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We propose a universal approach for analysis and fast simulations
of stiff stochastic biochemical networks, which rests on elimina-
tion of fast chemical species without a loss of information about
mesoscopic, non-Poissonian fluctuations of the slow ones. Our
approach is similar to the Born–Oppenheimer approximation in
quantum mechanics and follows from the stochastic path integral
representation of the cumulant generating function of reaction
events. In applications with a small number of chemical reactions,
it produces analytical expressions for cumulants of chemical fluxes
between the slow variables. This allows for a low-dimensional,
interpretable representation and can be used for high-accuracy,
low-complexity coarse-grained numerical simulations. As an exam-
ple, we derive the coarse-grained description for a chain of
biochemical reactions and show that the coarse-grained and the
microscopic simulations agree, but the former is 3 orders of mag-
nitude faster.

C omputer simulations are often the method of choice to
explore an agreement between a model and experimental

data in systems biology. Unfortunately, even the simplest bio-
chemical simulations often face serious conceptual and practical
problems. First, they usually involve combinatorially many chemi-
cal species and reaction processes: for example, a single molecule
with n modification sites can exist in 2n microscopic states (1). Sec-
ond, although it is widely known that some molecules occur in cells
at very low copy numbers (e.g., the DNA), which give rise to impor-
tant stochastic effects, it is less appreciated that the combinatorial
complexity makes this true for many molecular species. Indeed,
even for a large total number of molecules, typical abundances of
a species may be small if the number of the species is combinato-
rial. Third, and perhaps the most profound difficulty, is that only
very few of the kinetic parameters underlying the networks are
experimentally observable.

Although some day, computers may be able to tackle the formi-
dable problem of modeling combinatorially complex biochemical
processes and then performing sweeps through parameter spaces
in search of an agreement with experiments, this day is far away.
More importantly, even if the computing power were available,
it would not help in building a comprehensible interpretation of
the modeled system and in identifying connections between its
microscopic and macroscopic features.

Clearly, such an interpretation can be aided by coarse-graining,
that is, by merging or eliminating certain nodes and/or reac-
tion processes (this would be called blocking or decimation
in statistical physics). Ideally, one wants to substitute multi-
ple elementary (that is, single-step, Poisson-distributed) bio-
chemical reactions with a few complex processes in a way
that retains predictability of the system. Not incidentally, this
would help with each of the 3 roadblocks mentioned above
by reducing the number of interacting elements, increasing the
copy numbers of agglomerated hyperspecies, and combining
multiple microscopic rates into a smaller number of effective
parameters.

Coarse-graining in biochemistry is well established, and the
prime example is the Michaelis–Menten (MM) kinetics (2)

E + S
k1[E][S]−−−−⇀↽−−−−
k−1[C]

C
k2[C]−−−→ E + P. [1]

Here k1, k2, and k−1 are kinetic rates, S, P, E, and C denote the sub-
strate, the product, the enzyme, and the enzyme–substrate com-
plex molecules, respectively, and [. . . ] represent the abundances.
The enzyme catalyzes the S → P transformation by merging with S
to create an unstable complex C, which then dissociates either back
into E+S or forward into E+P, leaving E unmodified. If [S] � [E],
then the enzyme cycles many times before [S] changes apprecia-
bly. Thus the enzyme equilibrates resulting in a coarse-grained
reaction with the decimated enzyme species:

S
v−→ P, v = k2[S][E]

[S] + (k2 + k−1)/k1
. [2]

However, this simple reduction is insufficient when stochasticity
is important: Each MM reaction consists of multiple elementary
steps, thus approximating the number of the reactions as a Pois-
son variable (3) is not always valid. While some attempts have
been made to extend deterministic coarse-graining to the stochas-
tic domain (4–7), such systematic tools have not been found yet.
In this article, we make a step towards the goal.

We start by noting that, in addition to the 3 conceptual prob-
lems, a technical one stands in the way of stochastic simulations
in systems biology: Molecular species have diverse dynamical
time scales, making the systems stiff and difficult to simulate.
We propose to use this property to our advantage, finding a
coarse-graining procedure exhibiting the following 4 features.

First, like in the deterministic MM case, fast variables must not
only be treated differently from the slow ones, but they must be
eliminated altogether. Otherwise, the coarse-graining would not
decrease the complexity of the interpretation and of numerical
simulations, which scale at least linearly with the number of the
involved variables.

