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Abstract

Sensory information about the outside world is encoded by neurons in sequences of discrete, identical pulses termed action
potentials or spikes. There is persistent controversy about the extent to which the precise timing of these spikes is relevant
to the function of the brain. We revisit this issue, using the motion-sensitive neurons of the fly visual system as a test case.
Our experimental methods allow us to deliver more nearly natural visual stimuli, comparable to those which flies encounter
in free, acrobatic flight. New mathematical methods allow us to draw more reliable conclusions about the information
content of neural responses even when the set of possible responses is very large. We find that significant amounts of visual
information are represented by details of the spike train at millisecond and sub-millisecond precision, even though the
sensory input has a correlation time of ,55 ms; different patterns of spike timing represent distinct motion trajectories, and
the absolute timing of spikes points to particular features of these trajectories with high precision. Finally, the efficiency of
our entropy estimator makes it possible to uncover features of neural coding relevant for natural visual stimuli: first, the
system’s information transmission rate varies with natural fluctuations in light intensity, resulting from varying cloud cover,
such that marginal increases in information rate thus occur even when the individual photoreceptors are counting on the
order of one million photons per second. Secondly, we see that the system exploits the relatively slow dynamics of the
stimulus to remove coding redundancy and so generate a more efficient neural code.
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Introduction

Throughout the brain, information is represented by discrete

electrical pulses termed action potentials or ‘spikes’ [1]. For

decades there has been controversy about the extent to which the

precise timing of these spikes is significant: Should we think of each

spike arrival time as having meaning down to millisecond precision

[2–5], or does the brain only keep track of the number of spikes

occurring in much larger windows of time? Is precise timing

relevant only in response to rapidly varying sensory stimuli, as in

the auditory system [6], or can the brain construct specific patterns

of spikes with a time resolution much smaller than the time scales

of the sensory and motor signals that these patterns represent

[3,7]? Here we address these issues using the motion-sensitive

neurons of the fly visual system as a model [8].

We bring together new experimental methods for delivering

truly naturalistic visual inputs [9] and new mathematical methods

that allow us to draw more reliable inferences about the

information content of spike trains [10–12]. We find that as we

improve our time resolution for the analysis of spike trains from

2 ms down to a fraction of a millisecond we reveal nearly 30%

more information about the trajectory of visual motion. The

natural stimuli used in our experiments have essentially no power

above 30 Hz, so that the precision of spike timing is not a

necessary correlate of the stimulus bandwidth; instead the different

patterns of precise spike timing represent subtly different

trajectories chosen out of the stimulus ensemble. Further, despite

the long correlation times of the sensory stimulus, segments of the

neural response separated by ,30 ms provide essentially inde-

pendent information, suggesting that the neural code in this system

achieves decorrelation [13,14] in the time domain, thereby

enhancing the efficiency of the code on time scales relevant to

behavior [15].

Results

Posing the problem
Flies exhibit a wide variety of visually guided behaviors, of

which perhaps the best known is the optomotor response, in which

visual motion drives a compensating torque, stabilizing straight

flight [16]. This system offers many advantages for the exploration

of neural coding and computation: There is a small group of

identified, wide-field motion-sensitive neurons [8] that provide an
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obligatory link in the process [17], and it is possible to make very

long, stable recordings from these neurons as well as to

characterize in detail the signal and noise properties of the

photoreceptors that provide the input data for the computation. In

free flight, the trajectory of visual motion is determined largely by

the fly’s own motion through the world, and there is a large body

of data on flight behavior under natural conditions [15,18–20],

offering us the opportunity to generate stimuli that approximate

those experienced in nature. But the natural visual world of flies

involves not only the enormous angular velocities associated with

acrobatic flight; natural light intensities and the dynamic range of

their variations are very large as well, and both of the fly’s

compound eyes are stimulated over more than 2p steradians. All of

these features are difficult to replicate in the laboratory [21]. As an

alternative, we have moved our experiments outside [9], so that

flies experience the scenes from the region in which they were

caught. We recorded from a single motion-sensitive cell, H1, while

rotating the fly along trajectories modeled on published natural

flight trajectories (see Methods for details). We should note that for

technical reasons, these stimuli do not contain natural translation,

pitch, and roll components, which may have an effect on the H1

responses; for other approaches to the delivery of naturalistic

stimuli in this system see [22].

A schematic of our experiment, and an example of the data we

obtained, are shown in Figure 1. We see qualitatively that the

responses to natural stimuli are very reproducible, and we can

point to specific features of the stimulus—such as reversals of

motion direction—that generate individual spikes and interspike

intervals with better than millisecond precision. The challenge is to

quantify these observations: Do precise and reproducible patterns

of spikes occur just at some isolated moments, or does looking at

the spike train with higher time resolution generally provide more

information about the visual input?

Precise spike timing endows each neuron with a huge

‘‘vocabulary’’ of responses [1,2], but this potential advantage in

coding capacity creates challenges for experimental investigation.

If we look with a time resolution of t = 1 ms, then in each bin of

size t we can see either zero or one spike; across the behaviorally

relevant time scale of 30 ms [15] the neural response thus can be

described as a 30-bit binary word, and there are 230, or roughly

one billion such words. Although some of these responses never

occur (because of refractoriness), and others are expected to occur

only with low probability, it is clear that if precise timing is

important then neurons can generate many more meaningfully

distinguishable responses than the number that we can sample in

realistic experiments.

Progress in information estimation
Can we make progress on assessing the information content and

meaning of neural responses even when we can’t sample all of

them? Recall that the information content is measured by the

mutual information between the response and the stimulus that

caused it [23]. This quantity measures (in bits) the reduction in the

length of the description of the response spike train caused by

knowing the associated velocity stimulus. Thus this mutual

information is a difference of entropies [23] of the ensembles of

all possible responses and the responses conditional on particular

stimuli. Therefore, the problem of estimation of the information

content of spike trains is essentially a problem of estimating the

entropy of a probability distribution. This is known to be very hard

when sampling is scarce, as in our problem [10,24].

Some hope is provided by the classical problem of how many

people need to be present in a room before there is a reasonable

chance (about 50%) that at least two of them share a birthday.

This number, which turns out to be N,23, is vastly less than the

number of possible birthdays, K = 365. Turning this argument

around, if we didn’t know the number of possible birthdays we

could estimate it by polling N people and checking the frequency

of birthday coincidences. Once N is large enough to generate

several coincidences we can get a pretty good estimate of K, and,

for KR‘, this happens when N*
ffiffiffiffi
K
p

vvK . Some years ago Ma

proposed that this coincidence counting method be used to

estimate the entropy of physical systems from molecular dynamics

or Monte Carlo simulations [25] (see also [26]). If these arguments

could be generalized, it would become feasible to estimate the

entropy and information content of neural responses even when

experiments provide only a sparse sampling of these responses.

The results of [10,11] provide such a generalization.

To understand how the methods of [10] generate more accurate

entropy estimates from small samples, it is useful to think about the

simpler problem of flipping a coin under conditions where we

don’t know the probability p that it will come up heads. One

strategy is to count the number of heads nH that we see after N

flips, and identify p = nH/N; if we then use this ‘‘frequentist’’ or

maximum likelihood estimate to compute the entropy of the

underlying distribution, it is well known that we will underestimate

the entropy systematically [24,27,28]. Alternatively, we could take

a Bayesian approach and say that a priori all values of 0,p,1 are

equally likely; the standard methods of Bayesian estimation then

will generate a mean and an error bar for our estimate of the

entropy given N observations. As shown in Figure 2, this

procedure actually leads to a systematic overestimate of the entropy

in cases where the real entropy is not near its maximal value. More

seriously, this systematic error is larger than the error bars that

emerge from the Bayesian analysis, so we would be falsely

confident in the wrong answer.

