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Coincidences And Entropies of Random Variables
with Very Large Alphabets

Ilya Nemenman

Abstract— We examine the recently introduced NSB estimator
of entropies of severely undersampled discrete variables and
devise a procedure for calculating the involved integrals. We
discover that the output of the estimator has a well defined limit
for large cardinalities of the variables being studied. Thus one
can estimate entropies with no a priori assumptions about these
cardinalities, and a closed form solution for such estimates is
given.

Index Terms— Asymptotics of entropy estimators, undersam-
pled discrete variables, coincidences, bias-variance tradeoff, infi-
nite cardinality.

I. I NTRODUCTION

ESTIMATION of functions of a discrete random vari-
able with an unknown probability distribution using

independent samples of this variable seems like an almost
trivial problem known to many yet from the high school [1].
However, the simplicity vanishes if one considers an extremely
undersampled regime, whereK, the cardinality or the alphabet
size of the variable, is much larger thanN , the number of
its samples. In this case, the average number of samples per
possible outcome (also calledbin) is less than one, and the
relative uncertainty in the underlying probability distribution
and its various statistics is large. Then one can use the power
of Bayesian statistics to bias the set of a priori admissible
distributions and thus decrease the posterior errors. Finding
the optimal bias-variance tradeoff point is not easy, and, for
severely undersampled cases, such attempts to control the
variance often make the estimator a function of the prior, rather
than of the measured data.

The situation is particularly bad for inferring the
Boltzmann–Shannon entropy,S, one of the most important
characteristics of a discrete variable. Its frequentist aswell
as common Bayesian estimators have low variances, but high
biases that are very difficult to calculate (see Ref. [?] for
a review). However, recently ideas from Bayesian model
selection [2]–[5] were used by Nemenman, Shafee, and Bialek
to suggest a solution to the problem [6]. Their method,
hereafter called NSB, is robust and unbiased even for severely
undersampled problems. We will review it and point out that
it is equivalent to finding the number of yet unseen bins
with nonzero probability givenK, the maximum cardinality
of the variable. While estimation ofK by model selection
techniques will not work, we will show that the method has a
proper limit asK → ∞. Thus one should be able to calculate
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entropies of discrete random variables evenwithout knowing
their cardinality.

II. SUMMARY OF THE NSB METHOD

In Bayesian statistics, one uses Bayes rule to expresses pos-
terior probability of a probability distributionq ≡ {qi}, i =
1 . . . K, of a discrete random variable with a help of its a
priori probability,P(q). Thus if ni identical and independent
samples fromq are observed in bini, such that

∑K
i=1 ni = N ,

then the posterior,P (q|n), is

P (q|n) =
P (n|q)P(q)

P (n)
=

∏K
i=1 q

ni

i P(q)
∫ 1

0
dKq

∏K
i=1 q

ni

i P(q)
. (1)

Following Ref. [6], we will focus on popular Dirichlet
family of priors, indexed by a (hyper)parameterβ:

Pβ(q) =
1

Z(β)
δ

(
1 −

K∑

i=1

qi

)
K∏

i=1

qβ−1
i , Z(β) =

ΓK(β)

Γ(Kβ)
.

(2)
Here δ–function andZ(β) enforce normalizations ofq and
Pβ(q) respectively, andΓ stands for Euler’sΓ–function. These
priors are common in applications [7] since they, as well as
the data term,P (n|q), are of a multinomial structure, which
is analytically tractable. For example, in Ref. [8] Wolpertand
Wolf calculated posterior averages, here denoted as〈. . . 〉β , of
many interesting quantities, including the distribution itself,

〈qi〉β =
ni + β

N + κ
, κ ≡ Kβ , (3)

and the moments of its entropy, which we will not reprint here.
As suggested by Eq. (3), Dirichlet priors add extraβ sample

points to each possible bin. Thus forβ � N/K the data is
unimportant, andP (q|n) is dominated by the distributions
close to the uniform one,q ≈ 1/K. The posterior mean of
the entropy is then strongly biased upwards to its maximum
possible value ofSmax = lnK.1 Similarly, for β � N/K,
distributions in the vicinity of the frequentist’s maximum
likelihood estimate,q = n/N , are important, and〈S〉β has
a strong downward bias [?].

In Ref. [6], Nemenman et al. traced this problem to the
properties of the Dirichlet family: its members encode reason-
able a priori assumptions aboutq, but not aboutS(q). Indeed,
it turns out that a priori assumptions about the entropy are

1In this paper the unit of entropy isnat. Thus all logarithms are natural.
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extremely biased, as may be seen from its following a priori
moments.