Second, the distinction between the fast and the slow vari-
ables must not be based on reaction rates. For example, for the
MM scheme, all 3 reaction rates may be comparable, and coarse-
graining is still possible due to the difference in the enzyme and
the substrate abundances. Overall, if 2 species of different abun-
dances are coupled by a reaction, then a relatively small change
in the high-abundance one can have a dramatic effect on the low-
abundance one, leading to the different dynamical time scales. We
seek the notion of species-rather than reaction-based adiabaticity
as a basis for the coarse-graining. This has an additional advan-
tage: Having higher abundances, coarse-grained variables will be
amenable to fast mesoscopic, Langevin-like (8) methods, instead
of event-by-event simulations (9).

Third, real biological systems have more than just fast and
slow variables; instead a whole spectrum of time scales is usually
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Fig. 1. The model system. Circles represent molecules and are labeled.
Arrows stand for reactions: (1, 2) adsorption and dissociation of S (orange);
(3) multistep MM conversion S → P (red).

present. A coarse-graining procedure must be applicable to such
systems, eliminating time scales hierarchically.

While many adiabatic approaches have been explored, includ-
ing refs. 3, 7, and 10–13, none possesses all 3 of the above features,
leaving room for substantial improvements. The method we pro-
pose here reaches the goal by building upon the stochastic path
integral (SPI) technique from mesoscopic physics (14, 15). To
make the SPI applicable to biology, significant modifications are
needed. First, we extend the technique to discrete degrees of free-
dom, such as a single enzyme, in addition to its usual mesoscopic
domain. Second, we explain how to use the SPI for a network
of multiple reactions, reducing them to a few complex reaction
links. Finally, we show how the procedure can be turned into an
efficient algorithm for coarse-grained simulations, preserving sta-
tistical characteristics of the original dynamics. As required, the
algorithm is akin to the Langevin (8) or τ-leaping (16) schemes, but
it simulates complex reactions in a single step. This development
of a fast, yet precise numerical algorithm is the most important
practical contribution of our work.

For pedagogical reasons, we develop the method using a model
system that is simple enough for a detailed analysis, yet is complex
enough to support our goals.

Model
Consider an enzyme on a cell membrane, Fig. 1. SB substrate
molecules are distributed over the bulk cell volume. Each can be
reversibly adsorbed by the membrane, forming the species SM. The
enzyme interacts only with SM. The enzyme–substrate complex C
can split either into E + SM or into E + P. The latter reaction
is observable; for example, a GFP tag sparks each time a product
molecule is created (17). Finally, we assume that C → E + P is
irreversible. This is a simple model of receptor signaling, such as
in vision or immune system, or of a reaction-diffusion enzyme,
where the membrane/bulk play the roles of the nearby/far away
regions around the enzyme.

The full set of elementary reactions is

1. adsorption of the bulk substrate, SB → SM (rate q0SB);
2. reemission of the substrate into the bulk, SM → SB (rate qSM);
3. MM conversion of SM into P, consisting of

(a) complex formation, SM + E → C, (rate k1SM);
(b) complex backward decay, C → SM + E (rate k−1);
(c) product emission C → E + P (rate k2).

Note that here and in the rest of the article, we do not distinguish
between a species name and the number of its molecules.

Our goal is to coarse-grain the above system of 5 reaction
processes into a single complex reaction SB → P, as in Fig. 2C,

Fig. 2. Coarse-graining of the model system. (A) The original set of reac-
tions. (B) The reactions after the first coarse-graining step: the MM mechanism
has been replaced by a single complex reaction, and all the remaining reac-
tions are now characterized by slowly varying CGFs. (C) The final reaction that
describes the system at time scales δt � τM. The wavy line corresponds to a
spark of the tracer molecule (17), which counts SB → P transformations.

eliminating all intermediate species and processes while preserv-
ing their effects on the statistics of the complex reaction on time
scales appropriate for its dynamics.

Results
There are 3 effective time scales in our model. One is the scale
τB of the variation of the bulk substrate abundance. We assume
that SB � SM. Therefore, this scale is the slowest, and we will
be interested in studying the response of the system to changes
in SB on this scale. A faster time scale, τM is given by the dynam-
ics of SM. Finally, the fastest scale, τE, is set by single reaction
events, that is, the characteristic time between enzyme–substrate
binding/unbinding. Overall, τE � τM � τB. We emphasize that
all species in the problem are connected by reactions that hap-
pen with similar rates, and the separation of the time scales is a
result of the particle abundances only: It takes longer to change a
high-abundance species.

The hierarchy of times allows us to coarse-grain the system
in 2 steps, as in Fig. 2. First, we remove the variable with the
fastest dynamics: the binary substrate–enzyme complex C. This
replaces the 3 steps of the MM mechanism with a single reaction
SM → P, Fig. 2B. Additionally, we represent the other reactions
in a more convenient form. In the second step, we eliminate SM,
which changes on the scale τM. This results in the characterization
of the average SB → P flux and its fluctuations, treating SB as a
time-dependent input parameter (Fig. 2C).