Figure 2 also shows us that if we use a Bayesian approach with

the a priori hypothesis that all values of the entropy, rather than p,

are equally likely, then (and as far as we know, only then) we find

estimates such that the systematic errors are comparable to or

smaller than the error bars, even when we have seen only one

sample. Thus the problem of systematic errors in entropy

estimation is not, as one might have thought, the problem of not

having seen all the possibilities; the problem rather is that

seemingly natural and unbiased prior hypotheses about the nature

of the underlying probabilities correspond to highly biased

hypotheses about the entropy itself, and this problem gets much

Author Summary

Neurons communicate by means of stereotyped pulses,
called action potentials or spikes, and a central issue in
systems neuroscience is to understand this neural coding.
Here we study how sensory information is encoded in
sequences of spikes, using a combination of novel
theoretical and experimental techniques. With motion
detection in the blowfly as a model system, we perform
experiments in an environment maximally similar to the
natural one. We report a number of unexpected, striking
observations about the structure of the neural code in this
system: First, the timing of spikes is important with a
precision roughly two orders of magnitude greater than
the temporal dynamics of the stimulus. Second, the fly
goes a long way to utilize the redundancy in the stimulus
in order to optimize the neural code and encode more
refined features than would be possible otherwise. This
implies that the neural code, even in low-level vision, may
be significantly context dependent.

Neural Coding at Sub-Millisecond Precision
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worse when we consider distributions over many alternatives. The

strategy of [10] thus is to construct, at least approximately, a ‘flat

prior’ on the entropy (see Methods for details). The results of [12]

demonstrate that this procedure actually works for both simulated

and real spike trains, where ‘works’ means that we generate

estimates that agree with the true entropy within error bars even

when the number of samples is much smaller than the number of

possible responses. As expected from the discussion of the birthday

problem, what is required for reliable estimation is that the

number of coincidences be significantly larger than one [11].

We note that this estimation method is substantially different

from other recent approaches, such as [4,24,29,30], and we discuss

the differences in some detail in the Discussion.

Words, entropy and information
The tools described above allow us to estimate the entropy of

neural responses. We first analyze a long experiment in which the

fly experiences a continuous trajectory of motion with statistics

modeled on those of natural flight trajectories (Figure 3; see

Methods for details). As shown in Figure 4A, we examine segments

of the response of duration T, and we break these segments into

discrete bins with time resolution t. For sufficiently small t, each

bin either has one or zero spikes, and hence the response becomes

a binary word with T/t bits, while in the opposite limit we let

t= T, and then the response is the total number of spikes in a

window of size T; for intermediate values of t, the responses are

multi-letter words, but with larger than binary alphabet when

more than one spike can occur within a single bin. An interesting

feature of these words is that they occur with a probability

distribution similar to the distribution of words in English (Zipf’s

law; Figure 4B). This Zipf-like behavior emerges only for

T.20 ms, and was not observed in experiments with less natural,

white noise stimuli [4].

With a fixed value of T, improving our time resolution (smaller

t) means that we distinguish more alternatives, increasing the

‘‘vocabulary’’ of the neuron. Mathematically this means that the

entropy S(T,t) of the neural responses is larger, corresponding to a

potentially larger capacity for carrying information. This is shown

quantitatively in Figure 4C, where we plot the entropy rate,

S(T,t)/T. The question of whether precise spike timing is

important in the neural code is precisely the question of whether

this capacity is used by the system to carry information [2,4].

To estimate the information content of the neural responses, we

followed the strategy of [4,31]. The information content of the

‘words’ generated by the neuron is always less than the total size of

the neural vocabulary because there is some randomness or noise

in the association of words with sensory stimuli. To quantify this

noise we choose a five second segment of the stimulus, and then

repeat this stimulus 100 times. At each moment 0,t,5 s in the

cycle of the repeated stimulus, we look across the one hundred

trials to sample the different possible responses to the same input,

and with the same mathematical methods as before, we use these

Figure 1. Neural responses to a natural stimulus ensemble. At left is a schematic of the experimental setup (see Methods for details). A fly was
immobilized with wax, its body in a plastic tube, with its head protruding. Through a small hole in the back of the head an electrode was inserted to
record extracellular potentials from H1, a wide field neuron sensitive to horizontal motion. This signal was amplified, fed through a slip ring system to
a second stage amplifier and filter, and recorded by a data acquisition card. In synchrony with its master timer clock, the DAQ card generated a
500 Hz frame clock signal. Every 2 ms, through a bidirectional parallel port, this clock triggered a successive read of a divisor value from a file stored
in the stimulus laptop computer. The Intel 8254 Counter/Timer chip used this divisor value to divide down the pulse frequency of a free running
8 MHz clock. In this way, in each successive 2 ms interval, and in strict synchrony with the data taking clock, a defined and evenly spaced burst of
pulses was produced. These pulses drove the stepper motor, generating the angular velocity signal. A brief segment of this motion stimulus is shown
in the top right panel, below which we plot a raster of action potentials from H1 in response to 100 repetitions of this stimulus. At bottom we expand
the scale to illustrate (at left) that individual spikes following a transition from negative to positive velocity jitter from trial to trial by ,1 ms: The
standard deviations of spike times shown here are 0.72 ms for the first spike (N), 0.81 ms for the second spike (u), and 1.22 ms for the third spike (6).
When we align the first spikes in this window, we see (at right) that the jitter of interspike intervals is even smaller, 0.21 ms for the first interval and
0.69 ms for the second interval. Our challenge is to quantify the information content of such precise responses.
doi:10.1371/journal.pcbi.1000025.g001

Neural Coding at Sub-Millisecond Precision
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samples to estimate the ‘noise entropy’ Sn(T,t|t) in this ‘slice’ of

responses. The information which the responses carry about the

stimulus then is given by I(T,t) = S(T,t)2ÆSn(T,t|T)æt, where Æ…æt

denotes an average over time t, which implicitly is an average over

stimuli. It is convenient to express this as an information rate Rinfo

(T,t) = I(T,t)/T, and this is what we show in Figure 4D, with T = 25 ms,

chosen to reflect the time scale of behavioral decisions [15].

The striking feature of Figure 4D is the growth of information

rate with time resolution. We emphasize that this measurement is

made under conditions comparable to those which the fly

encounters in nature—outdoors, in natural light, moving along

trajectories with statistics similar to those observed in free flight.

Thus under these conditions, we conclude that the fly’s visual

system carries information about motion in the timing of spikes

down to sub-millisecond resolution. Quantitatively, information

rates double as we increase our time resolution from t= 25 ms to

below a millisecond, and the final ,30% of this increase occurs

between t= 2 ms and t#0.5 ms. In the behaviorally relevant time

windows [15], this 30% extra information corresponds to almost a

full bit from this one cell, which would provide the fly with the

ability to distinguish reliably among twice as many different

motion trajectories.

