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A fundamental problem in neuroscience is understanding how
sequences of action potentials (“spikes”) encode information about
sensory signals and motor outputs. Although traditional theories
assume that this information is conveyed by the total number of
spikes fired within a specified time interval (spike rate), recent stud-
ies have shown that additional information is carried by the milli-
second-scale timing patterns of action potentials (spike timing).
However, it is unknown whether or how subtle differences in spike
timing drive differences in perception or behavior, leaving it unclear
whether the information in spike timing actually plays a role in brain
function. By examining the activity of individual motor units (the
muscle fibers innervated by a single motor neuron) and manipulating
patterns of activation of these neurons, we provide both correlative
and causal evidence that the nervous system uses millisecond-scale
variations in the timing of spikes within multispike patterns to con-
trol a vertebrate behavior—namely, respiration in the Bengalese
finch, a songbird. These findings suggest that a fundamental assump-
tion of current theories of motor coding requires revision.

motor systems | neurophysiology | computational neuroscience |
information theory | songbird

The brain uses sequences of spikes to encode sensory and motor
signals. In principle, neurons can encode this information via

their firing rates, the precise timing of their spikes, or both (1, 2).
Although many studies have shown that spike timing contains in-
formation beyond that in the rate in sensory codes (3–5), these
studies could not verify whether precise timing affects perception or
behavior. In motor systems, rate coding approaches dominate (6, 7),
but we recently showed that precise spike timing in motor cortex
can predict upcoming behavior better than spike rates (8), showing
that spike timing carries information in motor as well as sensory
cortex. However, as in sensory systems, it remains unknown whether
spike timing in motor systems actually controls variations in be-
havior (9, 10). Resolving this question, therefore, requires examin-
ing the spike code used by the neurons that innervate the muscles,
because discovering an apparent spike timing code in any brain area
upstream of motor neurons is subject to the same ambiguity about
whether spike timing patterns actually affect behavior.
A spike timing-based theory of motor production predicts that

millisecond-scale fluctuations in spike timing, holding other
spike train features constant, will causally influence behavior.
We tested this prediction by analyzing the activity of single motor
units (that is, the muscle fibers innervated by a single motor
neuron), focusing largely on the minimal patterns that have
variable spike timing but fixed firing rate, burst onset, and burst
duration: sequences of three spikes (“triplets”), where the third
spike is a fixed latency after the first, but the timing of the middle
spike varies. We examined timing codes in songbirds by focusing
on respiration, which offers two key advantages. First, breathing
is a relatively slow behavior (cycles last ∼400–1,000 ms), so the
existence of timing codes is not a priori necessary; however, the
precise control of breathing during singing (11, 12) suggests that
timing may play a role. Second, we developed an electrode sys-
tem which allowed us to collect spiking data over >50,000
breaths, yielding the large dataset sizes necessary to decipher the
neural code.

We recorded electromyographic (EMG) signals from the expira-
tory muscle group (EXP) (13) using a flexible microelectrode array
(Fig. 1A) to isolate spikes from single motor units. Precise timing
codes might be implemented by individual spikes (1, 14, 15) or timing
of spikes within a multispike pattern. Thus, we first verified whether
single motor unit spike trains contain multispike features at high
temporal resolution. Analysis of interspike intervals (ISIs) revealed
that spiking was more regular than expected from a Poisson process
(SI Appendix). Although not sufficient to establish the existence of a
spike timing code, such regularity is crucial if the brain were to use
spike timing patterns to control behavior, and hence output spikes
in a controlled fashion. By showing that ISIs are more regular than
expected in a Poisson process (in which the ISIs are independent),
we establish the possibility of a timing code, and therefore the
necessity of performing the more detailed analyses described below.
Next, we quantified the timescale on which the nervous system

controls spikes within triplets by measuring the mutual infor-
mation between consecutive ISIs in anesthetized birds. The
nonzero value of information (Fig. 1C, red circle) suggests that
consecutive ISIs (and hence, spike triplets) are controlled in the
neural code. To understand the characteristic timescale of this
control, we jittered the timing of each ISI by a Gaussian random
number with SD σ, and again estimated the consecutive ISIs
mutual information. We found that the information only ap-
proaches its unjittered values for σ ∼ 1 ms (Fig. 1C, blue), showing
that spike trains have millisecond-scale features. Similar findings
were obtained in awake birds (SI Appendix, Fig. S1).
We then asked whether these millisecond-scale features predict

behavior by simultaneously recording single motor units and air
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pressure within the respiratory system. Because respiration is
controlled by ensembles of motor units, we did not expect a
single motor neuron to drive the breathing cycle and instead
expected it to only affect fluctuations around the mean. We
therefore subtracted the mean respiratory pressure waveform
from the recorded pressure (Fig. 1A) and investigated the re-
lationship between such pressure residuals and the preceding spike
train (Fig. 2A) using an estimator of mutual information (16) that
we developed specifically for this purpose. This method separates
the total mutual information between spikes and pressure resid-
uals into contributions from spike count and spike timing:

Iðspikes, pressureÞ= Iðspike  count, pressureÞ
+ Iðspike  timing, pressureÞ.