Preliminaries. Because we are interested in adiabatic properties,
single reaction events are not important, and we introduce δQμ—
the mesoscopic number of reaction events for the reaction type
μ (μ = 1, 2, 3 corresponds to adsorption, detachment, and the
MM reaction, respectively). Then P(δQμ|T) is the probability dis-
tribution of the number of events of type μ in a time window of
duration T . Hierarchical coarse-graining of the reaction network
would require convolutions of such distributions, which are easier
to perform working with the corresponding moment generating
functions (MGFs):∗

Zμ(χ, T) = eSμ(χ,T) =
∞∑

δQμ=0

P(δQμ|T)eiδQμχ. [3]

where Sμ(χ) is the cumulant generating function (CGF). Then
the cumulants of order a of P(δQμ|T) are

cμ,a = (−i)a ∂a

∂χa

∣∣∣∣
χ=0

Sμ(χ, T), [4]

In particular, the average fluxes are cμ,1, and the variances are cμ,2.

∗The usual definition of the MGF is without i in the exponent. The same is true for our CGF,
Sμ. We chose this nomenclature to emphasize that we use the functions for calculations
of moments and cumulants.

Sinitsyn et al. PNAS June 30, 2009 vol. 106 no. 26 10547



Step 1: Generating Function Representation. This step can be viewed
as a generalization of τ-leaping (16), which simulates elementary
reactions, for example membrane binding in Fig. 2A, by choosing a
time step δt, over which the number of the reactions is large, yet the
slowly varying reaction rates are quasi-stationary. In τ-leaping, one
then approximates P(δQμ|δt) as Poissons. Similarly, for τE � δt �
τM , we can approximate CGFs of membrane binding/unbinding as
those of Poisson processes, Sμ(χ) = rμ(t)(eiχ − 1)δt, and the rates
are r1 = q0SB(t) and r2 = qSM(t).

Unfortunately, not all biochemical processes are so simple. For
example, for a single MM enzyme in Fig. 1, the instantaneous rate
of the product creation is a fast varying function of time, switching
between zero and k every time the complex forms. Therefore, one
cannot treat the product creation, P(δQ3|δt), as a homogeneous
Poisson process, and τ-leaping is inapplicable. Still, we would
like to avoid the Gillespie (9) or similar techniques, which track
individual reaction events and are slow.

As an alternative, we derive an approximation for the non-
Poisson distribution of δQ3 by characterizing its CGF, S3. To this
end, we eliminate the binary substrate-enzyme complex C and
reduce the MM reaction triplet to a single process, whose dynamics
are quasi-stationary over times much longer than a single reaction
event. The details are in Materials and Methods, Eq. 21, and the
obtained expression is valid for times δt, τE � δt � τM, so that
many enzyme turnovers happen, but the effect on the abundance
of SM is still relatively small.

This completes Step 1 of the coarse-graining in which each
reaction, or a small complex of reactions, is subsumed by a quasi-
stationary CGF Sμ of the distribution of the number of its events.
Importantly, in this step, we remove the only species that exists,
at most, in a single copy, thus simplifying analysis.

To illustrate the simplification, using Eq. 21, we write the first
few cumulants of the number of MM products:

c3,1 = k1k2SM

K
δt, K = k1SM + k2 + k−1, [5]

c3,2 = c3,1F, F = 1 − 2Q/K , Q = c3,1/δt, [6]

c3,3 = c3,1[1 − 6Q(K − 2Q)/K2], [7]

c3,4 = c3,1[1 − 2Q(7K2 − 36KQ + 60Q2)/K3]. [8]

The coefficient F is called the Fano factor (see below). To
the extent that F �= 1, this complex reaction is non-Poisson
[supporting information (SI) Fig. S1].

Knowing c3,a allows for a numerical simulation procedure

δQ3(t) = η3(t, δt), [9]
SM(t + δt) = SM(t) − δQ3(t) + JM(t)δt, [10]

P(t + δt) = P(t) + δQ3(t), [11]

where η3(t) is a random variable with the cumulants given
by Eqs. 5–8, and JM(t) represents currents exogenous to the
MM reaction, such as changes in SM due to membrane bind-
ing/unbinding. Here we treat the reaction in a quasistationary,
mesoscopic manner by drawing a (random) number of reaction
events within δt directly, assuming that all parameters defining
the reaction are constants over this time. The price for the coarse-
graining is that this reaction is non-Poisson and is characterized
by a prescribed sequence of cumulants.