What do the words mean?
The information rate tells us how much we can learn about the

sensory inputs by examining the neural response, but it doesn’t tell

us what we learn. In particular, we would like to make explicit the

nature of the extra information that emerges as we increase our

time resolution from t= 2 ms to t,1 ms. In other words, we

should look at what additional features of the stimulus are encoded

by finer spike timing. In the following we will present examples to

highlight some of these features. We look at particular ‘‘words’’ in

a segment of the neural response, as shown in Figure 5, and then

examine the motion trajectories that corresponded to these words

[32]. For simplicity, we consider all responses that had two spikes

in successive 2 ms bins, that is the binary pattern 11 when seen at

t= 2 ms resolution. When we improve our time resolution to

t= 0.2 ms, some of these responses turn out to be of the form

10000000000000000001, while at the other extreme some of the

responses have the two spikes essentially as close as possible given

the refractory period, 00000100000000100000. Remarkably, as

we sweep through these subtly different patterns—which all have

the same average spike arrival time but different interspike

intervals—the average velocity trajectory changes form qualita-

tively, from a smooth ‘‘on’’ (negative to positive velocity) transition,

to a prolonged period of positive velocity, to a more complex

waveform with off and on transitions in succession. Examining

more closely the distribution of waveforms conditional on the

different responses, we conclude that these differences among

mean waveforms are in fact discriminable. Thus, variations in

interspike interval on the millisecond or sub-millisecond scale

represent significantly different stimulus trajectories.

A second axis along which we can study the nature of the extra

information at high time resolution concerns the absolute timing of

spikes. As an example, responses which at t= 2 ms resolution are

of the form 11 can be unpacked at t= 0.2 ms resolution to give

patterns ranging from 01000000001000000000 to

00000000010000000010, all with the same interspike interval

but with different absolute arrival times. As shown in Figure 5, all

of these responses code for motion trajectories with two zero

crossings, but the times of these zero crossings shift as the spike

arrival times shift. Thus, whereas the times between spikes

represent the shape of the waveform, the absolute arrival time of

the spikes marks, with some latency, the time at which a specific

feature of the waveform occurs, in this case a zero crossing. Again

we find that millisecond and sub-millisecond scale shifts generate

discriminable differences.

The idea that sub-millisecond timing of action potentials can

carry significant information is not new, but the clearest evidence

comes from systems in which the dynamics of the stimulus itself

has significant sub-millisecond structure, as in hearing and

electroreception [6,33]. For slow stimuli, the best recorded

temporal precision is generally a few milliseconds, and is observed

very early in the sensory processing [34]. Even for H1,

experiments demonstrating the importance of spike timing at the

,2 ms level [4,35] could be criticized on the grounds that the

stimuli had unnaturally rapid variations. It is thus important to

emphasize that, in the experiments described here, H1 did not

achieve millisecond precision simply because the input had a

bandwidth of about a kiloHertz; in fact, the stimulus had a

correlation time of ,55 ms (Figure 6), and 99.9% of the stimulus

power was contained below 30 Hz (Figure 3F). We are not aware

Figure 2. Systematic errors in entropy estimation. We consider a
coin with unknown probability p of coming up heads; from N coin flips
we try to estimate the entropy S = 2plog2 p2(12p)log2 (12p); see
Methods for details of the calculations. At left, we make Bayesian
estimates starting from the prior hypothesis that all values of p are
equally likely, P(p) = 1. We show how the best estimate S’ differs from
the true value S0 when this deviation is measured in units of the
estimated error bar dS (posterior standard deviation); the color bar
indicates the value of this scaled deviation. For small numbers of
samples, the best estimate is systematically in error by more than two
times the size of the error bar, so we would have false confidence in a
wrong answer, even at intermediate values of the entropy, which are
most relevant for real data. At right, we repeat the same procedure but
with a prior hypothesis that all possible value of the entropy are equally
likely, P(S) = 1. Systematic errors still appear, but they are more nearly
compatible with the error bars, even at small N, and especially in the
range of entropies, which is relevant to our experiments. Notice that
here the distinction between the estimators extends to N,K = 1;
similarly, we expect the uniformization of P(S) to be advantageous
when N,K even if K..1.
doi:10.1371/journal.pcbi.1000025.g002
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of previous results where sub-millisecond temporal precision has

been explicitly shown to encode such slow stimuli.

Redundancy reduction
The long correlation time of these naturalistic stimuli also raises

questions about redundancy—while each spike pattern considered

in isolation may be highly informative, the long correlation time of

the stimulus could very well mean that successive patterns carry

information about essentially the same value of the instantaneous

velocity. If so, that would mean that successive symbols are

significantly redundant. Certainly on very short time scales this is

true: Although Rinfo(T,t) actually increases at small T since larger

Figure 3. Constructing a naturalistic stimulus. (A) Digitized version of original video tracking data by Land and Collett [15]. The panel shows
traces of a leading fly (blue) and a chasing fly (green). Successive points along the trajectories were recorded at 20 ms intervals. Every tenth point
along each trajectory is indicated by a number. From these traces we estimated rotational velocities of the body axis by calculating the angular
change in orientation of the trajectory from one point in the sequence to the next, and dividing by 20 ms. The result of this calculation for the
leading fly is shown in panel (B). (C) .From these data (on both flies) we constructed a joint distribution, P(Vk,Vk+1), of successive velocities taken
20 ms apart. (D) Short sample of a trajectory constructed using the distribution in (C) as a Markov process, and then interpolating the velocity trace to
2 ms resolution. (E) Probability densities of angular velocity generated from this Markov process (black dashed line) and scaled down by a factor of
two (black line) to avoid destabilizing the experiment; distributions are symmetric and we show only positive velocities. For comparison we show (red
line) the distribution of angular velocities recorded for head motion of Calliphora during episodes of saccadic turning [20]. (F) Power spectrum of
synthesized velocity signal, demonstrating the absence of power above 30 Hz. (G) As in (E) but for the accelerations. Note that the distribution of our
synthesized and scaled signal was surprisingly close to that for saccadic head motions, as reported in [20].
doi:10.1371/journal.pcbi.1000025.g003

Neural Coding at Sub-Millisecond Precision
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segments of the response reveal more informative patterns of