Seven of eight birds tested (all but EMG3) had statistically signif-
icant information in spike timing, which was of the same order of
magnitude as the information in spike rate (Fig. 2A), indicating that
precise spike timing in motor units predicts the ensuing behavior.
We then verified directly that specific spike patterns predict be-

havior by selecting all pressure residuals that followed particular pat-
terns and evaluating their means [pattern-triggered averages (PTAs)]
and variances. Specifically, we focused on triplets preceded by ≥30 ms
of silence, where the first and third spikes occurred 20 ms apart (at
2-ms accuracy), and that differed only by the timing of the middle
spike (10 vs. 12 ms after the first spike or “10–10” and “12–8” triplets,
respectively, with ISIs quantified at a temporal resolution of 2 ms)
(green and blue tick marks in Fig. 2B, respectively). Such patterns had
identical firing rates (three spikes in 20 ms) and burst onset/offset
times and were among the most commonly observed patterns

(e.g., N = 23,991 and 11,558 for the two patterns in bird EMG1, or
11 and 5% of all spike triplets of ≤  20-ms duration, respectively).
We found that PTAs after the 10–10 and 12–8 spike triplets

were significantly different (Fig. 2B). We quantified discrimina-
bility of the PTAs using the d′ statistic (17) and found
d′= 0.108± 0.011 (SD) 17 ms after triplet onset (Fig. 2C). The
same effect is present across all six birds (Fig. 2D). Notably, al-
though d′ traces are similar across animals, the PTAs themselves
are not (SI Appendix, Fig. S2). Therefore, although the dis-
criminability of different patterns is consistent (Fig. 2D), the
encoding of pressure differs across individuals. Wavelet-based
functional ANOVA (wfANOVA) (18) (SI Appendix) revealed a
consistent significant effect between the PTAs across birds after
accounting for intersubject variability (SI Appendix, Fig. S3 and
Table S1). Therefore, millisecond-scale changes in timing of a
single spike in a multispike pattern at a fixed firing rate predict
significant changes in air sac pressure. This result agrees with our
previous findings that cortical neurons upstream of vocal and
respiratory muscles also use spike timing to encode behavior (8).
Although the above results show that precise spike timing

predicts behavioral variations, they cannot reveal whether timing
affects muscle output. To test this hypothesis, we extracted
muscle fiber bundles from EXP and measured force production
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Fig. 1. The structure of the neural code. (A) Flexible microelectrode arrays
(Inset) were used to record single motor units in the EXP. A sample recording
shows (Lower) a well-isolated single motor unit (spikes marked by asterisks)
and (Upper) the corresponding instantaneous and trial-averaged pressures
(red and black, respectively). (B) To identify the temporal scale of precision
of spike patterns, we jittered the ISIs and studied the mutual information
between consecutive ISIs as a function of the jitter magnitude. (C) The
mutual information in jittered spike trains approached that in the original
recordings only for jitters on the scale of ∼ 1ms. The blue line shows data for
bird EMG1, for which we had the most spikes (>350,000); the band shows
the range across eight anesthetized birds (EMG1–EMG8). Unnormalized
values of information at σ = 0 ms were 0.057–0.146 bits.
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Fig. 2. Spike timing predicts respiratory air pressure. (A) Mutual information
(±1 SD) between 20 ms of spike timing (red)/spike rate (blue) and 100 ms of
pressure residuals. Empty bars indicate underestimated values. (B) Pressure
residuals (the bands represent mean ±1 SEM; bootstrapped) (Materials and
Methods) differed significantly for 10–10- (green) and 12–8-ms (blue) spike
triplets. Negative residuals before pattern onset likely reflect activity of other
correlated, nonrecorded motor units. (C) Discriminability (d′; mean ±1 SD;
bootstrapped) between pressure residuals for the triplets shown in B com-
pared with the reshuffled control. (D) The d′ values of 10–10 and 12–8 triplets
in six birds (plotting conventions are same as in C).

