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Coincidences And Entropies of Random Variables
with Very Large Alphabets

llya Nemenman

Abstract— We examine the recently introduced NSB estimator entropies of discrete random variables ewathout knowing
of entropies of severely undersampled discrete variables and their cardinality.
devise a procedure for calculating the involved integrals. We
discover that the output of the estimator has a well defined limit
for large cardinalities of the variables being studied. Thus one II. SUMMARY OF THE NSB METHOD
can estimate entropies with no a priori assumptions about these
cardinalities, and a closed form solution for such estimates is  In Bayesian statistics, one uses Bayes rule to expresses pos

given. terior probability of a probability distributiony = {¢;}, i =
Index Terms— Asymptotics of entropy estimators, undersam- 1...K, of a discrete random variable with a help of its a

pled discrete variables, coincidences, bias-variance tradeoff, infi priori probability, P(q). Thus if n; identical and independent

nite cardinality. samples fromy are observed in bii, such thalzl.K:1 n; = N,

then the posteriorP(q|n), is
|. INTRODUCTION

. . . P(nja)P(q 1 4"Pla
STIMATION of functions of a discrete random vari- P(an) = (P(zl)( ) 1(2' e 7(”) :
able with an unknown probability distribution using fO ¢l 4" Pla)
independent samples of this variable seems like an a|m°5F0IIowing Ref. [6], we will focus on popular Dirichlet

trivial problem known to many yet from the high school [1]fami|y of priors, indexed by a (hyper)parametér
However, the simplicity vanishes if one considers an exélgm

undersampled regime, whekg, the cardinality or the alphabet 1 K K 5 (3)

. . . _ B-1 _
size of the variable, is much larger thaw, the number of Ps(a) = 70 s(1=>"a|[]a", 21)= (KB
its samples. In this case, the average number of samples per =1 =1 )
possible outcome (also calldan) is less than one, and theHere j—function andZ(g)

reIatiye un.certainty. in_ thg underlying probability distition Ps(q) respectively, and" stands for Eulerd—function. These
and its various statistics is large. Then one can use themo ors are common in applications [7] since they, as well as

of B'aye.sian statistics to bias the set of a priori admi;si fie data termP(n|q), are of a multinomial structure, which
distributions and thus decrease the posterior errors.ifgnd;g analytically tractable. For example, in Ref. [8] Wolpartd

the optimal bias-variance tradeoff point is not easy, and, f\y calculated posterior averages, here denotedl as s, of

severely undersampled cases, such attempts to control y interesting quantities, including the distributicself,
variance often make the estimator a function of the pridhea
n; + [

than of the measured data. (4:)s = k=Kp 3)
The situation is particularly bad for inferring the BTN ¥R’ - ’

Boltzmann-Shannon entropy, one of the most important
characteristics of a discrete variable. Its frequentistvad
as common Bayesian estimators have low variances, but hj
biases that are very difficult to calculate (see Ré&}. for u
a review). However, recently ideas from Bayesian modg
selection [2]-[5] were used by Nemenman, Shafee, and Bia
to suggest a solution to the problem [6]. Their metho ossible value 0., — In K. Similarly, for 8 < N/K,
hereafter called NSB, is robust gnd u_nbla_sed even for sgver istributions in the vicinity of the frequentist's maximum
undersampled problems. We will review it and point out tha

it is equivalent to finding the number of yet unseen bi% g:;gﬁgddg\?\};r\?ve:;qb;sn[éj]v’ are important, ands) has

with nonzero probapll|ty gyverf{, the maximum card|nql|ty In Ref. [6], Nemenman et al. traced this problem to the
of the variable. While estimation of{ by model selection : e L
roperties of the Dirichlet family: its members encode ozas

techniques will not work, we will show that the method has o X
e able a priori assumptions abogt but not aboutS(q). Indeed,
proper limit asK — oo. Thus one should be able to calculat - .
it turns out that a priori assumptions about the entropy are