several spikes [35,36], it does decrease at larger T, a clear sign of

redundancy. However, this approach to a constant information

rate is very fast: We measure the redundancy on time scale T by

computing YI(T,t) = 2I(T,t)/(2T,t)21, where YI = 0 signifies that

successive windows of size T provide completely independent

information, and YI = 1 that they are completely redundant. As

shown in Figure 6, YI(T,t) decays rapidly, on a time scale of less

than 20 ms. In contrast, correlations in the stimulus itself decay

much more slowly, on the ,55 ms time scale, and we find that the

time dependent spike rate r(t) essentially has the same correlation

time as the stimulus. The fact that coding redundancy decays three

times more rapidly than the correlations of the time dependent

firing rate indicates that the decorrelation of information is a

process more intricate than simply filtering the stimulus. It suggests

that there may be an adaptational mechanism at play that

increases the overall efficiency of coding by exploiting the

difference in time scales between stimulus changes and spike

Figure 4. Words, entropy and information in the neural response to natural signals. (A) Schematic showing how we convert the sequence
of action potentials into discrete ‘words’, that is, sequences of zeros and ones [31,4]. As an example, at the top we show the stimulus and spike arrival
times (red dots) in a 64 ms segment of the experiment. We may treat this as two successive segments of duration T = 32 ms, and divide these
segments into bins of duration t= 2, 8, or 32 ms. For sufficiently small t (here, t= 2 ms), each bin contains either zero or one spike, and so each neural
response becomes a binary word with T/t bits; larger values of t generate larger alphabets, until at t= T the response of the neuron is just the spike
count in the window of duration T. Note that the words are shown here as non-overlapping; this is just for graphical convenience. (B) The distribution
of words with t= 1 ms, for various values of T; words are plotted in rank order. We see that, for large T (T = 40 or 50 ms) but not for small T (T = 20 ms),
the distribution of words had a large segment in which the probability of a word is P / 1/rank/, corresponding to a straight line on this double
logarithmic plot. Similar behavior is commonly observed for words in English, with a= 1, which we show for comparison (solid line); this is sometimes
referred to as Zipf’s law [48]. (C) The entropy of a T = 25 ms segment of the spike train, as a function of the time resolution t with which we record the
spikes. We plot this as an entropy rate, S(T,t)/T, in bits/s; this value of T was chosen because this is the time scale on which visual motion drives motor
behavior [15]. For comparison we show the theoretical results (valid at small t) for a Poisson process [1], and a Poisson process with a refractory
period [12], with spike rates and refractory periods matched to the data. Note that the real spike train has significantly less entropy than do these
simple models. In [12] we showed that our estimation methods can recover the correct results for the refractory Poisson model using data sets
comparable in size to the one analyzed here; thus our conclusion that real entropies are smaller cannot be the result of undersampling. Error bars are
smaller than the data points. (d) The information content of T = 25 ms words, as a function of time resolution t; again we plot this as a rate
Rinfo(T,t) = I(T, t)/T, in bits/s.
doi:10.1371/journal.pcbi.1000025.g004

Neural Coding at Sub-Millisecond Precision
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timing precision. If correct, this would imply that we should

interpret neural firing patterns in context: The same pattern could

signify slightly different stimulus depending on what went on

before. This point merits further study, and may lead to further

refinements in how we should interpret neural firing patterns, such

as those shown in Figure 5. As far as we know this is the first direct

information theoretic demonstration of temporal redundancy

reduction in the context of neural coding.

Bit rates and photon counting rates
The ability of the fly’s visual system to mark features of the

stimulus with millisecond precision, even at a ,55 ms stimulus

correlation time, was demonstrated in conditions where the visual

input had very high signal-to-noise ratio. Previous work has

suggested that this system can estimate motion with a precision

close to the limits set by noise in the photoreceptors [37,38], which

is dominated by photon shot noise [39,40]. The present

experiments, however, were done under very different conditions:

Velocities of motion were much larger, the fly’s eye was stimulated

over a much larger area, and light intensities outdoors were much

larger than generated by laboratory displays. Light intensities in

our experiment were estimated to correspond to up to about

1.1?106 transduced photon/s per photoreceptor (see Methods). Is

it possible that photon counting statistics are limiting the precision

of H1, even at these high rates?

Because the experiments were done outdoors, there were small

fluctuations in light intensity from trial to trial as clouds drifted by

and obscured the sun. Although the range of these fluctuations was

less than a factor two, the arrival times of individual spikes (e.g.,

the ‘‘first spike’’ after t = 1.75 s in Figure 1) had correlation

coefficients of up to r = 20.42 with the light intensity, with the

negative sign indicating that higher light intensities led to earlier

spikes. One might see this effect as a failure of the system to adapt

to the overall light intensity, but it also suggests that some of what

we have called noise really represents a response to trial-by-trial

variations in stimulus conditions. Indeed, a correlation between

light intensity and spike time implies that the noise entropy

Sn(T,t|t) in windows which contain these spikes has a significant

contribution from stimulus variation, and should thus be smaller

when this source of variation is absent.

More subtly, if photon shot noise is relevant, we expect that, on

trials with higher light intensity, the neuron will actually convey

more information about the trajectory of motion. We emphasize

Figure 5. Fine spike timing differences and response conditional ensembles [32]. We consider five different neural responses, all of which
are identical when viewed at t= 2 ms resolution, corresponding to the binary pattern 11, spikes in two successive bins. At left, we consider responses
which, at higher time resolution, correspond to different interspike intervals. At right, the interspike interval is fixed but higher time resolution revealed
that the absolute spike arrival times differ. In each case, we compute the median motion trajectory conditional on the high time resolution response
(lines) and we indicate the width of the distribution with bars that range plus and minus one quartile around the median. It is clear that changes in
interspike interval encode changes in the distribution of stimulus waveform that are discriminable, since the mid-quartiles do not overlap. Changes in
absolute timing are more subtle, and so we estimate the conditional distributions of velocity at each moment in time using the methods of [49],
compute the overlap of these distributions, and convert the result into the equivalent signal-to-noise ratio d’ for discrimination against Gaussian noise
[50]; that is d’ is a distance between the means of two unit variance Gaussians that have the same overlap as the distributions in question. Note that we
compute this discriminability using single points in time; d’ values based on extended segments of the waveforms would be even higher.
doi:10.1371/journal.pcbi.1000025.g005

Figure 6. Redundancy reduction in the time domain. We
measure the redundancy YI(T,t) (points with error bars) between words
of length T in the neural response, as explained in the text. To allow
exploration of large T we work at a time resolution t= 3 ms. The
redundancy is compared to correlations in the stimulus Yv = Æv(t+T)v(t)æ/
Æv2æ (dotted line) or correlations in the spike rate Yc = Ædr(t+T)dr(t)æ/Ædr2æ
(dashed line). Note that the redundancy decays rapidly—we show an
exponential fit with a time constant of 17.3 ms. In contrast, the
correlations both in the stimulus and the firing rate decay much more
slowly—the solid line, for comparison, shows an exponential decay with
a time constant of 53.4 ms. Correlations in spike rate are calculated
from a separate experiment on the same cell, with 200 repetitions of a
10 s stimulus drawn from the same distribution, that generated more
accurate estimates of r(t).
doi:10.1371/journal.pcbi.1000025.g006
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that this is a delicate question. To begin, the differences in light

intensity were small, and we expect (at most) proportionately small

effects. Further, as the light intensity increased, the total spike rate

increased. Interestingly, this increased both the total entropy and

the noise entropy. To see if the system used the more reliable

signal at higher light intensities to convey more information, we

have to determine which of these increases is larger.

To test the effects of light intensity on information transmission (see

Methods for details), we divide the trials into halves based on the

average light intensity over the trial, and we try to estimate the

information rates in both halves; the two groups of trials differ by just

3% in their median light intensities. Since cutting the number of trials

in half makes our sampling problems much worse, we focus on short

segments of the response (T = 6 ms) at high time resolution

(t = 0.2 ms); note that these are still ‘‘words’’ with 30 letters. For this

case we find that for the trials with higher light intensities the

information about the motion stimulus is larger by

D = 0.020460.0108 bits, which is small but significant at the 94%

confidence level. We find differences with the same sign for all

accessible combinations of T and t, and the overall statistical

significance of the difference thus is much larger. Note that since we

were analyzing T = 6 ms windows, this difference correspond to

DR,3 bits/s, 1–2% of the total (cf. Figure 4). Thus even at rates of

more than one million photons per second per receptor cell, small

increases in photon flux produce proportionally small, yet measurable

increases in the transmission of information about the motion stimulus.