In principle, generation of such random variables is an ill-
posed task because, once we allow for a nonzero third cumu-
lant, the remaining higher-order cumulants cannot be all zero,
and the random variable depends on assumptions made about
them. Fortunately, in our case, the situation is simpler because
all c3,k ∝ δt. Thus, higher cumulants have a progressively smaller
effect, ∝ (δt)1/k, on a number drawn from the distribution—our
random variable is near-Gaussian. Then the Gram–Charlier (GC)

series expansion (18) aided either by the importance or the rejec-
tion sampling (19, 20) reduces the simulation scheme, Eqs. 9–11,
to a simple Langevin simulation with a small penalty, as in Materi-
als and Methods; see Fig. 5 for illustration of the precision of these
tools.

Step 2: Coarse-Graining Membrane Reactions. In Step 2 of the
coarse-graining, we start with the CGFs Sμ, μ = 1, 2, 3, of the
slowly varying reactions. Using the SPI technique, we then express
the CGF of δQ, the number of the entire coarse-grained reac-
tions SB → P in Fig. 2C over time T , in terms of the component
CGFs (this is where working with the CGFs instead of the distrib-
utions is the most advantageous). We then simplify the expression
to account for the time scale separation between τB and τM, see
Materials and Methods, Eq. 31. This formally completes the coarse-
graining. That is, we find the CGF of the SB → P particle flux for
times T � τB, much longer than τE and τM.

The full expression for CGF is cumbersome and nonillumi-
nating. Fortunately, we only look for the first few cumulants of
P(δQ|T), and these are obtained by differentiating the CGF as in
Eq. 4. The expressions for the first 3 cumulants, c1, c2, and c3 are
in SI Text. Then, similar to the MM reaction, we can simulate the
whole 5-reaction network in 1 Langevin-like step:

δQ(t) = η(t, T), [12]
SB(t + T) = SB(t) − δQ(t) + JB(t)T , [13]
P(t + T) = P(t) + δQ(t), [14]

where η is a random variable with the cumulants as in Eqs. S1–S4
in SI Text, and JB(t) is an external current, such as production or
decay of the bulk substrate in other cellular processes.

Fano Factor in Counting Experiments. When experimentally mea-
suring the number of created products, one can estimate the Fano
factor, F = c2/c1. The factor is zero for deterministic systems
and one for a Poisson process, providing a quantification of the
importance of stochastic effects.

Traditionally, to compare experimental data about F to a math-
ematical model, one would simulate the model using the Gillespie
algorithm (9), which takes a long time to converge. In contrast, our
coarse-grained quasistationary approach yields an analytic expres-
sion for the Fano factor of the SB → P transformation, see Eq. S3
in SI Text. Similar analytical shortcuts should be possible for other
kinetic schemes. In Fig. 3, we compare the analytical expression
to stochastic simulations for the full set of reactions in Fig. 2A,
seeing an excellent agreement.

Note that F �= 1, indicating a non-Poissonian nature. The back-
wards decay of C adds extra randomization, thus larger values of
k−1 increase F. At the other extreme, when k−1 = 0, the Fano
factor may be as small as 1/2, so that the entire SB → P chain is
equal to a sequence of 2 Poisson events with similar rates. Finally,

Fig. 3. Comparison of the analytically calculated Fano factor for the SB → P
reaction to Monte Carlo simulations with the Gillespie algorithm (9). We use
q = 0.02, k1 = 0.05, k2 = 1, and T = 10, 000. Each numerical data point
averages 10,000 simulation runs.
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Table 1. Comparison of cumulants of the product flux for the
full system calculated using the Gillespie simulations, the
coarse-grained simulations at Step 1 and Step 2, and the analytical
predictions

Cumulant Gillespie CG (step 1) CG (step 2) Analytics

c1 418.7 (1) 420.0 (1) 418.9 (1) 418.9
c2/c1 0.771 (1) 0.764 (2) 0.768 (1) 0.767
c3/c1 0.50 (3) 0.46 (8) 0.48 (3) 0.472
Time 1 h 14 min 1 min 17 s 1 s N/A

Numbers in parentheses are the estimated errors in the last significant
digits.

when q = 0, i.e., the substrates are removed from the membrane
only via SM → P, F = 1. This is because then the only stochasticity
in the problem is from Poisson membrane binding, and all bound
substrates will eventually get converted to P.

Computational Complexity of Coarse-Grained Simulations. We
expect our approach to be particularly useful for simulations in sys-
tems biology because it is much faster than the traditional Gillespie
algorithm (9). Indeed, for our model, the computational complex-
ity of a single Gillespie simulation run is O(MT/τE), where M = 5
is the number of reactions in the system, and T is the duration of
the simulated dynamics. In contrast, the complexity of a coarse-
grained run is O[M0(T/τE)0] because we have eliminated the
internal species and simulate the dynamics in steps of ≈T instead
of ≈τE. However, the Gillespie algorithm is (statistically) exact,
while ours relies on quasi-stationarity. Thus the coarse-grained
simulation must be benchmarked against the Gillespie algorithm
to gauge its practical utility in reducing the simulation time while
retaining a high accuracy.