2 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1611734114 Srivastava et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611734114/-/DCSupplemental/pnas.1611734114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611734114/-/DCSupplemental/pnas.1611734114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611734114/-/DCSupplemental/pnas.1611734114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611734114/-/DCSupplemental/pnas.1611734114.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1611734114


in vitro while stimulating using three-pulse patterns with 10–10-
and 12–8-ms interpulse intervals (IPIs). Changing the timing of
the middle pulse by 2 ms significantly altered force output (Fig.
3B); wfANOVA identified significant differences in the force
evoked by these patterns (SI Appendix, Fig. S4 and Table S1).
Furthermore, d′ values evoked by 10–10 and 12–8 triplet stimula-
tions are several SDs from zero (Fig. 3C). The same effect holds for
other pairs of similar triplets, such as 2–18- and 4–16-ms IPIs (SI
Appendix, Fig. S5 A and B). Therefore, our in vitro experiments
establish that the small, precisely regulated differences in motor
neuron spike patterns observed in vivo cause muscles to produce
different forces.

We next explored whether different spike patterns not only cor-
relate with behavior and drive distinct force production but also
cause different behaviors in vivo. We recorded air sac pressure while
simultaneously applying temporally patterned electrical stimulation
to EXP, again using 10–10- and 12–8-ms stimulation triplets (Fig.
4A). Moving the middle pulse from 10 to 12 ms after the first evoked
distinct pressure waveforms (Fig. 4B) consistently across all six birds
tested (Fig. 4C). wfANOVA identified significant differences be-
tween the effects of these triplets (SI Appendix, Fig. S6A and Table
S1). Finally, we comprehensively investigated the effects of moving
the middle pulse from 2 to 18 ms after the first pulse (in steps of
2 ms), which resulted in significant differences in the mean pressure
(Fig. 4D) (P < 0.001 for all 36 pairs of these stimulation patterns).
These experiments thus show a causal link between millisecond-scale
timing of muscle activation and the ensuing behavior.
Overall, we have shown that respiratory motor unit activity is

controlled on millisecond timescales, that precise timing of spikes
in multispike patterns is correlated with behavior (air sac pressure),
and that muscle force output and the behavior itself are causally
affected by spike timing (all on similar temporal scales) (Figs. 2D,
3C, and 4C). These findings provide crucial evidence that precise
spike timing codes casually modulate vertebrate behavior. Addi-
tionally, they shift the focus from coding by individual spikes (1, 14,
19) to coding by multispike patterns and from using spike timing to
represent time during a behavioral sequence (20, 21) to coding its
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structural features. Put another way, although it is clear that earlier
activation of neurons would lead to earlier activation of muscles, this
relationship only accounts for encoding when a behavior happens (10,
22). Here, we show that changing the timing of a single spike within a
burst by∼1ms can also affect what the animal will do, not just when it
will do it. Furthermore, we showed that the effect of moving a single
spike is stable across animals (Fig. 2). We believe that this precise
spike timing code reflects and exploits muscle nonlinearities: spikes
less than ∼20 ms apart generate force supralinearly (SI Appendix, Fig.
S12), with stronger nonlinearities for shorter ISIs. Thus, changing the
first ISI from 12 to 10 ms significantly alters the effect of the spike
pattern on air pressure (Fig. 2B). Such nonlinearities in force pro-
duction as a function of spike timing have been observed in a number
of species (23–25), highlighting the necessity of examining the role of
spike timing codes in the motor systems of other animals. Importantly,
our findings show that the nervous system uses millisecond-timescale
changes in spike timing to control behavior by exploiting these muscle
nonlinearities, even though the muscles develop force on a signifi-
cantly longer timescale (tens of milliseconds as shown in Fig. 3B).
The surprising power of spike timing to predict behavior might

reflect synchrony between motor units in the respiratory muscles
(26), so that timing variations in one motor unit co-occur with timing
variations in others. Resolving this question requires examining
temporal population codes in motor systems, a subject not yet ex-
plored. Furthermore, respiration is driven by a brainstem central
pattern generator but modified by descending inputs from the fore-
brain (12, 27). It remains unknown which of these is the source of
timing precision/variability. Because respiration is critical to vocali-
zation in songbirds, it will be of special interest to record respiratory
timing patterns during singing and determine how the temporal code
used by neurons in upstream area RA (the robust nucleus of the
arcopallium, which sends inputs to respiratory networks) is trans-
duced to the motor periphery (8). Furthermore, our findings suggest
that spike timing may contribute to motor control in other species
and systems. Extracting additional information from spike timing (for
example, in brain–machine interfaces, which typically rely on firing
rates to drive action) may thus help us better decode motor activity.