Discussion

We have found that under natural stimulus conditions the fly

visual system generates spikes and interspike intervals with

extraordinary temporal precision. As a consequence, the neural

response carries a substantial amount of information that is

available only at sub-millisecond time resolution. At this high

resolution, absolute spike timing is informative about the time at

which particular stimulus features occur, while different interspike

intervals provide a rich representation of distinguishable stimulus

features. These results clearly demonstrate that the visual system

uses sub-millisecond timing to paint a more accurate picture of the

natural sensory world, at least in this corner of the fly’s brain. We

emphasize again that here the sub-millisecond precision is not a

result of an equally fast stimulus dynamics since the stimulus, in

fact, has essentially no power at these frequencies. This is an

important distinction, discussed in detail in [41]. In addition, an

equally important observation is that the system performs

efficiently both in the tasks of estimation and of coding, making

use of the extra signal-to-noise provided by increased photon flux,

even at daylight levels of light intensity. Perhaps of most interest,

the analysis has made it possible to demonstrate a qualitative

feature of the neural code in this system, namely the encoding of a

temporally redundant stimulus in a neural signal of much shorter

correlation time. At this point we can only speculate about the

functional implications of this phenomenon, but at the very least it

should give us pause in interpreting the code. Further study may

reveal it to be an important feature of sensory coding and

computation more generally, in particular under natural condi-

tions where signals have high dynamic range, and show dramatic

variations in reliability. We hope to be able to develop these ideas

in more detail in the near future.

Finally, we note that our ability to reach these conclusions

depends not just on new experimental methods that allow us to

generate truly naturalistic stimuli [9], but critically on new

mathematical methods that allow us to analyze neural responses

quantitatively even when it was impossible for us to sample the

distribution of responses exhaustively [10,12]. The theoretical

tools presented here were developed with the explicit aim of being

efficient in estimating entropies in the severely undersampled

regime. This is crucial in neurophysiological experiments, where

large stable datasets are very difficult to obtain. Most previously

described entropy estimation methods, such as [4,24,27–

30,42,43], and others reviewed in [24], have relied on one of

three different ways to overcome the undersampling problem.

Some, for example [29], have chosen to define a metric on the

space of responses, which makes it possible to ‘‘regularize’’ the

problem by imposing similarity among probabilities of similar

outcomes. Others, like [30], explore generative models for the

data, which serves a similar regularizing function. Both approach-

es work well if and only if the underlying choices match the

properties of the real data. The majority of recent approaches,

such as [24], follow the third route and rely essentially on applying

1/N asymptotic corrections to the maximum likelihood estimator

which means that they require mean bin occupancies O(1) to work.

That leads to severe, and often impractical, demands on the size of

the datasets as the cost of guaranteeing an estimator’s perfor-

mance. In contrast, the estimator presented here is based on

counting coincidences, which still will occur even if the mean

occupancy is much less than one. While we know that, in the worst

case, even coincidence-based approaches may still require O(1)

samples per possible outcome to produce low-bias and low-

variance entropy estimates [44,24], they may require substantially

less data in simpler cases (in the best case scenario, to reach equal

levels of resolution, the number of independent samples in the data

set scales as the square-root of the number required by the other

estimation methods. Or alternatively, with the same size dataset,

the timing resolution is better by a factor of two.) For the data

studied here, Nature cooperated: for example, to estimate noise

entropies we use 100 samples for repeated stimuli for binary words

of length 30 or more, so that the mean occupancy is ,1027.

However, the success of the method could not have been predicted

a priori, and the majority of our computational effort was spent

not on calculation of information rates per se, but on answering

the very delicate question of whether the NSB method can be

trusted to have small bias for our data. This is why we caution the

reader from using NSB as a simple black-box estimation tool,

without checking if it really works first. Finally, we notice that our

method for estimating entropies bears some resemblance to the

work of Wolpert and Wolf [45], who used a single-beta Dirichlet

prior to estimate functions of sparsely sampled probability

distributions. A crucial distinction, however, is that instead of a

single prior we use a family of Dirichlet priors to construct a prior

distribution of entropies that is approximately flat (see Methods). We

believe that, without a similar flattening of the distribution of

entropies, any Bayesian method is bound to have large biases

below bin occupancies of O(1).

Information theoretic approaches force us to formulate

questions and quantify observations in unbiased ways. Thus,

success in solving a problem in an information theoretic context

leads to results of great generality. But success in an experimental

context hinges on the solution of practical problems. We hope that

the methods presented here contribute to solving an important

practical problem, and will be a step toward wider application of

information theoretic methods in neuroscience.

Methods

Neural recording and stimulus generation
H1 was recorded extracellularly by a short (12 mm shank

length) tungsten electrode (FHC). The signal was preamplified by

Neural Coding at Sub-Millisecond Precision

PLoS Computational Biology | www.ploscompbiol.org 8 2008 | Volume 4 | Issue 3 | e1000025



a differential bandpass instrumentation amplifier based on the

INA111 integrated circuit (Burr-Brown). After amplification by a

second stage samples were digitized at 10 kHz by an AD

converter (National Instruments DAQCard-AI-16E-4, mounted

in a Fieldworks FW5066P ruggedized laptop). In off line analysis,

the analog signal was digitally filtered by a template derived from

the average spike waveform. Spikes were then time stamped by

interpolating threshold crossing times. The ultimate precision of

this procedure was limited by the signal to noise ratio in the

recording; for typical conditions this error was estimated to be 50–

100 ms. Note that we analyzed spike trains down to a precision of

t = 200 ms, so that some saturation of information at this high

time resolution may have actually resulted from instrumental

limitations. The experiments were performed outside in a wooded

environment, with the fly mounted on a stepper motor with

vertical axis. The speed of the stepper motor was under computer

control, and could be set at 2 ms intervals. The DAQ card

generated a 500 Hz clock signal divided down from the same

master clock that governs the AD sample rate. The stepper motor

(SIG-Positec RDM566/50, 10,000 pulses per revolution, or

0.036u/pulse) was driven by a controller (SIG-Positec Divistep

D331.1), which received pulses at a frequency divided down from

a free running 8 MHz clock. Over the short time interval

(t,t+2 ms) the stimulus velocity v(t) was determined by the pulse

frequency, f(t), that the controller received. This in turn was set by

the numerical value, Ndiv(t), of a divisor: f(t) = 8MHZ/Ndiv(t), and

v(t) = (0.036) ? f(t) u/s. Successive values of Ndiv(t) were read every

2 ms from a stimulus file stored on a dedicated laptop computer.

In this way, each 2 ms period the stepper motor speed was set to a

value read from computer, keeping long-term synchrony with the

data acquisition clock, with a maximum jitter of 1/

(8 MHz) = 125 ns. The method for delivering pulses to the motor

controller minimized the jerkiness of the motion by spacing the

controller pulses evenly over each 2 ms interval. This proved to be

crucial for maintaining stability of the electrophysiological

recording.

Controlling temperature
To stabilize temperature the setup was enclosed by a

transparent plexiglass cylinder (radius 15 cm, height 28 cm), with

a transparent plexiglass lid. The air temperature in the

experimental enclosure was regulated by a Peltier element fitted

with heat vanes and fans on the inside and outside for efficient heat

dispersal, and driven by a custom built feedback controller. The

temperature was measured by a standard J-type thermocouple,

and could be regulated over a range from some five degrees below

to fifteen degrees above ambient temperature. The controller

stabilized temperature over this range to within about a degree. In

the experiments described here, temperature was 2361uC.