Similarly, it would have been useful to benchmark against the
Slow Scale Stochastic Simulation Algorithm (ssSSA) (10), an adi-
abatic simulation method, on which most others are based. How-
ever, using k1 = 0.02, k−1 = 2, k2 = 1, q = 0.01, and q0SB = 1.5,
we get SM ≈ 100, and all of the reaction rates are ≈1. Thus none
of the 5 elementary reactions is fast and ssSSA and its derivatives,
which are based on the fast reaction approach, are not applicable.
Therefore, we benchmark against the Gillespie algorithm only.

All simulations were performed by using Fortran 90, on a single
CPU (1.83 GHz, Windows 2000). In SI Text we provide the bench-
mark results for the single MM enzyme (reaction 3), where the
coarse-graining achieves factor of 40 speedup. Here, we focus on
the full model system viewed at different coarseness.
Coarse-grained, Step 1: Total time of the evolution is T = 1, 000,
and SM(t = 0) = 120. Then the relaxation time of a typical fluc-
tuation of SM is τM ≈ 1/[q + (∂kMM/∂SM)] ≈ 80, where kMM
is the rate of the MM reaction for a given SM, and this sets
the scale 1 ≈ τE � δt = 20 � τM ≈ 80. We simulate the
reactions that survive Step 1 (membrane binding/unbinding and
MM transformation) by approximating their distributions with the
GC series with 3 known cumulants, and we perform 106 simula-
tion runs, which is sufficient for convergence of the third cumulant
of the SB → P aggregate reaction. As shown in Table 1, the
coarse-grained approach speeds simulations 60-fold relative to the
Gillespie one with little apparent accuracy loss.
Coarse-grained, Step 2: We do similar benchmarking for the system
represented as a single coarse-grained reaction SB → P. Here, we
use a single time step equal to T , τM � T � τB. Table 1 shows
that simulating all 5 reactions in a single step results in a dramatic
4,000-fold speedup. For all cumulants, coarse grained simulations
and analytic results differ from exact Gillespie values by, at most, a
percent, which hardly matters. Yet the reduction of the simulation
time by the factor of 103 . . . 104 is certainly tangible.

It is important to understand where the 60- and the 4,000-fold
improvements are from. Both relate to (i) simulating fewer than
five original reactions, (ii) not spending any time on simulating

backwards processes, and (iii) making time steps of 20 and 1,000
respectively, compared with τE ≈ 1. Clearly, the latter (the adi-
abaticity) contributes the most, at least in our example. In their
turn, the 2 levels of adiabaticity exist because there is 1 enzyme, 100
membrane substrates, and many thousands of bulk substrates, so
that the typical fractional change of the membrane and the bulk
substrates is very small over the respectively chosen time steps.
For other kinetic schemes, improvements should also scale with
the ratio of time scales or abundances.

Generalization to a Network of Reactions. As discussed in detail in
the original literature (14), in the SPI formalism, a network of M
reactions with N chemical species (Fig. 4) is generally described by
2MN ordinary differential equations specifying the saddle point
solution of the corresponding path integral. Materials and Meth-
ods provides a particular example, and we refer the readers to
the original literature for generalizations. Here, we build on the
ref. 14 and focus on developing a relatively simple, yet general
coarse-graining procedure for more complex reaction networks.

At intermediate time scales, δt, many fast species connecting
slow ones can be considered statistically independent. Therefore,
in the SPI, every separate chain of such species adds to the effec-
tive Hamiltonian. Namely, we enumerate slow chemical species
by μ, ν, . . . . Fast chains connecting them can be marked by pairs
of indexes, e.g., μν (Fig. 4). An entire such chain will contribute a
single effective Hamiltonian term, Hμν({N}, {χ}, {χC}), to the full
CGF of the slow fluxes, where {N}, {χ}, and {χC} are the slow
species abundances and the conjugate counting variables. If nec-
essary, the geometric correction to the CGF, Sμν

geom({N}, {χ}, {χC}),
can be written out as well (15). Overall,

S({χC}, T) =
∑
μ<ν

Sμν
geom({N(t)}, {χ(t)}, {χC}, T)

+
∫ T

0
dt

[∑
μ

iχμṄμ +
∑
μ<ν

Hμν({N(t)}, {χ(t)}, {χC})
]

. [15]

Again, as in Materials and Methods, summation over all CGFs in
Eq. 15 is a result of the convolution of conditional distributions of
the slow fluxes.