1)

enforce normalizations off and

and the moments of its entropy, which we will not reprint here
As suggested by Eq. (3), Dirichlet priors add extraample
nts to each possible bin. Thus fér>> N/K the data is
rimportant, andP(q|n) is dominated by the distributions
%se to the uniform oneg ~ 1/K. The posterior mean of
entropy is then strongly biased upwards to its maximum
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extremely biased, as may be seen from its following a pricthe total probability, a certain combination of the maximum

moments. likelihood and the Occam factors, has a maximum for some
_ B non-trivial model, and the sharpness of the maximum grows
£6) = (Sln=0)s = %0(“14' D=t +1), @) with N. In other words, the data selects a model which is
o2(8) = ((65)% |veo)s = % Y1(B+1) — (s + 15) Simple, yet explains it well.
K

In the case of Eq. (6), we can view different valuesof
where,,(x) = (d/dz)™*! InT(x) are the polygamma func- as different models. The smallgt is, the closer it brings
tions. £(8) varies smoothly frond for 5 = 0, through1 for us to the frequentist's maximum likelihood solution, so the
B~ 1/K, and toln K for § — oo. o(f3) scales ad/v/K for data gets explained better. However, as there is less singoth
almost all3 (see Ref. [6] for details). This is negligibly small[cf. Eq. (3)], smallers results in the larger phase space. Thus,
for large K. Thusq that is typical inPg(q) usually has its according to Ref. [6], one may expect that the integrals in
entropy extremely close to some predetermigediependent Eq. (7) will be dominated by somg*, appropriate smoothing
value. It is not surprising then that this bias persists eaféer will be sharply selected, and- ~ (- - -) 3. In the current paper
N < K data are collected. we will investigate whether a maximum of the integrand in

The NSB method suggests that to estimate entropy withEag. (7), indeed, exists and will study its properties. Thauhs
small bias one should not look for priors that seem reasenabf the analysis will lead us to an extension and a simplifacati
on the space af, but rather the a priori distribution of entropy,of the NSB method.

P(S(q)), should be flattened. This can be done approximately
by noting that Egs. (4, 5) ensure that, for larBe P(S) is
almost ad—function. Thus a prior that enforces integration
over all non—negative values @f which correspond to all a  We will calculate integrals in Eq. (7) using the saddle point
priori expected entropies betweénandIn K, should do the method. Since the moments §fdo not haveN dependence,
job of eliminating the bias in the entropy estimation even favhen N is large only thel'—terms inp are important for
N < K. While there are probably other options, Ref. [6gstimating the position of the saddle and the curvatureratou
centered on the following prior, which is a generalizatidn gt. We write

Dirichlet mixture priors[9] to an infinite mixture:

IIl. CALCULATION OF THE NSBINTEGRALS

. K K 2£(5) p(€mn) = P(B(E))exp[-L(n, B, K)] ,
P(a; B) = 79 <1 - Zq) H qf‘lw PB). (6) L(nB3,K) = - Zlnf(ﬁ +n;)+ KInT(8) —InT'(k) + InT'(x

Here Z is again the normalizing coefficient, and the termrhen the saddle point (equivalently, the maximum likeliipo

d¢/dp ensures uniformity for the a priori expected entropyalue, x* = K 3*, solves the following equation obtained by

¢, rather than for3. A non-constant prior o, P(3), may (differentiating Eqg. (10).

be used if sufficient reasons for this exist, but we will set it

to one in all further developments. .~ K . . y
Inference with the prior, Eq. (6), involves additional avery: Z bo(ni+p3 )_7 bo(B7)+4o (") —to(r™+N) = 0,

n; >0

aging overg (or, equivalently£), but is nevertheless straight- ‘ (11)
forward. The a posteriori moments of the entropy are where we uses,,, to denote the number of bins that have, at
In K m
= fo de p(&,0)( S™) 5(e) _ least,m counts. Note thatv > I_(l > Ko > ..., .
smoo= n R , Where the posterior defyefoisce that ifKk > N, and if there are at least a few bins
fo dg p(&n) that have more that one datum in them, if€;, < N, then the
I'(k(€)) K L(n; + B(€)) distribution the data is taken from is highly non—uniforninus
plém) = P(B(E : its max
([n) (8() TV +s(6) 1 7T the eftopy should be much smaller than its maximum value

of Smax. Since for anys = O(1) the entropy is extremely
Nemenman et al. explain why this method should woréose t05,,., (cf. Ref. [6]), small entropy may be achievable

using the theory of Bayesian model selection [2]-[5]. Albnly if 5* — 0 as K — oo. Thus we will look for

possible probability distributions, even those that fit taa

extremely badly, should be included in the posterior avieag K* = Ko+ l,ﬁ + Lﬁz +.on, (12)