Monitoring light intensity
A running overall measure of light intensity was obtained by

monitoring the current of a photodiode (Hamamatsu S2386-

44K) enclosed in a diffusing ping pong ball. After a current to

voltage conversion stage, the photodiode signal was amplified by

a logarithmic amplifier (Burr-Brown LOG100) operating over

five decades. The probe was located ,50 cm from the fly, and in

the experiments the setup was always placed in the shade. The

photodiode measurement was intended primarily to get a rough

impression of relative light intensity fluctuations. To relate these

measurements to outside light levels, at the start of each

experiment a separate calibration measurement of zenith

radiance was taken with a calibrated radiometer (International

Light IL1400A using silicon detector SEL033/F/R, with

radiance barrel). The radiance measurement was done over a

limited spectral band defined by a transmission filter (Interna-

tional Light, WBS480) and an infrared absorption filter. In this

way the radiometer’s spectral sensitivity peaks close to the fly

photoreceptor’s 490 nm long wavelength maximum. However, it

is about 20% broader than the fly’s spectral sensitivity peak in

the 350–600 nm range, and the photoreceptor’s UV peak [46]

was not included in this measurement. To relate this radiance

measurement to fly physiology, the radiance reading was

converted to an estimated effective fly photoreceptor photon

rate, computed from the spectral sensitivity of the blowfly R1-6

type photoreceptor [46], the radiometer’s spectral sensitivity and

the spectral distribution of sky radiance [47]. The reading of the

photodiode was roughly proportional to the zenith intensity

reading, with a proportionality factor determined by the

placement of the setup and the time of day. In the experiments,

light intensities within the visual field of the fly ranged from

about 2% to 100% of zenith intensity. To obtain a practical rule

of thumb, the photodiode readings were converted to equivalent

zenith photon flux values, using the current to zenith radiance

conversion factor established at the beginning of the experiment.

During the experiments the photodiode signal was sampled at 1 s

intervals.

Repeated stimuli
In their now classical experiments, Land and Collett measured

the trajectories of flies in free flight [15]; in particular they

reported the angular position (orientation) of the fly vs. time, from

which we can compute the angular velocity v(t). The short

segments of individual trajectories shown in the published data

have a net drift in angle, so we include both the measured v(t) and

2v(t) as parts of the stimulus. We used the trajectories for the two

different flies in Figure 4 of [15], and grafted all four segments

together, with some zero padding to avoid dramatic jumps in

velocity, generating a 5 second long stimulus with zero drift, so

that repetition of the angular velocity vs. time also repeated the

angular position vs. time. Since Land and Collett reported data

every 20 ms, we interpolated to generate a signal that drives the

stepper motor at 2 ms resolution; interpolation was done using the

MATLAB routine interp, which preserved the bandlimited nature

of the original signal and hence did not distort the power

spectrum.

Nonrepeated stimulus
To analyze the full entropy of neural responses, it is useful to

have a stimulus that is not repeated. We would like such a stimulus

to match the statistical properties of natural stimulus segments

described above. To do this, we estimated the probability

distribution P[v(t+Dt)|v(t)] from the published trajectories, where

Dt = 20 ms was the time resolution, and then used this as the

transition matrix of a Markov process from which we could

generate arbitrarily long samples; our nonrepeated experiment

was based on a 990 s trajectory drawn in this way. The resulting

velocity trajectories, in particular, had exactly the same distribu-

tions of velocity and acceleration as in the observed free flight

trajectories. Although the real trajectories are not exactly

Markovian, our Markovian approximation also captures other

features of the natural signals, for example generating a similar

number of velocity reversals per second. Again we interpolated

these trajectories to obtain a stimulus at 2 ms resolution.

Entropy estimation in a model problem
The problem in Figure 2 is that of a potentially biased coin.

Heads appear with probability p, and the probability of observing
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n heads out of N flips is

PN njpð Þ!pn 1{pð ÞN{n: ð1Þ

If we observe n and try to infer p, we use Bayes’ rule [1] to

construct

PN pjnð Þ~PN njpð Þ P pð Þ
PN nð Þ!P pð Þpn 1{pð ÞN{n

, ð2Þ

where P(p) is our prior and PN nð Þ~
ð1

0

dp PN njpð ÞP pð Þ is a

normalization constant, which can be ignored. Given this posterior

distribution of p we can calculate the distribution of the entropy,

S pð Þ~{p log2 pð Þ{ 1{pð Þ log2 1{pð Þ: ð3Þ

We proceed as usual to define a function g(S) that is the inverse

of S(p), that is g(S(p)) = p; since p and 1-p give the same value of S,

we choose 0,g#0.5 and let g̃ (S) = 1-g(S). Then we have

PN Sjnð Þ~ PN p~g Sð Þjnð ÞzPN p~~gg Sð Þjnð Þ½ � dg Sð Þ
dS

����
����: ð4Þ

From this distribution, we can estimate a mean S̃N(n) and a

variance s2(n,N) in the usual way. What interests us is the

difference between S̃N(n) and the true entropy S(p) associated with

the actual value of p characterizing the coin; it makes sense to

measure this difference in units of the standard deviation dS(n,N).

Thus we compute

S S0{S0ð Þ=dST~
XN

n~0

PN njpð Þ SN nð Þ{S pð Þ
dS n,Nð Þ

� �
, ð5Þ

and this is what is shown in Figure 2. We consider two cases. First,

a flat prior on p itself, so that P(p) = 1. Second, a flat prior on the

entropy, which corresponds to

P pð Þ~ 1

2

dS pð Þ
dp

����
����~ 1

2
log2

1{p

p

� �����
����: ð6Þ

Here, 1/2 in front of the derivative accounts for two values of p

being mapped into the same S. Note that this prior is (gently)

diverging near the limits p = 0 and p = 1, but all the expectation

values that we are interested in are finite.

Entropy estimation: General features
Our discussion here follows [10,12] very closely. Consider a set

of possible neural responses labeled by i = 1,2,…,K. The

probability distribution of these responses, which we don’t know,

is given by p ; {pi}. A well studied family of priors on this

distribution is the Dirichlet prior, parameterized by b,

Pb pð Þ~ 1

Z b; Kð Þ P
K

i~1
p

b{1
i

� �
d
XK

i~1

pi{1

 !
: ð7Þ

Maximum likelihood estimation, which identifies probabilities

with frequencies of occurrence, is obtained in the limit b R 0,

while b= 1 is the natural ‘‘uniform’’ prior. When K becomes large,

almost any p chosen out of this distribution has an entropy

S~{
X

i

pi log2 pi very close to the mean value,

�SS b; Kð Þ~y0 Kbz1ð Þ{y0 bz1ð Þ, ð8Þ

where y0(x) = dlog2C(x)/dx, and C(x) is the gamma function. We

therefore construct a prior that is approximately flat on the

entropy itself by a continuous superposition of Dirichlet priors,

P pð Þ~
ð

db
L�SS b; Kð Þ

Lb
Pb pð Þ, ð9Þ

and we then use this prior to perform standard Bayesian inference.

In particular, if we observe each alternative i to occur ni times in

our experiment, then

P nif gjpð Þ! P
K

i~1
pni

i , ð10Þ

and hence by Bayes’ rule

P pj nif gð Þ! P
K

i~1
pni

i

� �
P pð Þ: ð11Þ

Once we normalize this distribution we can integrate over all p
to give the mean and the variance of the entropy given our data

{ni}. In fact, all the integrals can be done analytically except for

the integral over b [10,45]. Software implementation of this

approach is available from http://nsb-entropy.sourceforge.net/.

This basic strategy can be supplemented in cases where we have

prior knowledge about the entropies. In particular, when we are

trying to estimate entropy in ‘‘words’’ of increasing duration T, we

know that S(T*,t)#S(T,t)#S(T*,t)+S(T-T*,t) for any T*,T, and

thus it makes sense to constrain the priors at T using the results

from smaller windows T’, although this is not critical to our results.

We obtain results at all integer values of T/t for which our

estimation procedure is stable (see below) and use cubic splines to

interpolate to non-integer values as needed.