This provides for the following coarse-graining procedure. First,
one finds a time scale δt, small enough for the slow species to
be considered stationary and yet fast enough for the fast ones to
equilibrate. If the fast species consist only of a few degrees of free-
dom, like in the case of a single enzyme, one derives the CGF of
the transformations mediated by these species similar to Materials
and Methods. If instead the fast species are mesoscopic, one uses
the SPI technique to derive the CGF by analogy with Step 2.

At the next step, the CGFs of the fast species are incorporated
into the SPI over the abundances of the slow ones. For this, one
writes down the the full effective Hamiltonian, Eq. 15, assumes
adiabatic evolution, and solves the ensuing saddle point equa-
tions. The extremum of the effective Hamiltonian determines the

Fig. 4. Schematic coarse-graining of a network of reactions. (A) The net-
work has M = 10 reactions (red arrows) and N = 8 species, of which 3 are slow
(large circles), and 5 are fast (small circles). (B) Dynamics of each fast node can
be integrated out, leaving effective, pairwise fluxes among the slow nodes
(blue arrows), labeled by the corresponding effective Hamiltonians Hμν. Note
that, for reversible pathways, the flux may be positive or negative (2-sided
arrow), and it is nonnegative otherwise (1-sided arrows).
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CGF of the coarse-grained process. For hierarchies of time scales,
this reduction procedure is then repeated. A limitation of the
procedure is in requiring the knowledge of typical species con-
centrations and the associated time scales. One can identify those
by a few preliminary Gillespie simulations.

Discussion
Rigorous mathematical techniques are finding applications in
biology. Here we present one such example, where adiabatic
approach, paired with the SPI formalism of statistical physics,
allows one to coarse-grain stochastic biochemical networks. We
eliminate fast variables, reducing a network with a separation
of time scales to a handful of slow species coupled by complex
interactions with properties that account for the decimated nodes.
The simplified system is smaller, nonstiff, and easier to analyze,
resulting in orders-of-magnitude improvement in the speed of its
simulations. This has a potential for a wide impact in systems
biology, at least for systems with diverse time scales.

Fortunately, such systems are more common than one would
expect. Consider, for example, the system briefly mentioned in
the Introduction: A molecule must be modified on n sites in an
arbitrary order to get activated. The kinetic diagram for this sys-
tem is an n-dimensional hypercube, and the number of states of the
molecule with m modified sites is

(n
m

)
. Therefore, if the total num-

ber of molecules is N , then a typical state with m modifications has
Nm ≈ N/

(n
m

)
molecules. This number may be small, ensuring the

need for a stochastic analysis. More importantly, it is quite differ-
ent from either Nm−1 or Nm+1, e.g., Nm/Nm+1 = (m + 1)/(n − m),
and the different abundances result in different time scales.

The coarse-graining simplifies interpretation of biological sys-
tems. For example, the Fano factor of the SB → P reaction, Fig.
3, may approach unity, suggesting a simple, yet rigorous, replace-
ment of the entire reaction by a simple Poisson step. Then the
list of relevant parameters is smaller than suggested ab initio,
improving interpretability and decreasing the effective number
of biochemical features that must be measured experimentally.

Although orders-of-magnitude improvement in simulation
speed is impressive, we are still far from coarse-graining cellular-
scale networks. However, the following properties of our approach
suggest that we may be on the right track:

• We eliminate fast variables not just treat them differently.
• We can operate with arbitrarily long series of cumulants of

the number of reaction events, which allows for hierarchical
applications and for keeping track of even rare fluctuations.

• Unlike most other adiabatic methods, ours does not depend
on existence of fast reactions (for the MM system, this results
in the ability to coarse-grain for any reaction rates rather than
only for the linear and the saturated regimes).

• Standard adiabatic approximations, well developed in classical
and quantum physics, can be applied easily in the SPI context.

• Unlike some other coarse-graining techniques, the SPI
approach can deal with copy numbers of order unity.

• With the SPI, large networks of stochastic reactions can be
reduced to a set of deterministic differential equations.

• Finally, the SPI is rigorous, mathematically justifiable, and
allows for controlled approximations.

In the forthcoming publications, we expect to show how these
advantageous properties of the adiabatic SPI technique allow to
coarse-grain standard biochemical network motifs.