For models with a larger volume iq space, the number of K K2

such badq’s is greater, thus the probability of the modeivhere none ofx; depends onk. Plugging Eq. (12) into

decreases. Correspondingly, such contributions from tias@ Eq. (11), after a little algebra we get the first few terms in

space factors are usually termé@tcam razorbecause they the expansion of*:

automatically discriminate against bigger, more complexim

els. If the maximum likelihood solution of a complex model (s Yo(ni) — o(1) 13
explains the data better than that of a simpler driben k1 = Z K1 /K2 — 1 (ko) + U1 (ko + N) (
K3
2This is usually achieved by requiring that models are nedtet, is, all [& + w} 2 ni>1 n) — 1
q's possible in the simpler model are possible in the complex boenhot Ko " 2 Fit Z’ 0 W)l( l) 7/11((%]4

vice versa. N Kl/ﬁg — b1 (ko) + Y1 (ko + N)
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and the zeroth order term solves the following algebrathe entropy estimator. Note also that to the first ordet i

equation the exact positioning of coincidences does not matter: a few
K = (ko + N) — o (ko) - (15 coincidences in many bins or many coincidences in a single
Ko one produce the same saddle point and the same curvature

If required, more terms in the expansion can be calculatétfound it, provided that\ stays the same. While this is an

but for common application&’ is so big that none are usuallyartifact of our choice of the underlying prid?s(q) and may

needed. change in a different realization of the NSB method, this
We now focus on solving Eq. (15). Fap — 0 andN > 0, behavior parallels famous Ma’s entropy estimator, which is

the r. h. s. of the equation is approximatéljk, [10]. On the also coincidence based [11].

other hand, fok, — oo, itis close toN/kg. Thus if N = K7, In conclusion, if the number of coincidences, nit is

that is, the number of coincidences among different dat  large, then a proper value fgt is selected, and the variance

N — K, is zero, then the I. h. s. always majorates the r. h. ©f entropy is small. Then the results of this section trans-

and the equation has no solution. If there are coincidercegorm calculations of complicated integrals in Eq. (7) to gur

unique solution exists, and the small&ris, the biggers, is. algebraic operations. This analysis has been used to write a

Thus we may want to search fap ~ 1/A + O(A?). general purpose software library for estimating entroms
Now it is useful to introduce the following notation: discrete variables. The library is available from the autho
N-1 mj
fnG) = N (16) IV. CHOOSING A VALUE FORK?
m=0 A question is in order now. IfN < K, the regime we
where each offy’s scales agvo. Using standard results forare mostly interested in, then the number of extra counts in
polygamma functions [10], we rewrite Eq. (15) as occupied bins K13, is negligible compared to the number of
oo ) extra counts in empty bing K — K )3 =~ K. Then Egs. (3, 8)
1-6 _ Z(_l)jm' (17) tell us that selecting (that is, integrating over it) means
Ko/N =0 (Ko/N)! balancingVN, the number of actual counts versus= K3, the

. . o number of pseudocounts, or, equivalently, the scaled nuofbe
Here we introduced the relative number of coincidences ; : .
- ) . . ) hoccupied bins. Why do we vary the pseudocounts by varying
d = A/N. Combined with the previous observation, Eq. (1?2,) . d . del selecti hod
suggests that we look forg of the form ? Can we instea use Bayesian model selection methods to
0 set K? Indeed, not having a good handle on the valugs<of
) is usually one of the main reasons why entropy estimation is
1) difficult. Can we circumvent this problem?
where each ob;’s is independent of and scales as/°. mTr(T)1 ?EZ\I{VF?JJQIS;(SG .t:fet ;T;atllﬁ;lenad;;grao?lghsr drgit))(l-nt
Substituting this expansion far, into Eq. (17), we see that . um 1ikel valle si u pseu unts
it is self—consistent and is less. Unfortunately, smallét” also means smaller volume in
' the distribution space since there are fewer bins, feweredsg