Entropy estimation: Details for total entropy
There are two critical challenges to estimating the entropy of

neural responses to natural signals. First, the overall distribution of

(long) words has a Zipf-like structure (Figure 4B), which is

troublesome for most estimation strategies and leads to biases

dependent on sample size. Second, the long correlation times in

the stimulus mean that successive words ‘spoken’ by the neuron

are strongly correlated, and hence it is impossible to guarantee that

we have independent samples, as assumed implicitly in Eq. (10).

We tamed the long tails in the probability distribution by

partitioning the space of responses, estimating entropies within

each partition, and then using the additivity of the entropy to

estimate the total. We investigated a variety of different partitions,

including (a) no spikes vs. all other words, (b) no spikes, all words

with one spike, all words with two spikes, etc., (c) no spikes, all

words with frequencies of over 1000, and all other words. Further,

for each partitioning, we followed [4] and evaluated S(T,t) for data

sets of different sizes aN, 0,a#1. By choosing fractions of the data

in different ways we separated the problems of correlation and

sample size. That is, to check that our estimates were stable as a

function of sample size, we chose contiguous segments of

experiment, while to check for the impact of correlations we
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‘diluted’ our sampling so that there were longer and longer

intervals between words. Obviously there are limits to this

exploration (one cannot access large, very dilute samples), but as

far as we could explore the impact of correlations on our estimates

was negligible once the samples sizes were sufficiently large. For

the effects of sample size we looked for behavior of the form

S(a) = S‘+S1/a+S2/a2 and took S‘ as our estimate of S(T,t), as in

[4]. For all partitions in which the most common word (silence)

was separated from the rest, these extrapolated estimates agreed

and indicated negligible biases at all combinations of t and T for

which the 1/a2 term was negligible (that is, did not change the

extrapolation results by more than the extrapolation error)

compared to the 1/a; this happened for all t$0.5 ms at

T#25 ms. For smaller t, estimation failed at progressively smaller

T, and to obtain an entropy rate for large T we extrapolated to t/

TR0 using

1

T
S T ,tð Þ~s tð ÞzA t=Tð ÞzB t=Tð Þ2 ð12Þ

where s(t) was our best estimate of the entropy rate at resolution t.
All fits were of high quality, and the resulting error bars on the

total entropy were negligible compared to those for the noise

entropy. In principle, we could be missing features of the code

which would appear only at high resolution for very long words,

but this unlikely scenario is almost impossible to exclude by any

means.

Entropy estimation: Details for noise entropy
Putting error bars on the noise entropy averaged over time is

more difficult because these should include a contribution from the

fact that our finite sample over time is only an approximation to

the true average over the underlying distribution of stimuli.

Specifically, the entropies were very different in epochs that have

net positive or negative velocities. We constructed the repeated

stimulus, v(t) = 2v(t+T0), with T0 = 2.5 s. As a result, the sum

Sn(T,t|t)+Sn(T,t|t+T1) with T1<T0 fluctuated much less as a

function of t than the entropy in an individual slice. Because our

stimulus had zero mean, every slice had a partner under this shift,

and the small difference between T0 and T1 took account of the

difference in latency between responses to positive and negative

inputs. A plot of Sn(T,t|t)+Sn(T,t|t+T1) vs. time t had clear dips at

times corresponding to zero crossings of the stimulus, and we

partitioned the data at these points. We derived error bars on the

mean noise entropy ÆSn(T,t|t)tæ by a bootstrap-like method, in

which we constructed samples by randomly sampling with

replacements from among these blocks, jittering the individual

entropies Sn(T,t|t) by the errors that emerge from the Bayesian

analysis of individual slices. These blocks are long enough to

preserve temporal correlations within them, but correlations across

the block boundaries are negligible in the original signal,

validating the procedure. As with the total entropy, we

extrapolated to otherwise inaccessible combinations of T and t,

now writing

1

T
SSn T ,tjtð ÞTt~sn tð ÞzA t=Tð ÞzB t=Tð Þ2

zC cos 2pT=t0ð Þ
ð13Þ

and fitting by weighted regression. Note that results at different T

but the same value of t were strongly correlated, and so the

computation of x2 was done using the full (non-diagonal)

covariance matrix. The periodic term was important at small t,
where we could see structure as the window size T crossed integer

multiples of the average interspike interval, t0 = 2.53 ms. Error

estimates emerged from the regression in the standard way, and all

fits had x2,1 per degree of freedom.

The procedures followed to get the total and noise entropy

estimates in combination with the checks described above result in

bias errors that are believed to be smaller than the random errors

over the parameter range that we consider in all the analyses

presented in this paper.

Impact of photon flux on information rates
Since there were no responses to repeated and unrepeated stimuli

recorded at exactly the same illuminations, we used the data from

the repeated experiment to evaluate both the noise entropy and the

total entropy. We were looking for minute effects, so we tightened

our analysis by discarding the first two trials, which were

significantly different from all the rest (presumably because

adaptation was not complete), as well as excluding the epochs in

which the stimulus was padded with zeroes. The remaining 98 trials

were split into two groups of 49 trials each with the highest and the

lowest ambient light levels. We then estimated the total entropy

S(h,l)(T,t) for the high (h) and low (l) intensity groups of trials, and

similarly for the noise entropy in each slice at time t, S h,lð Þ
n T ,tjtð Þ. As

above, assigning error bars was clearer once we formed quantities

that were balanced across positive and negative velocities, and we

did this directly for the difference in noise entropies,

DSn T ,t; tð Þ~ S hð Þ
n T ,tjtð ÞzS hð Þ

n T ,tjtzT1ð Þ
h i

{ S lð Þ
n T ,tjtð ÞzS lð Þ

n T ,tjtzT 01
� �h i ð14Þ

where we allowed for a small difference in latencies T1=T 01
� �

between the groups of trials at different intensities. We found that

DSn(T,t;t) had a unimodal distribution and a correlation time of

,1.4 ms, which allowed for an easy evaluation of the estimation error.

Author Contributions

The theoretical ideas and experimental methods presented in this paper

were developed in close collaboration. IN and WB focused on developing

the conceptual framework, implementing statistical tools, and analyzing the

data. GL and RR designed the setup and performed the experiments.

References

1. Rieke F, Warland D, de Ruyter van Steven-inck R, Bialek W (1997)

Spikes: Exploring the Neural Code. Cambridge (Massachusetts): MIT

Press.

2. MacKay D, McCulloch WS (1952) The limiting information capacity of a

neuronal link. Bull Math Biophys 14: 127–135.

3. Abeles M (1982) Local Cortical Circuits: An Electrophysiological Study. Berlin:

Springer–Verlag.

4. Strong SP, Koberle R, de Ruyter van Steveninck R, Bialek W (1998) Entropy

and information in neural spike trains. Phys Rev Lett 80: 197–200.

5. Liu R, Tzonev S, Rebrik S, Miller KD (2001) Variability and information in a

neural code of the cat lateral geniculate nucleus. J Neurophysiol 86: 2789–2806.

6. Carr CE (1993) Processing of temporal information in the brain. Ann Rev

Neurosci 16: 223–243.

7. Hopfield JJ (1995) Pattern recognition computation using action potential timing

for stimulus representation. Nature 376: 33–36.

8. Hausen K (1984) The lobular complex of the fly: Structure, function and

significance in behavior. In: Ali M, ed. Photoreception and Vision in

Invertebrates. New York: Plenum. pp 523–559.