Materials and Methods
Surgical Procedure. We used EMG and electrical stimulation to determine the
importanceofmotor timing in the EXP for avian respiration. All procedureswere
approved by the Emory University Institutional Animal Care andUse Committee.
Before surgery, adult male Bengalese finches (>90 d old) were anesthetized
using 40 mg/kg ketamine and 3 mg/kg midazolam injected i.m. Proper levels of
anesthesia were maintained using 0–3% (vol/vol) isoflurane in oxygen gas.

Subjects. Our studies used a total of 24 adult (>90 d old) Bengalese finches.
Eight birds (which we refer to as birds EMG1–EMG8) underwent EMG re-
cordings of single motor units, in which one single unit was isolated in each
animal (that is, birds EMG1–EMG8 each contributed a single unit to the study,
and data from all eight are used in the analyses in Fig. 1C). Concurrent with
EMG recordings, the pressure within the air sac was continuously monitored
(see below for detailed descriptions of procedures). Of these eight birds, six
(EMG1–EMG6) yielded sufficient neural and pressure data, such that we were
able to compute pressure waveforms conditional on the occurrence of a
particular spike pattern (these subjects are the birds shown in Fig. 2 A and D).
Furthermore, we recorded EMG spike trains (but not air pressure, because we
were unable to find a pressure meter that was both sensitive enough to detect
small respiratory pressure changes and lightweight enough for an awake bird
to carry) from four awake birds, which we refer to as birds EMG9–EMG12, and
they provided the data shown in SI Appendix, Fig. S1.

Additionally,muscle fiber bundles (onebundle per bird)wereextracted from
each of five birds for in vitro testing of force production.We refer to these birds
(data are shown in Fig. 3) as birds IV1–IV5. We also examined the effect of
electrically stimulating the expiratory muscles in vivo in six anesthetized birds,
which we refer to as birds pressure stimulation 1 (pSTIM1) to pSTIM6. Results
from these subjects are shown in Fig. 4. Lastly, four birds (C1–C4) were used to
examine the effect of curare on both EMG activity and the efficacy of muscle
stimulation. The results are shown in SI Appendix, Fig. S7. All birds were male,
except for three of the birds used in the in vitro experiments.

Finally, we note that three birds were used in multiple experiments.
Specifically, two birds were used in both EMG unit recordings and patterned
electrical stimulation, and one bird was used in both EMG recordings and

(subsequently) a curare experiment. To (possibly) reduce the complexity of
our numbering scheme, the first of these subjects is referred to as both EMG7
and pSTIM1 (i.e., a single bird has two names), the second is both EMG4 and
pSTIM3, and the third is both EMG8 and C1.

EMG Recordings. To optimize our ability to isolate individual motor units, we
developed microscale, flexible, high-density electrode arrays that sit on the
surface of individual muscles to record EMG signals (Fig. 1). The gold elec-
trodes were fabricated on 20-μm-thick photo-definable polyimide with a
range of contact sizes and spacing (Premitec). The electrode exposures
ranged from 25 to 300 μm in diameter and were separated by as little as
25 μm. Several alignments of electrodes (16 per array) were fabricated, in-
cluding a 4 × 4 grid and 4 tetrodes. To record from the EXP, an incision was
made dorsal to the leg attachment and rostral to the pubic bone. After
spreading fascia on the muscle group, an electrode array was placed on its
surface. The other end of the array connects to a custom-designed Omnetics
adapter to interface with a digital amplifier (RHD2132; Intan Technologies). The
Intan evaluation board delivered the EMG signals to the computer at 30 kHz.

With these arrays, we were able to acquire high-quality EMG recordings
from 16 locations simultaneously during quiet respiration in eight male
Bengalese finches. The increased number of channels allows the experi-
menter to decide which channels should be subtracted from each other to
create bipolar signals. Because of the high specificity and impedance of in-
dividual electrodes, we were able to extract single-motor unit data in some
cases (Materials and Methods, Data Analysis and Fig. 1). Because we can
record 16 unipolar signals in a very small area, we have increased the
probability of recording a single motor unit while allowing us to test how
different i.m. segments are differentially recruited. Although EXP is made up
of three sheet-like overlapping muscles [musculus (m.) obliquus externus
abdominis, m. obliquus internus, and m. transversus abdominis], we presume
that we are recording motor units from the most superficial muscle: m.
obliquus externus abdominis. However, because all three muscles have sim-
ilar functional roles involving contraction during respiration (28), recording a
motor unit from any of these muscles would not affect our interpretation.