mozN(b—1+b0+b16+...)7 (18

by = fy(l)= N—-1 ’ (19) of freedom, available. As a result, Bayesian averaging éver
2N will be trivial: the smallest possible nhumber of bins, that i
by = _fN(Q) _ —2N +1 7 (20) no empty bins, will dominate. This is very easy to see from
fn(1) 3N Eq. (8): only the first ratio off’—functions in the posterior
b (@) N fn(B) N?—N-2 21) density depends ok, and it is maximized fork = Kj.
TR0 T2 9N?—N) Thus straight-forward selection of the value f is not an

option. However, in the next Section we will suggest a way

Again, more terms can be calculated if needed. around this hurdle.

This expresses the saddle point valtie(or «*, or £*) as a
power series irl /K andd. In order to complete the evaluation

of integrals in Eq. (7), we now need to calculate the cuneatur V. UNKNOWN OR INFINITE K

at this saddle point. Simple algebra results in When one is not sure about the value /6f it is usually
92r 92 1 , because its simple estimate is intolerably large. For examp
— = |55 55| =A+NO("). (22) consider measuring entropy étgramms in printed English
o¢2 o) [352 (d{/dﬂ)Q]ﬁ* g py o+g p g

[12] using an alphabet with 29 characters: 26 differenetsit
Notice that the curvatureloes notscale as a power ofV  one symbol for digits, one space, and one punctuation mark.
as was suggested in Ref. [6]. Our uncertainty in the valdéen even for as low as 7, a naive value fé¢ is 297 ~ 10'°.

of £¢* is determined to the first order only by coincidence®bviously, only a miniscule fraction of all possiblegramms
One can understand this by considering a very ldkgaith may ever happen, but one does not know how many exactly.
most of the bins having negligible probabilities. Then aswf Thus one is forced to work in the space of full cardinality,
n; = 1 are not informative for entropy estimation, as they cawhich is ridiculously undersampled.

correspond to massive bins, as well as to some random biné\ remarkable property of the NSB method, as follows from
from the sea of negligible ones. However, coinciding countee saddle point solution in Sec. lll, is that it works even
necessarily signify an important bin, which should influencfor finite N and extremely big' (provided, of course, that
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there are coincidences). Moreover, Af — oo, the method averages. Since now we are interested in sma(otherwise
simplifies since then one should only keep the first term ime can use the saddle point analysis), we will §8einstead

the expansion, Eq. (12). Even more interestingly, for evenf (S™)s in Eq. (7). The error of such approximation is
B > 1/K the a priori distribution of entropy becomes arO (6, +) = O (%, +).

exact delta function since the variance of entropy drops toNow we need to slightly transform the Lagrangian, Eq. (10).
zero asl/K, see Eg. (5). Thus the NSB technique becomésrst, we drop terms that do not depend:ogince they appear
more precise ag( increases. So the solution to the problerm the numerator and denominator of Eq. (7) and thus cancel.
of unknown cardinality is to use an upper bound estimate f8econd, we expand aroundK = 0. This gives

K: it is much better to overestimaf€ than to underestimate

n;>1
it. If desired, one may even assume titét— oo to simplify 1y, ) Z InT(n;)—K;Ink—InT(x )+111F(/<;+N)+0(i
the calculations. K
It is important to understand which additional assumptions (25)

are used to come to this conclusion. How can a few daf¥e note thats is large in the vicinity of the saddle i is
points specify entropy of a variable with potentially infai small andN is large, cf. Eq. (18). Thus, by definition @f-
cardinality? As explained in Ref. [6], a typical distriboiin  functions,InT'(x + N) — InT'(k) ~ Nvg(k) + N2y (k) /2.
the Dirichlet family has a very particular rank ordered ip Further,v)o(x) ~ Inx, and;(x) ~ 1/x [10]. Finally, since
plot: the number of bins with the probability mass less tham (1) = —C.,, whereC, is the Euler's constant, Eq. (4) says

someg is given by an incompleté—function, I, that{ — C,, ~ Inx. Combining all this, we get
T dpxP—1(1 — g)r—0-1 ni>1 N2
v(q) = KI(g; 8,k — ) szO B(ﬁ(n—ﬁ)) (23) L(n,k, K) Z InL(ni)+A(E=Cy)+ - exp(Cy =) |