Neural Coding at Sub-Millisecond Precision

PLoS Computational Biology | www.ploscompbiol.org 11 2008 | Volume 4 | Issue 3 | e1000025



9. Lewen GD, Bialek W, de Ruyter van Steveninck R (2001) Neural coding of

naturalistic motion stimuli. Network 12: 317–329.
10. Nemenman I, Shafee F, Bialek W (2000) Entropy and inference, revisited. In:

Dietterich T, Becker S, Gharamani Z, eds. Advances in Neural Information

Processing Systems 14: 471–478. Cambridge (Massachusetts): MIT Press.
11. Nemenman I (2002) Inference of entropies of discrete random variables with

unknown cardinalities. Physics 0207009.
12. Nemenman I, Bialek W, de Ruyter van Steveninck R (2004) Entropy and

information in neural spike trains: Progress on the sampling problem. Phys Rev E

69: 056111.
13. Barlow HB (1959) Sensory mechanisms, the reduction of redundancy and

intelligence. In Proceedings of the Symposium on the Mechanization of Thought
Processes, Vol 2, Blake DV, Uttley AM, eds. pp 537–574. London: HM

Stationery Office.
14. Barlow HB (1961) Possible principles underlying the transformation of sensory

messages. In Sensory Communication Rosenblith W, ed. pp 217–234.

Cambridge (Massachsuetts): MIT Press.
15. Land MF, Collett TS (1974) Chasing behavior of houseflies (Fannia canicularis).

A description and analysis. J Comp Physiol 89: 331–357.
16. Reichardt W, Poggio T (1976) Visual control of orientation behavior in the fly.

Part I: A quantitative analysis. Q Rev Biophys 9: 311–375.

17. Hausen K, Wehrhahn C (1983) Microsurgical lesions of horizontal cells changes
optomotor yaw responses in the blowfly Calliphora erythrocephela. Proc R Soc

Lond Ser B 219: 211–216.
18. Wagner H (1986) Flight performance and visual control of flight in the free–

flying house fly (Musca domestica L.). I–III. Phil Trans R Soc Ser B 312:
527–595.

19. Schilstra C, van Hateren JH (1999) Blowfly flight and optic flow. I. Thorax

kinematics and flight dynamics. J Exp Biol 202: 1481–1490.
20. van Hateren JH, Schilstra C (1999) Blowfly flight and optic flow. II. Head

movements during flight. J Exp Biol 202: 1491–1500.
21. de Ruyter van Steveninck R, Borst A, Bialek W (2001) Real time encoding of

motion: Answerable questions and questionable answers from the fly’s visual

system. In Processing Visual Motion in the Real World: A Survey of
Computational, Neural and Ecological Constraints Zanker JM, Zeil J, eds. pp

279–306. Berlin: Springer–Verlag.
22. van Hateren JH, Kern R, Schwerdtfeger G, Egelhaaf M (2005) Function and

coding in the blowfly H1 neuron during naturalistic optic flow. J Neurosci 25:
4343–4352.

23. Shannon CE, Weaver W (1949) The mathematical theory of communication.

Urbana (Illinois): The University of Illinois Press.
24. Paninski L (2003) Estimation of entropy and mutual information. Neural Comp

15: 1191–1253.
25. Ma S (1981) Calculation of entropy from data of motion. J Stat Phys 26:

221–240.

26. Seber GAF (1973) Estimation of Animal Abundance and Related Parameters.
London: Griffin.

27. Miller GA (1955) Note on the bias of information estimates. In Information
Theory in Psychology: Problems and Methods II–B Quastler H, ed. pp 95–100.

Glencoe (Illinois): Free Press.
28. Treves A, Panzeri S (1995) The upward bias in measures of information derived

from limited data samples. Neural Comp 7: 399–407.

29. Victor J (2002) Binless strategies for estimation of information from neural data.

Phys. Rev. E 66: 051903.

30. Kennel M, Shlens J, Abarbanel H, Chichilnisky EJ (2005) Estimating entropy

rates with Bayesian confidence intervals. Neural Comp. 17: 1531–1576.

31. de Ruyter van Steveninck R, Lewen GD, Strong SP, Koberle R, Bialek W (1997)

Reproducibility and variability in neural spike trains. Science 275: 1805–1808.

32. de Ruyter van Steveninck R, Bialek W (1988) Real–time performance of a

movement sensitive neuron in the blowfly visual system: Coding and information

transfer in short spike sequences. Proc R Soc London Ser B 234: 379–414.

33. Carr CE, Heiligenberg W, Rose GJ (1986) A time–comparison circuit in the

electric fish midbrain. I. Behavior and physiology. J Neurosci 10: 3227–3246.

34. Reich DS, Victor JD, Knight BW, Ozaki T, Kaplan E (1997) Response

variability and timing precision of neuronal spike trains in vivo. J. Neurophysiol.

77: 2836–2841.

35. Brenner N, Strong SP, Koberle R, Bialek W, de Ruyter van Steveninck R (2000)

Synergy in a neural code. Neural Comp 12: 1531–1552.

36. Reinagel P, Reid RC (2000) Temporal coding of visual information in the

thalamus. J Neurosci 20: 5392–5400.

37. Bialek W, Rieke F, de Ruyter van Ste-ven-inck RR, Warland D (1991) Reading

a neural code. Science 252: 1854–1857.

38. de Ruyter van Steveninck R, Bialek W (1995) Reliability and statistical efficiency

of a blowfly movement–sensitive neuron. Phil Trans R Soc Lond Ser B 348:

321–340.

39. de Ruyter van Steveninck R, Laughlin SB (1996) The rate of information

transfer at graded–potential synapses. Nature 379: 642–645.

40. de Ruyter van Steveninck R, Laughlin SB (1996) Light adaptation and reliability

in blowfly photoreceptors. Int J Neural Syst 7: 437–444.

41. Theunissen F, Miller JP (1995) Temporal encoding in nervous systems: A

rigorous definition. J Comput. Neurosci. 2: 149–162.

42. Victor JD, Purpura K (1996) Nature and precision of temporal coding in visual

cortex: a metric-space analysis. J. Neurophysiol. 76: 1310–1326.

43. Batu T, Dasgupta S, Kumar R, Rubinfeld R (2002) The complexity of

approximating the entropy. In Proc. 34th Symp. Theory of Computing (STOC),

pp 678–687.

44. Wyner A, Foster D (2003) On the lower limits of entropy estimation. Preprint.

http://www-stat.wharton.upenn.edu/,ajw/lowlimitsentropy.pdf.

45. Wolpert DH, Wolf DR (1995) Estimating functions of probability distributions

from a finite set of samples, Phys. Rev. E 52: 6841–6854.

46. Minke B, Kirschfeld K (1979) The contribution of a sensitizing pigment to the

photosensitivity spectra of fly rhodopsin and metarhodopsin. J Gen Physiol 73:

517–540.

47. Menzel R (1979) Spectral Sensitivity and Color Vision in Invertebrates. In

Handbook of Comparative Physiology Autrum H, ed, vol VII/6A, pp 503–580.

Berlin-Heidelberg-New York: Springer-Verlag.

48. Zipf GK (1949) Human Behavior and the Principle of Least Effort. Cambridge

(Massachusetts): Addison–Wesley.

49. Nemenman I, Bialek W (2002) Occam factors and model-independent Bayesian

learning of continuous distributions. Phys Rev E 65: 026137.

50. Green DM, Swets JA (1966) Signal Detection Theory and Psychophysics. New

York: Wiley.

Neural Coding at Sub-Millisecond Precision

PLoS Computational Biology | www.ploscompbiol.org 12 2008 | Volume 4 | Issue 3 | e1000025