Pressure Recording. Thoracic air sac pressure was monitored using a Silastic
Tube (Dow Corning) inserted in the same manner as previous studies (11, 29,
30) with the pressure sensor 20INCH-D-4V (All Sensors). Briefly, a small in-
cision was made inferior to the rib cage. A 6-cm Silastic tube (0.03-in i.d. and
0.065-in o.d.) with a beveled end was inserted through the incision and su-
tured to the rib cage. The other end of the tube was then connected to the
sensor. For recording experiments, the Intan evaluation board delivered the
pressure signal to the computer at 30 kHz. For the in vivo muscle stimulation
experiments (below), pressure recordings were acquired using an NIDAq Board
(BNC-2090A; National Instruments) at 32 kHz. In both cases, the Intan evalu-
ation board provided the voltage supply for the pressure sensor.

In Vitro Muscle Stimulation. The in vitro muscle preparation was conducted
using five Bengalese finches (two male and three female; none overlapping
with the birds used for in vivo recordings and stimulation), such as we have
done previously (31). We briefly describe the technique here. Animals were
euthanized with an overdose of isoflurane (Baxter), and EXP was exposed as
in the in vivo experiments. Fiber bundles were then isolated from the surface
of m. obliquus externus abdominis (the most superficial muscle in the EXP
group). The fiber bundles were then mounted in a test chamber while con-
tinuously being flushed with oxygenated Ringers solution at 39 °C. One end of
the muscle was fixed to a servomotor (although it was not used) using silk
suture, whereas the other end was mounted on a force transducer (Model
400A; Aurora Scientific). The muscle fibers were then stimulated through the
solution using parallel platinum electrodes (Model 701C; Aurora Scientific). For
each muscle preparation, both stimulation current and preparation length
were optimized for maximum force generation. A single 300-μs pulse was used
for stimulus optimization followed by a 200-Hz, 100-ms tetanic stimulation for
length optimization. To test the importance of motor timing, we stimulated
the muscle with three 300-μs pulses at optimal current, with the first and third
pulses separated by 20 ms and the middle pulse being placed 2, 4, 10, or 12 ms
after the first pulse. Additional trials were conducted with only a single pulse
as a control. These five stimulation patterns were repeated in random order
with 60 s between each trial and after five such iterations, followed by a 200-Hz,
100-ms tetanic stimulation. After this procedure, we measured a total of 25
iterations, taking ∼135 min. To account for muscle fibers dying over the course
of the experiment, force measurements were normalized to the fiber bundles
maximum tetanic force at 200 Hz and linearly interpolated for each stimulus.
Force transducer and stimulation signals were digitized at 20 kHz with an
NIDAq Board (PCI-MIO-16E4; National Instruments).
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In Vivo Muscle Stimulation. Stimulation of EXP was performed in six male
Bengalese finches using two fine-wire electrodes made of insulated multi-
stranded alloy (50-μm diameter, Phoenix Wire Inc.). Pressure recordings were
used to trigger stimulation with custom-written LabVIEW code when the
pressure crossed a user-defined threshold. Generally, the stimulation pulse
train was targeted for 100 ms after the pressure crossed zero. In birds in
which the initial upswing of the respiratory cycle was slower than normal,
stimulation was delayed up to 50 ms longer to prevent stimulation from
occurring during the upswing itself. We wanted to avoid stimulating during
that interval because it was more difficult to extract the pressure effects of
stimulation. Stimulating between 100 and 150 ms after the zero crossing
also mirrored the timing of spikes found in EMG recordings. The LabVIEW
code then sent a stimulation pattern to an external stimulator (Model 2100;
A-M Systems), which was connected to the fine-wire electrodes in EXP.

To test the importance of motor timing on behavior, three stimulation
pulses (biphasic, 250-μs pulse duration, and 250-μA current) were delivered,
with the first and third separated by 20 ms and the middle pulse placed in
2-ms increments across the duration (nine different patterns) in addition to a
single pulse and no pulse control stimuli. All 11 patterns were randomly
interleaved during the experiment. Pressure and trigger times were recorded
at 32 kHz using the LabVIEW code.