(26)

where B stand for the usual completB—function. NSB fits
here thex sign means that we are working with precision

for a proper value of3 (and x = Kf) using bins with W
coincidences, the head of the rank ordered plot. But knowing (% %) L
immediately defines the tails, where no data has been olaserveNOW W€ can write:

yet, and the entropy can be calculated. Thus if the Zipf plot 9 In K

for the distribution being studied has a substantially Emtgil S & Oy- A In e~ fdg, (@7)
than allowed by Eqg. (23), then one should suspect the results - o \2 In K

the method. For example, NSB will produce wrong estimates (69)? = <%) ln/ —Lde (28)

for a distribution withg; = 0.5, ¢o,...gx = 0.5/(K — 1), 0

and K — co. The integral involved in these expressions can be easily

With this caution in mind, we may now try to calculatecalculated by substitutingxp(C,, — §) = 7 and replacing
the estimates of the entropy and its variance for extremdlje limits of integrationl/K exp(C,) < 7 < exp(C,) by
large K. We want them to be valid even if the saddle poift < 7 < oco. Such replacement introduces errors of the order
analysis of Sec. Il fails becausa is not large enough. In (1/K)* at the lower limit andé® exp(—1/6%) at the upper
this cased* — 0, but x* = K/3* is some ordinary number. limit. Both errors are within our approximation precision i
The range of entropies now < S < In K — oo, so the thereis, at least, one coincidence. Thus
prior on S produced byP(q; ) is (almost) uniform over a In K N2\ A
semi—infinite range and thus is non—normalizable. Sinyilarl / —Lde T'(A) (7>
there is a problem normalizings(q), Eq. (2). However, as is 0
common in Bayesian statistics, these problems can be ea&ilgally, substituting Eq. (29) into Egs. (27, 28) we get foe t
removed by an appropriate limiting procedure, and we wilnoments of the entropy
not pay attention to them in the future. -

When doing integrals in Eqg. (7), we need to find out how /\S ~ (Cy—In2)+2In N —do(A), (30)
(S(n))s depends org(5). In the vicinity of the maximum of (65)? Y1(A). (31)
p, using the formula forS(n))s from Ref. [8] we get These equations are valid to zeroth orderljf¥ and1/N.

They provide a simple, yet nontrivial, estimate of the emjro
[(S(n))x —&(B)] ’ym«« that can be used even if the cardinality of the variable is

~

(29)

Q

ni>1 unknown. Note that Eq. (31) agrees with Eq. (22) since, for
_NE N Z nitbo(ni) — niw0(1)+0 (i> = 0(s, i)large A, 1(A) =~ 1/A. Interestingly, Egs. (30, 31) carry a
(N +K)k N+k K K remarkable resemblance to Ma’s method [11].
(24)
The expression for the second moment is similar, but com- VI. CONCLUSION

plicated enough so that we chose not to write it here . TheWe have further developed the NSB method for estimating
main point is that forK — oo, § = A/N — 0, andx in the entropies of discrete random variables. The saddle point of
vicinity of x*, the posterior averages of the entropy and ithe posterior integrals has been found in terms of a power
square are almost indistinguishable frgrand¢?, the a priori series in1/K and 6. It is now clear that validity of the
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saddle point approximation depends not on the total number
of samples, but only on the coinciding ones. Further, we have
extended the method to the case of infinitely many or unknown
number of bins and very few coincidences. We obtained
closed form solutions for the estimates of entropy and its
variance. Moreover, we specified an easily verifiable coolit
(extremely long tails), under which the estimator is not éo b
trusted. To our knowledge, this is the first estimator that ca
boast all of these features simultaneously. This bringsnes o
more step closer to a reliable, model independent estimatio
of statistics of undersampled probability distributions.
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