Materials and Methods
Coarse-Graining the MM Reaction. Consider the SM → P reaction,
described mathematically as in Eq. 1:

SM + E
k1SM−−−⇀↽−−−
k−1

C
k2−→ E + P. [16]

The probabilities of transitions between bound, Pb, and unbound, Pu = 1−Pb,
states of the enzyme are given by a 2-state Markov process

d
dt

[
Pu
Pb

]
= −

[
k1SM −k−1 − k2

−k1SM k−1 + k2

] [
Pu
Pb

]
. [17]

Using Eq. 17 and the definition of Zμ, Eq. 3, one can show that Z3(χ, δt) sat-
isfies a Schrödinger-like equation with a χ-dependent Hamiltonian, leading
to a formal solution (5, 15, 21)

Z3(χ, δt) = 1+ (e−ĤMM(χ,t)δt) p(t0), [18]

where 1+ = (1, 1), p(t0) is the probability of the initial states, and

ĤMM(χ) =
[

k1Ns −k−1 − k2eiχ

−k1Ns k−1 + k2

]
. [19]

Similar Hamiltonians can be derived for a wide class of kinetic schemes
(5, 15, 21, 22), allowing for a straightforward extension of our methods.

The solution, Eq. 18, can be simplified if the MM reaction is considered in a
quasi-steady-state approximation, that is Pu is equilibrated at a current value
of the other parameters. This means that the time scale of interest, δt ≈ τM,
is much larger than a characteristic time of a single enzyme turnover, τE, so
we can consider δt → ∞ in Eq. 18. Then only the eigenvalue λ0(χ) of ĤMM(χ)
with the smallest real part is relevant, and Z3(χ, δt) = e−λ0(χ)δt .

It is possible to incorporate a slow time dependence of the parameters into
this answer. By analogy with the quantum mechanical Berry phase (6, 15), the
lowest order nonadiabatic correction can be expressed as a geometric phase

Z3(χ) = eS3(χ) = e
∫
c A·dk−∫

dtλ0(χ,t), [20]

where A = 〈u0(χ)|∂ku0(χ)〉, k is the vector in the parameter space that draws a
contour c during the parameter evolution, and 〈u0(χ)| and |u0(χ)〉 are the left
and the right eigenvectors of ĤMM(χ, t) corresponding to the instantaneous
eigenvalue λ0(χ, t). The first term is the geometric phase, which is responsible
for various ratchet-like fluxes (6).

The geometric phase gives rise to magnetic field-like corrections to the
evolution of the slow variables. However, these corrections are proportional
to (small) time derivatives of these variables, and they often can be neglected.
In our model, the geometric effects are negligible when τE/τM ≈ 1/SM � 1,
and we deemphasize them.

Reading the value of λ0(χ) from ref. 6, we write the CGF of P(δQ3|δt),
τE � δt � τM in the adiabatic limit:

S3(χ, δt) = Sgeom(χ, SM, ṠM) + δt
2

[
− (k−1 + k2 + SMk1)

+
√

(k−1 + k2 + SMk1)2 + 4SMk1k2(eiχ − 1)
]

. [21]

Simulations with Near-Gaussian Distributions. A probability distribu-
tion P(δQ) with known cumulants c1, c2, c3, . . ., can be approximated as a
limited GC expansion (18)

P(δQ) ≈ Ψ(δQ, c1, c2)

[
1 + c3(y3 − y)

6c3/2
2

+ c4(y4 − 6y2 + 3)
24c2

2

+ c2
3(y6 − 15y4 + 45y2 − 15)

72c3
2

+ · · ·
]

, [22]

where y = (δQ − c1)/
√

c2 and Ψ(δQ, c1, c2) is the Gaussian density with the
mean c1 and the variance c2. The leading term in Eq. 22 is a standard Gauss-
ian approximation, and the subsequent terms account for skewness, kurtosis,
etc. If all cumulants scale similarly (the near-Gaussian case), then the terms in
the series become progressively smaller, ensuring rapid convergence.

Generation of random samples from the non-Gaussian GC series is still a
difficult task. However, if, instead of the random numbers per se, the goal
is to calculate the expectation of some function f (δQ) over the distribution
P, 〈f (δQ)〉P , then the importance sampling (19) can be used. Specifically, we
generate a Gaussian random number δQ from Ψ(δQ, c1, c2) and define its
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importance factor according to its relative probability in the normal distrib-
ution and the considered GC series η = P(δQ)/Ψ(δQ, c1, c2). After generating
N such random numbers δQν, ν = 1, . . . , N, we get

〈f (δQ)〉P =
∑N

ν=1 ηνf (δQν)∑N
ν=1 ην

. [23]

If a current random number draw represents just 1 reaction in a larger reac-
tion network, then the overall importance factor of a Monte Carlo realization
is a product of the factors for each of the random numbers drawn within it.

This reduces the complexity of simulations to that of a simple Gaussian,
Langevin process with a small burden of (i) evaluating an algebraic expres-
sion for the GC series, and (ii) keeping track of the importance factor. Yet
this small computational investment allows one to account for an arbitrary
number of cumulants of the involved variables. To illustrate this, in Fig. S2,
we compare the GC, importance-sampling simulations of the MM reaction
flux to the exact results in Results: Step 1. The third and the fourth cumulants
make the two almost indistinguishable.