The selection of an appropriate current was important for interpreting the
results of these experiments. To properly compare them with EMG record-
ings, wewanted to stimulate using a current that activates the axons ofmotor
neurons but does not activate muscle fibers directly. One previous study that
stimulated songbird muscles used currents as great as 2 mA (31), whereas a
more recent one posited that currents below 500 μA were likely activating
nerve fibers (32). We therefore selected a current of 250 μA for EXP stimu-
lation for the figures in the text to ensure robust effects on air sac pressure.
To test that we were only stimulating the axons of motor neurons, we ap-
plied curare, which locally blocks the neuromuscular junction, to EXP and
compared both EMG and stimulation effects with those when saline was
applied to the muscle. Curare eliminated the recorded EMG signal observed
when only saline was applied to the muscle (SI Appendix, Fig. S7 A and B).
Stimulation at currents as low as 100 μA produced clear effects on air sac
pressure when saline was applied to the muscle (SI Appendix, Fig. S7C), but
those effects were abolished when curare was applied to the muscle (SI
Appendix, Fig. S7D). The same strong stimulation effects observed at 250 μA
when saline was applied (SI Appendix, Fig. S7E) were greatly reduced when
curare was introduced to the muscle (SI Appendix, Fig. S7F). Although we
were unable to completely eliminate stimulation effects at 250 μA using
curare, we believe that the result was caused by the current spreading
farther than the spatial span of the drug. Applying too much curare and fully
paralyzing EXP would endanger the wellbeing of the animal. However, con-
ducting our full three-pulse stimulation experiment at 100 μA produced quite
similar air sac pressure effects (SI Appendix, Fig. S7G) as those observed using
250 μA (Fig. 4D). Therefore, we believe that our muscle stimulation experi-
ments were only activating the axons of motor neurons and were not acti-
vating muscle fibers directly. This finding allowed us to make insightful
comparisons between the results of our spike pattern and stimulation analyses.

Data Analysis. All pressure recordings were converted from voltages to ki-
lopascals via calibration measurements taken with a manometer, and then
band-pass filtered between 1 and 50 Hz. EMG recordings were band-pass
filtered between 300 and 7,500 Hz. Pairs of EMG channels were subtracted to
optimized motor unit isolation. After a good pair was selected, motor unit
spikes were sorted using custom-written MATLAB (Mathworks) code (7).

To analyze the EMG and pressure recordings together (Fig. 2), we searched
through the pressure for occurrences of particular spiking patterns and
compared the pressures after (triggered by) those patterns. We assumed
that the individual spikes of our single motor unit did not drive the overall
pressure cycle. Therefore, instead of comparing raw pressure measurements,
we subtracted out mean cycles and analyzed statistical dependences be-
tween spiking and such pressure residuals. To define the mean waveform,
we segmented individual breathing cycles (defined by a stereotypical rise
and fall in pressure; segmentation by maxima, minima, or zero crossings
gave similar results). The cycles had different durations, and we renormal-
ized time within each cycle to the breathing phase ð0,2πÞ. Because the
structure of breathing changes over the hours of recordings, we averaged
pressures at the same phase in a 21-cycle sliding window (other windows
were tried with no significant changes), resulting in a time-dependent mean
pressure waveform. The mean was then subtracted from the phase-rescaled
local pressure to produce a residual in each individual cycle. We then com-
pared these residuals triggered by the chosen spiking patterns using the
usual d′ discriminability metric:

d′ðtÞ= �xðtÞ− �yðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

�
σ2xðtÞ + σ2yðtÞ

�r ,

where �xðtÞ and �yðtÞ are the sample means of the pressures triggered by the
two spike patterns at time t after the onset of the patterns, and σxðtÞ and σyðtÞ
are the corresponding SDs. To calculate the error bars on d′, we boot-
strapped the entire analysis pipeline (33) by resampling with replacement
the pressure traces residuals after the analyzed spike patterns 500 times and
estimating the SD of the set of d′ resulting from the bootstrapping. In ad-
dition to comparing patterns that are the same to 2 ms, we also were able to
compare the same patterns for a single-millisecond shift in a single spike (SI
Appendix, Fig. S8), and significant differences were seen in some birds.

To isolate the effects of EXP stimulation on air sac pressure, the mean
pressure waveform of 20 previous unstimulated (catch) respiratory periods
was similarly subtracted from the stimulated pressure waveform. A trailing
window was used to eliminate the possibility of future effects of stimulation
affecting our mean subtraction. For this pressure residual calculation, wave-
forms were aligned to the phase of the respiratory pattern at which the
stimulation, instead of the spike pattern, occurred. All catch-subtracted pres-
sure waveforms were averaged within a given stimulation pattern, with the SE
calculated at every time point. To compare responses from two different
stimuli, d′ and its estimated error were calculated as above.

In vitro force measurements were compared following different stimu-
lation patterns using the same d′ analysis as both for the recording and the
in vitro stimulation analyses above. Because of difficulty obtaining Ben-
galese finches in Denmark (where our in vitro studies took place), we used
two male and three female subjects for analysis. Despite other experiments
only being conducted on male Bengalese finches, no qualitative differences
were observed between sexes aside from normal intersubject variability (SI
Appendix, Fig. S9). Because the sample size was small for each sex, we could
not perform a statistical comparison between the two groups.

