No asymmetry in this
part is required.

a = sa*t k14 *Ik23, k4l k32;
no additional
asymmetry is required.

a = =a* k14 j k23, k4l k32,
and at least one of
the asymmetry sets:

k12 j k43, k2l j k34, or
k14 # k4l, k23 kk32-

ta* is the solution of the equation 4T-' + 4e - e+-' - a+ = 0 at
given P+ and 0_ values; when 4+ = 1/0-, a* = 1/2.

It is obvious from this equation that J becomes zero as long
as k14 = k23 and k4l = k32. Thus, for the model to produce
transport flux at cl = c2 = c, the enzyme must have different
translocation rate constants for the liganded and the unlig-
anded enzyme molecules at V = 0 (k14 + k23, k4l # k32).

If k14 = k4l, k23 = k32, k12 = k43, and k2, = k34 (but k14 # k23
and k4l + k32), Eq. 20 becomes

j = E-1 f y2 (44-1 - 44k+1) 4 (2,y + k34 + ck43) (k14- k23)
X (4a-1 + 4 _d-1 - Oa). [21]

It can be shown that, with given 44 and 4-, there is one and
only one a value (denoted as a*) that will make the J in Eq.
21 equal to zero at any value of y. For example, when 4+ =
1/44, a is equal to 1/2. For the case that 44 7 1/44, the
value of a* will depend on the values of 44 and 44. As a
result, if a(= /3) 7 a*, no asymmetry requirement is needed
other than k14 # k23 and k4l f k32. On the other hand, if a = /
= a*, asymmetry must exist either in the binding reactions
(k12 vs. k43 and k2l vs. k34) or in the translocation reactions
(k14 vs. k4l and k23 vs. k32) as shown in Table 1.
For illustration, some numerical calculations are shown in

Figs. 5 (a = 13) and 6 (a 7 /3). As one can see from the fig-
ures, any model whose rate constants satisfy any of the con-
ditions in Table 1 can produce a net transport of ligand from
bath 1 to bath 2 at cl = c2. For comparison, a few flux curves
for the case c2 > cl are also included in the figures.

0.05 0.1 0.5 1 50 100

FIG. 5. Ligand transport flux calculated
as a function of yfor models with a = /3. The
solid curves are for equilibrium cases (cl =
c2), and the dashed curves are for cl # c2.
The rate constants of curves A and B are: A,
k12 = k2l = k34 = k43 = 1, k4l = 4, k14 = 16,
k23 = 4, k32 = 1, a = /3 = 0.5 (a = =a*
case with symmetry in the binding steps); B,
k12 = k2l = k23 = k32 = k34 = k43 = 1, k14 =
k4l = 5, a = ,3 = 0.2 (a = ( #& a* case). The
rate constants for the other four curves are:
k12 = k2l = k23 = k32 = 1, k14 = k4l = 5, k34
= k43 = 10, and a = 3= 0.5 (a = ( = a*
case with symmetry in the translocation
steps). In all cases, k14 # k23 and k4l #Ik32 as
required (see the text and Table 1).
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DISCUSSION with more

tions.
The main purpose of this paper is 2-fold. First, I show that a Finally,
chemical kinetic system in the presence of a fluctuating ex- nomena in
ternal parameter can be represented by an expanded chemi- (9-17). Ho
cal kinetic system with constant (nonfluctuating) rate con- phase tran

stants when the fluctuation of the external parameter is of linear kine
the random square pulse type. As a result, both the kinetic the paralle
and stochastic properties of the system can be studied easily of external
by using existing theories for pure chemical kinetic systems. ered only
Second, I show that the noise-induced free energy transduc- published
tion in linear cyclic kinetic systems can be studied analytical- by fluctua
ly based on this formalism and the diagram method of Hill One intere
(8). As a result, I can explain (see also ref. 5) why fluctua- metric rate
tions in membrane potential can induce a net ligand transport
in the four-state enzyme model studied in ref. 1 and why the I thank D
model needs asymmetric rate constants to do that. Also we Hill for valu
are able to find out the basic necessary asymmetry condi- 1. Wester
tion(s) for the model to work. mian, i
As discussed in this paper and in ref. 5, in the presence of 2. Serpes

a fluctuating external parameter, some of the cycles of the 201.
corresponding kinetic diagram do not satisfy the Weg- 3. Serpers
scheider relation (the product of rate constants in one direc- 7162.
tion of the cycle does not equal that in the other direction). 4. Tsong,457-47(
This implies that a cyclic kinetic system initially at equilibri- 5. Asturni
um can be changed into a nonequilibrium cycling system by hoff, H
fluctuations of the external parameter(s) that affects the rate 6. Chen,
constants of the system. As a result, ligands can be trans- 7. Bak, T.
ported between the two baths. However, fluctuations in the (BenjaI
external parameter induce not only cycles that transport lig- New Y

and from bath 1 to bath 2 but also cycles that transport ligand 9. Horsth
from bath 2 to bath 1. The combined flux can become non- 10. Lefeve
zero only when some kind of asymmetry exists in the rate 76, 249
constants of the model. As shown in Table 1, there are many 11. KabasI
ways to satisfy the asymmetry requirements. The set used in 367-37

refs. 1 and 5 is just a special one of them. The most basic 13. Kitaha

asymmetry condition for the model to work is found to be in 70, 377
the "translocation" rate constants of liganded and unligand- 14. Hahn,
ed enzyme molecules. Acad.

I emphasize that all of the findings discussed above are 15. Lefeve
based on the special case that the external parameter is fluc- 16. Horst

tuating between two square pulses (dichotomous noise). 17. Horsth
But, I expect the results to be equally applicable to cases ken, H

I FIG. 6. Ligand transport flux
calculated as a function of y for
the case a # P3. The rate constants
used are all equal to unity. a =
0.8, A = 0.2, and c1 = 1.0.

complicated fluctuations or with regular oscilla-

it should be pointed out that noise-induced phe-
kinetic systems have been studied for a long time
wever, only the effect of noise on stabilities and
sitions between stable and unstable states of non-
tic systems has been considered. This paper and
1 one (ref. 5) represent initial studies on the effect
LI noise on cycling fluxes. So far we have consid-
(membrane) potential fluctuations. In a paper to be
elsewhere, the study of active transport induced
tions in ligand concentrations will be discussed.
sting result of that study is the finding that asym-
e constants are not required by the model.

rs. Hans V. Westerhoff, Dean Astumian, and Terrell L.
uable discussions.
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