ξ(β) ≡ 〈S |N=0 〉β = ψ0(κ+ 1) − ψ0(β + 1) , (4)

σ2(β) ≡ 〈(δS)2 |N=0 〉β =
β + 1

κ+ 1
ψ1(β + 1) − ψ1(κ+ 1) ,(5)

whereψm(x) = (d/dx)m+1 ln Γ(x) are the polygamma func-
tions. ξ(β) varies smoothly from0 for β = 0, through1 for
β ≈ 1/K, and tolnK for β → ∞. σ(β) scales as1/

√
K for

almost allβ (see Ref. [6] for details). This is negligibly small
for largeK. Thusq that is typical inPβ(q) usually has its
entropy extremely close to some predeterminedβ–dependent
value. It is not surprising then that this bias persists evenafter
N < K data are collected.

The NSB method suggests that to estimate entropy with a
small bias one should not look for priors that seem reasonable
on the space ofq, but rather the a priori distribution of entropy,
P(S(q)), should be flattened. This can be done approximately
by noting that Eqs. (4, 5) ensure that, for largeK, P(S) is
almost aδ–function. Thus a prior that enforces integration
over all non–negative values ofβ, which correspond to all a
priori expected entropies between0 and lnK, should do the
job of eliminating the bias in the entropy estimation even for
N � K. While there are probably other options, Ref. [6]
centered on the following prior, which is a generalization of
Dirichlet mixture priors[9] to an infinite mixture:

P(q;β) =
1

Z
δ

(
1 −

K∑

i=1

qi

)
K∏

i=1

qβ−1
i

dξ(β)

dβ
P(β) . (6)

Here Z is again the normalizing coefficient, and the term
dξ/dβ ensures uniformity for the a priori expected entropy,
ξ, rather than forβ. A non–constant prior onβ, P(β), may
be used if sufficient reasons for this exist, but we will set it
to one in all further developments.

Inference with the prior, Eq. (6), involves additional aver-
aging overβ (or, equivalently,ξ), but is nevertheless straight-
forward. The a posteriori moments of the entropy are

Ŝm =

∫ lnK

0
dξ ρ(ξ,n)〈Sm〉β(ξ)∫ lnK

0
dξ ρ(ξ|n)

, where the posterior density is(7)

ρ(ξ|n) = P (β (ξ))
Γ(κ(ξ))

Γ(N + κ(ξ))

K∏

i=1

Γ(ni + β(ξ))

Γ(β(ξ))
. (8)

Nemenman et al. explain why this method should work
using the theory of Bayesian model selection [2]–[5]. All
possible probability distributions, even those that fit thedata
extremely badly, should be included in the posterior averaging.
For models with a larger volume inq space, the number of
such badq’s is greater, thus the probability of the model
decreases. Correspondingly, such contributions from the phase
space factors are usually termedOccam razorbecause they
automatically discriminate against bigger, more complex mod-
els. If the maximum likelihood solution of a complex model
explains the data better than that of a simpler one,2 then

2This is usually achieved by requiring that models are nested,that is, all
q’s possible in the simpler model are possible in the complex one,but not
vice versa.

the total probability, a certain combination of the maximum
likelihood and the Occam factors, has a maximum for some
non–trivial model, and the sharpness of the maximum grows
with N . In other words, the data selects a model which is
simple, yet explains it well.

In the case of Eq. (6), we can view different values ofβ
as different models. The smallerβ is, the closer it brings
us to the frequentist’s maximum likelihood solution, so the
data gets explained better. However, as there is less smoothing
[cf. Eq. (3)], smallerβ results in the larger phase space. Thus,
according to Ref. [6], one may expect that the integrals in
Eq. (7) will be dominated by someβ∗, appropriate smoothing
will be sharply selected, and̂· · · ≈ 〈· · ·〉β∗ . In the current paper
we will investigate whether a maximum of the integrand in
Eq. (7), indeed, exists and will study its properties. The results
of the analysis will lead us to an extension and a simplification
of the NSB method.

III. C ALCULATION OF THE NSB INTEGRALS

We will calculate integrals in Eq. (7) using the saddle point
method. Since the moments ofS do not haveN dependence,
when N is large only theΓ–terms in ρ are important for
estimating the position of the saddle and the curvature around
it. We write

ρ(ξ|n) = P(β(ξ)) exp [−L(n, β,K)] ,

L(n, β,K) = −
∑

i

ln Γ(β + ni) +K ln Γ(β) − ln Γ(κ) + ln Γ(κ+

Then the saddle point (equivalently, the maximum likelihood)
value,κ∗ = Kβ∗, solves the following equation obtained by
differentiating Eq. (10).