Mutual Information: Consecutive ISIs. To estimate the scale of temporal structures
in the neural code, we evaluate themutual information between subsequent ISIs
that are ≤  30-ms long (and hence fall into the same breathing cycle) and also
between these ISIs corrupted by a Gaussian noise with various SDs (Fig. 1C).
Mutual information between two continuous variables x and y is defined as (34)

Iðx, yÞ=
Z
dx   dy   Pðx, yÞlog2

Pðx, yÞ
PðxÞPðyÞ, [1]

and a sum replaces the integral for discrete variables. Mutual information is a
measure of statistical dependency that does not assume normality of the un-
derlying distribution in contrast to the more familiar correlation coefficient, and it
measures all statistical dependences between the two variables, such that it is zero
if andonly if the twovariables are completely statistically independent. Because ISIs
are non-Gaussian distributed, using mutual information is more appropriate than
simpler dependency measures. Mutual information is measured in bits. Mea-
surement of x provides one bit of information about y (and vice versa) if the
measurement of x allows us to answer one binary (yes/no) question about y.

Estimationofmutual information fromempirical data is a complexproblem (16,
35). To solve this problem for mutual information between two real-valued
consecutive ISIs, we use the k-nearest neighbors estimator (36). The method de-
tects structures in the underlying probability distribution by estimating distances
to the k-nearest neighbors of each data point. By varying k, one explores struc-
tures in the underlying data on different scales. We choose which k to use by
calculating the mutual information for varying amounts of data (using different
size subsets of the full data) and detecting the (absence of) the sample size-
dependent bias (5, 8, 37, 38). The joint distribution of consecutive ISIs is smooth,
and hence a broad range of k near k= 10 produces unbiased information esti-
mates. To identify possible sample size-dependent biases and calculate the error
bars, we divided the dataset of N samples into nonoverlapping subsamples of
size N=m, with the inverse data fraction m= 2, . . . , 10. We calculated mutual
information in each subsample and then evaluated the SD of the estimates for a
given m, where 10 independent partitions were done for each m (SI Appendix,
Fig. S10A). We then fitted these empirical variances to the usual 1/(sample size)
law by performing a linear regression log σ2ðmÞ=A+ logm. We then estimated
the variance for the full dataset by setting m= 1 (SI Appendix, Fig. S10B). The
same analysis was performed for both the original dataset and the jittered
datasets. To the extent that mutual information estimates for different sample
sizes (different values of m) agree with each other within the error bars, the
estimate of the mutual information likely does not have a sample size-
dependent bias (SI Appendix, Fig. S10A).
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Mutual Information: Spikes and Pressure.We calculated the mutual information
between 20-ms-long spike trains and 100-ms-long pressure residuals (Fig. 2B).
These timescales were chosen because spikes have to be closer to each other
than about 20 ms to cause supralinear effects in muscle activation (SI Ap-
pendix, Fig. S12) and because effects of spikes on pressure appear to last less
than 100 ms (Fig. 2C). We focused on spike trains that began at the phase
φ≈ 0.8π in the breathing cycle (Materials andMethods, Data Analysis), because
the most spiking occurs near that phase (nearby choices reveal similar results).
For the pressure patterns, we started 10 ms after 0.8π phase point, because it
takes about 10 ms for spiking to affect behavior (Fig. 4D). Importantly, al-
though the starting point of patterns/pressures was chosen based on the
phase, the time within the patterns and the pressure traces were not rescaled.
The autocorrelation time of pressure residuals is about 10 ms for all EMG birds,
and therefore, we chose to describe the 100-ms pressure residuals using p= 11
real-valued data points spread 10 ms apart (SI Appendix, Fig. S11A).

With this choice, we needed to calculate the mutual information between
an 11D pressure vector (y in Eq. 1) and the spiking vector (x in Eq. 1). For this
calculation, we modified the k-nearest neighbor mutual information esti-
mator (36) in the following way. We rewrote the mutual information be-
tween the spikes and the pressure as

Iðx, yÞ= Iðn, yÞ+
X
n

PðnÞ  Iðx, yjnÞ, [2]

where n is the number of spikes in the 20-ms spike train. The first term on
the right-hand side of Eq. 2 is the information between the firing rate alone
and the pressure, and the second is the information between the timing
alone and the pressure. This partitioning allowed us to automatically esti-
mate the relative contribution of each of these terms.