Here, we sound a note of caution: the GC series produces approximations
that are not necessarily positive and hence are not, strictly speaking, proba-
bility distributions. However, the leading Gaussian term decreases so fast that
this may not matter in practice. In fact, in our simulations, we simply rejected
random numbers that had negative importance corrections. However, this is
inadequate for lengthy simulations, where the probability that one of ran-
dom numbers in a long chain of events falls into such badly approximated
region approaches 1. Then other means of generating random numbers,
such as the well-known acceptance–rejection method (20) should be used.
Because the distributions of interest are near-Gaussian, a Gaussian with a
slightly larger variance is an envelope function for the GC approximation to
the true distribution. Then the average random number acceptance proba-
bility scales as the ratio of the true and the envelope standard deviations,
and it is almost 1. Then the rejection approach requires just a bit more than
1 normal and 1 uniform random numbers to generate a sample from the GC
series. Importantly, in this case, the negativity of the series is not a problem
because it leads to a rejection of a single, highly improbable sample, rather
than of an entire sampling trajectory.

Coarse-Graining All Membrane Reactions. To perform the coarse-
graining that connects Fig. 2 B and C, we look for the MGF of the total number
of products QP produced over time T ≈ τB:

Z(χC) = eS(χC) =
∞∑

QP=0

P(QP|T)eiQPχC . [24]

For this, we discretize the time into intervals tk of duration δt, and introduce
random variables δQμ(tk) (μ = 1, 2, 3), which denote the numbers of each
of the 3 different reactions in Fig. 2B (membrane binding, unbinding, and
MM conversion) during each time interval. The probability distributions of
δQμ(tk) are given by inverse Fourier transforms of the corresponding MGFs:

P(δQμ(tk)) = 1
2π

∫
dχμ(tk)e−iχμ(tk)δQμ(tk)+Hμ(χμ(tk),SB(tk))δt,

[25]
where the CGF are Sμ(χ, SB) = Hμ(χ, SB)δt. Following refs. 14 and 15, and
recalling that QP = ∑

k δQ3(tk), we write the MGF of the total number of
products created during time interval (0, T ) as the path integral over all
possible trajectories of δQμ(tk) and SM(tk):

eS = 〈eiχCQP 〉 =
∫

DSM(tk)
∏
k,μ

∫
DδQμ(tk)

× P[δQμ(tk)]eiχC
∑

tk
δQ3(tk)

× δ[SM(tk+1) − SM(tk) − δQ1(tk) + δQ2(tk) + δQ3(tk)].
[26]

The δ-function in Eq. 26 expresses the conservation law for the slowly
changing number of substrate molecules SM. We rewrite it as

δ(· · · ) = 1
2π

∫ +π

−π

dχM(tk) exp{iχM(tk) · · · }, [27]

and we substitute the expression together with Eq. 25 into Eq. 26. Then the
integration over δQμ(t) produces new δ-functions over χμ, which, in turn, are
removed by integration over χμ(tk). This leads to an expression for the MGF:

eS =
∫

DSMDχMe
∫ T
0 dt[iχM ṠM+H(SM,χM,χC)], [28]

H = H1(−χM, SM, t) + H2(χM, SM, t) + H3(χM + χC, SM, t)

= q0SBe−χM + SMqeχM + 1
2

[
− (k−1 + k2 + SMk1)

+
√

(k−1 + k2 + SMk1)2 + 4SMk1k2(eiχM+χC − 1)
]

. [29]

where e±χM = e±iχM − 1. The original SPI work (14) assumed all component
reactions to be Poisson. However, here H3 is the CGF of the entire complex,
non-Poisson MM reaction, which we read as the coefficient in front of δt in
Eq. 21. This ability to include subsystems with small number of degrees of
freedom, such as the MM enzyme, opens doors to application of the method
to a wide variety of coarse-graining problems.

The meaning of Eq. 29 is simple. To evaluate statistics of slow fluxes,
one needs to convolve their distributions conditional on the slow species
abundances with the distributions of these abundances, which themselves
depend on the fluxes in the previous moments of time. As always, complicated
convolutions result in simple summation/integration for CGFs.

Because SM � 1, this path integral is dominated by the classical solution
of the equations of motion, which, near the steady state, are

ṠM = χ̇M = 0,
∂H
∂χM

= ∂H
∂SM

= 0. [30]

Let χcl(χC) and SM,cl(χC) solve Eq. 30. Then the cumulants generating function
in the quasi-steady-state approximation is

S(χC, T) = TH(SM,cl(χC), χcl(χC), χC) [31]

This Born–Oppenheimer-like procedure completes the coarse-graining by
deriving the CGF for the number of product creations over long times.
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