1

K

ni>0∑

i

ψ0(ni+β
∗)−K1

K
ψ0(β

∗)+ψ0(κ
∗)−ψ0(κ

∗+N) = 0 ,

(11)
where we useKm to denote the number of bins that have, at
least,m counts. Note thatN > K1 > K2 > . . . .

We notice that ifK � N , and if there are at least a few bins
that have more that one datum in them, i.e.,K1 < N , then the
distribution the data is taken from is highly non–uniform. Thus
the entropy should be much smaller than its maximum value
of Smax. Since for anyβ = O(1) the entropy is extremely
close toSmax (cf. Ref. [6]), small entropy may be achievable
only if β∗ → 0 asK → ∞. Thus we will look for

κ∗ = κ0 +
1

K
κ1 +

1

K2
κ2 + . . . , (12)

where none ofκj depends onK. Plugging Eq. (12) into
Eq. (11), after a little algebra we get the first few terms in
the expansion ofκ∗:

κ1 =

ni>1∑

i

ψ0(ni) − ψ0(1)

K1/κ2
0 − ψ1(κ0) + ψ1(κ0 +N)

, (13)

κ2 =

[
K1

κ3

0

+ ψ2(κ0)−ψ2(κ0+N)
2

]
κ2

1 +
∑ni>1
i κ0 [ψ1(ni) − ψ1(1)]

K1/κ2
0 − ψ1(κ0) + ψ1(κ0 +N)

,(14)
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and the zeroth order term solves the following algebraic
equation

K1

κ0
= ψ0(κ0 +N) − ψ0(κ0) . (15)

If required, more terms in the expansion can be calculated,
but for common applicationsK is so big that none are usually
needed.

We now focus on solving Eq. (15). Forκ0 → 0 andN > 0,
the r. h. s. of the equation is approximately1/κ0 [10]. On the
other hand, forκ0 → ∞, it is close toN/κ0. Thus ifN = K1,
that is, the number of coincidences among different data,∆ ≡
N −K1, is zero, then the l. h. s. always majorates the r. h. s.,
and the equation has no solution. If there are coincidences,a
unique solution exists, and the smaller∆ is, the biggerκ0 is.
Thus we may want to search forκ0 ∼ 1/∆ +O(∆0).

Now it is useful to introduce the following notation:

fN (j) ≡
N−1∑

m=0

mj

N j+1
, (16)

where each offN ’s scales asN0. Using standard results for
polygamma functions [10], we rewrite Eq. (15) as

1 − δ

κ0/N
=

∞∑

j=0

(−1)j
fN (j)

(κ0/N)j
. (17)

Here we introduced the relative number of coincidences,
δ ≡ ∆/N . Combined with the previous observation, Eq. (17)
suggests that we look forκ0 of the form

κ0 = N

(
b−1

δ
+ b0 + b1δ + . . .

)
, (18)

where each ofbj ’s is independent ofδ and scales asN0.
Substituting this expansion forκ0 into Eq. (17), we see that

it is self–consistent, and

b−1 = fN (1) =
N − 1

2N
, (19)

b0 = −fN (2)

fN (1)
=

−2N + 1

3N
, (20)

b1 = −f
2
N (2)

f3
N (1)

+
fN (3)

f2
N (1)

=
N2 −N − 2

9(N2 −N)
. (21)

Again, more terms can be calculated if needed.
This expresses the saddle point valueβ∗ (or κ∗, or ξ∗) as a

power series in1/K andδ. In order to complete the evaluation
of integrals in Eq. (7), we now need to calculate the curvature
at this saddle point. Simple algebra results in

∂2L
∂ξ2

∣∣∣∣
ξ(β∗)

=

[
∂2L
∂β2

1

(dξ/dβ)2

]

β∗

= ∆ +NO(δ2) . (22)

Notice that the curvaturedoes notscale as a power ofN
as was suggested in Ref. [6]. Our uncertainty in the value
of ξ∗ is determined to the first order only by coincidences.
One can understand this by considering a very largeK with
most of the bins having negligible probabilities. Then counts of
ni = 1 are not informative for entropy estimation, as they can
correspond to massive bins, as well as to some random bins
from the sea of negligible ones. However, coinciding counts
necessarily signify an important bin, which should influence

the entropy estimator. Note also that to the first order in1/K
the exact positioning of coincidences does not matter: a few
coincidences in many bins or many coincidences in a single
one produce the same saddle point and the same curvature
around it, provided that∆ stays the same. While this is an
artifact of our choice of the underlying priorPβ(q) and may
change in a different realization of the NSB method, this
behavior parallels famous Ma’s entropy estimator, which is
also coincidence based [11].

In conclusion, if the number of coincidences, notN , is
large, then a proper value forβ is selected, and the variance
of entropy is small. Then the results of this section trans-
form calculations of complicated integrals in Eq. (7) to pure
algebraic operations. This analysis has been used to write a
general purpose software library for estimating entropiesof
discrete variables. The library is available from the author.

IV. CHOOSING A VALUE FORK?

A question is in order now. IfN � K, the regime we
are mostly interested in, then the number of extra counts in
occupied bins,K1β, is negligible compared to the number of
extra counts in empty bins,(K−K1)β ≈ Kβ. Then Eqs. (3, 8)
tell us that selectingβ (that is, integrating over it) means
balancingN , the number of actual counts versusκ = Kβ, the
number of pseudocounts, or, equivalently, the scaled number of
unoccupied bins. Why do we vary the pseudocounts by varying
β? Can we instead use Bayesian model selection methods to
setK? Indeed, not having a good handle on the value ofK
is usually one of the main reasons why entropy estimation is
difficult. Can we circumvent this problem?

To answer this, note that smallerK leads to a higher maxi-
mum likelihood value since the total number of pseudocounts
is less. Unfortunately, smallerK also means smaller volume in
the distribution space since there are fewer bins, fewer degrees
of freedom, available. As a result, Bayesian averaging overK
will be trivial: the smallest possible number of bins, that is
no empty bins, will dominate. This is very easy to see from
Eq. (8): only the first ratio ofΓ–functions in the posterior
density depends onK, and it is maximized forK = K1.
Thus straight–forward selection of the value ofK is not an
option. However, in the next Section we will suggest a way
around this hurdle.

V. UNKNOWN OR INFINITE K

When one is not sure about the value ofK, it is usually
because its simple estimate is intolerably large. For example,
consider measuring entropy of`–gramms in printed English
[12] using an alphabet with 29 characters: 26 different letters,
one symbol for digits, one space, and one punctuation mark.
Then even for̀ as low as 7, a naive value forK is 297 ∼ 1010.
Obviously, only a miniscule fraction of all possible7–gramms
may ever happen, but one does not know how many exactly.
Thus one is forced to work in the space of full cardinality,
which is ridiculously undersampled.

A remarkable property of the NSB method, as follows from
the saddle point solution in Sec. III, is that it works even
for finite N and extremely bigK (provided, of course, that
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there are coincidences). Moreover, ifK → ∞, the method
simplifies since then one should only keep the first term in
the expansion, Eq. (12). Even more interestingly, for every
β � 1/K the a priori distribution of entropy becomes an
exact delta function since the variance of entropy drops to
zero as1/K, see Eq. (5). Thus the NSB technique becomes
more precise asK increases. So the solution to the problem
of unknown cardinality is to use an upper bound estimate for
K: it is much better to overestimateK than to underestimate
it. If desired, one may even assume thatK → ∞ to simplify
the calculations.

It is important to understand which additional assumptions
are used to come to this conclusion. How can a few data
points specify entropy of a variable with potentially infinite
cardinality? As explained in Ref. [6], a typical distribution in
the Dirichlet family has a very particular rank ordered (Zipf)
plot: the number of bins with the probability mass less than
someq is given by an incompleteB–function,I,

ν(q) = KI(q;β, κ− β) ≡ K

∫ q
0
dxxβ−1(1 − x)κ−β−1

B(β, κ− β)
(23)

whereB stand for the usual completeB–function. NSB fits
for a proper value ofβ (and κ = Kβ) using bins with
coincidences, the head of the rank ordered plot. But knowingβ
immediately defines the tails, where no data has been observed
yet, and the entropy can be calculated. Thus if the Zipf plot
for the distribution being studied has a substantially longer tail
than allowed by Eq. (23), then one should suspect the resultsof
the method. For example, NSB will produce wrong estimates
for a distribution withq1 = 0.5, q2, . . . qK = 0.5/(K − 1),
andK → ∞.

With this caution in mind, we may now try to calculate
the estimates of the entropy and its variance for extremely
largeK. We want them to be valid even if the saddle point
analysis of Sec. III fails because∆ is not large enough. In
this caseβ∗ → 0, but κ∗ = Kβ∗ is some ordinary number.
The range of entropies now is0 ≤ S ≤ lnK → ∞, so the
prior on S produced byP(q;β) is (almost) uniform over a
semi–infinite range and thus is non–normalizable. Similarly,
there is a problem normalizingPβ(q), Eq. (2). However, as is
common in Bayesian statistics, these problems can be easily
removed by an appropriate limiting procedure, and we will
not pay attention to them in the future.

When doing integrals in Eq. (7), we need to find out how
〈S(n)〉β depends onξ(β). In the vicinity of the maximum of
ρ, using the formula for〈S(n)〉β from Ref. [8] we get

[〈S(n)〉κ − ξ(β)]
∣∣∣
κ≈κ∗

=
NK1 −N

(N + κ)κ
−
ni>1∑

i

niψ0(ni) − niψ0(1)

N + κ
+O

(
1

K

)
= O(δ,

1

K
) .

(24)

The expression for the second moment is similar, but com-
plicated enough so that we chose not to write it here . The
main point is that forK → ∞, δ = ∆/N → 0, andκ in the
vicinity of κ∗, the posterior averages of the entropy and its
square are almost indistinguishable fromξ andξ2, the a priori

averages. Since now we are interested in small∆ (otherwise
we can use the saddle point analysis), we will useξm instead
of 〈Sm〉β in Eq. (7). The error of such approximation is
O
(
δ, 1
K

)
= O

(
1
N
, 1
K

)
.

Now we need to slightly transform the Lagrangian, Eq. (10).
First, we drop terms that do not depend onκ since they appear
in the numerator and denominator of Eq. (7) and thus cancel.
Second, we expand around1/K = 0. This gives

L(n, κ,K) = −
ni>1∑

i

ln Γ(ni)−K1 lnκ−ln Γ(κ)+ln Γ(κ+N)+O(
1

K
)

(25)
We note thatκ is large in the vicinity of the saddle ifδ is
small andN is large, cf. Eq. (18). Thus, by definition ofψ–
functions, ln Γ(κ + N) − ln Γ(κ) ≈ Nψ0(κ) + N2ψ1(κ)/2.
Further,ψ0(κ) ≈ lnκ, andψ1(κ) ≈ 1/κ [10]. Finally, since
ψ0(1) = −Cγ , whereCγ is the Euler’s constant, Eq. (4) says
that ξ − Cγ ≈ lnκ. Combining all this, we get

L(n, κ,K) ≈ −
ni>1∑

i

ln Γ(ni)+∆(ξ−Cγ)+
N2

2
exp(Cγ−ξ) ,

(26)
where the≈ sign means that we are working with precision
O
(

1
N
, 1
K

)
.

Now we can write:

Ŝ ≈ Cγ −
∂

∂∆
ln

∫ lnK

0

e−Ldξ , (27)

̂(δS)2 ≈
(
∂

∂∆

)2

ln

∫ lnK

0

e−Ldξ . (28)

The integral involved in these expressions can be easily
calculated by substitutingexp(Cγ − ξ) = τ and replacing
the limits of integration1/K exp(Cγ) ≤ τ ≤ exp(Cγ) by
0 ≤ τ ≤ ∞. Such replacement introduces errors of the order
(1/K)∆ at the lower limit andδ2 exp(−1/δ2) at the upper
limit. Both errors are within our approximation precision if
there is, at least, one coincidence. Thus

∫ lnK

0

e−Ldξ ≈ Γ(∆)

(
N2

2

)−∆

. (29)

Finally, substituting Eq. (29) into Eqs. (27, 28) we get for the
moments of the entropy

Ŝ ≈ (Cγ − ln 2) + 2 lnN − ψ0(∆) , (30)
̂(δS)2 ≈ ψ1(∆) . (31)

These equations are valid to zeroth order in1/K and 1/N .
They provide a simple, yet nontrivial, estimate of the entropy
that can be used even if the cardinality of the variable is
unknown. Note that Eq. (31) agrees with Eq. (22) since, for
large ∆, ψ1(∆) ≈ 1/∆. Interestingly, Eqs. (30, 31) carry a
remarkable resemblance to Ma’s method [11].

VI. CONCLUSION

We have further developed the NSB method for estimating
entropies of discrete random variables. The saddle point of
the posterior integrals has been found in terms of a power
series in 1/K and δ. It is now clear that validity of the
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saddle point approximation depends not on the total number
of samples, but only on the coinciding ones. Further, we have
extended the method to the case of infinitely many or unknown
number of bins and very few coincidences. We obtained
closed form solutions for the estimates of entropy and its
variance. Moreover, we specified an easily verifiable condition
(extremely long tails), under which the estimator is not to be
trusted. To our knowledge, this is the first estimator that can
boast all of these features simultaneously. This brings us one
more step closer to a reliable, model independent estimation
of statistics of undersampled probability distributions.
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