We estimated each of the information quantities Iðn, yÞ and Iðx, yjnÞusing the
k-nearest neighbors estimator [recall that Iðx, yj0Þ= 0], where x is now an n-di-
mensional vector of spike timings for a fixed spike count n (we did not discretize
time for this analysis). Because mutual information is reparameterization-
invariant, we rescaled the number of spikes to have zero mean and unit vari-
ance, and then additionally reparameterized the spike times and the pressure
values to have normal marginal distributions, so that the i th value of the var-
iable in a set of N samples was mapped into the value that corresponds to the
cumulative distribution of a unit variance normal being equal to ði− 1=2Þ=N.

Having unit variances ensured that every variable contributes similarly to de-
termining nearest neighbors of data points. Furthermore, making variables to
have exactly normal marginal distributions decreased the influence of outliers
(we have verified that this reparameterization has a negligible effect on data
with no outliers).

As in Materials and Methods, Mutual Information: Consecutive ISIs, we
found the value of k that produced no sample size-dependent drift in the
estimate of Iðx, yÞ; for EMG1, this value was k = 3 (SI Appendix, Fig. S11 A
and B). We similarly estimated error bars by subsampling the data, esti-
mating the variance of each subsample, and extrapolating to the full dataset
size. For some birds, no value of k produced estimates with zero sample size-
dependent bias within error bars. In these cases, we chose the k that resulted
in the smallest sample size-dependent drift. In all such cases (bird identifi-
cations EMG3–EMG6) (indicated by empty boxes in Fig. 2A), the drift was
upward as the sample size increased, indicating that the value of the mutual
information calculated at the full sample was an underestimate. Under-
estimating the mutual information makes it harder to show that spike
timing contains information about the behavior, and yet, seven of eight
birds in Fig. 2A showed statistically significant information in spike timing.

We additionally verified that p= 11 points for characterization of the
pressure is the right choice by estimating Iðx, yÞ at different values of p. As p
increases from one, more features in the pressure get sampled, uncovering
more information. Information plateaus near p∼ 10, indicating that all rel-
evant features in the data have been recovered, and in some cases, it finally
leaves the plateau at larger p because of undersampling, indicating that
such fine discretization should be avoided.

Finally, we note that n in Iðn, yÞ is a discrete variable, making the use of
the k-nearest neighbors estimator problematic. We address the issue by
injecting each discrete datum with small Gaussian random noise. All data
shown used the noise with SD of 10−4, but other values in the range
10−8 . . . 10−2 were tried with no discernable differences.
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Supporting Information (SI Appendix): 

 

Supporting Text 1: Analysis of regularity of spike trains 

In order to find at what timescale the spiking was controlled (and hence could be used in motor 

control), we looked at regularity and predictability within the single motor unit spike trains. 

Spikes generally occurred at a similar phase within each breathing cycle, separated by gaps on 

the order of hundreds of milliseconds, and so we only analyzed spikes falling within one 

breathing cycle. For EMG1, the mean interspike interval (ISI) for such spikes (where the same 

cycle was defined as ISI ≤ 30 ms) was 10.6 ms, while the standard deviation was 4.1 ms, with 

the refractory period of 2.5 ms. In contrast, for a refractory Poisson process with the same firing 

rate and refractory period, we would expect the ISI standard deviation of 7.1 ms. Thus the 

recorded spike train is more regular than a refractory Poisson process, suggesting that spike 

timing is controlled and can be used for motor coding.  

Supporting Text 2: Precise timing observed in awake subjects 

In this study, we focused mostly on motor unit recordings from anesthetized, breathing birds 

(with simultaneous pressure recordings) in order to generate very large data sets. Several factors 

prevented us from performing all of our studies in awake animals. First, the pressure sensor we 

employed (see Methods: Pressure Recordings) was too large (10 g) to attach to an awake, freely-

moving bird. While previous studies have recorded pressure chronically by attaching a smaller 

sensor to a backpack on a bird (1-3), we needed a sensor with better resolution in order to 

measure the small changes in air pressure driven by individual motor units. In contrast, previous 

studies often used pressure to simply identify expiration onset or qualitatively look at changes in 
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respiration patterns. Secondly, we could not isolate single motor units over long durations of 

time in awake birds. We were, however, able to record single motor units in four awake birds 

(without concurrent pressure measurements) for shorter durations, which we used to perform an 

analysis similar to that done in Figure 1c in the main text. In these awake recordings, as in the 

anaesthetized birds, we observed similarly strong correlations between consecutive ISIs, which 

disappeared following jitter on the scale of 1-2 ms or larger  (Figure S1). 

Supporting Text 3: Individuality of motor behavior in individual birds 

Figure 2d in the main text shows that moving a single middle spike by 2 ms produces effects of a 

similar structure in all birds. Figure S2 illustrates that it is only these changes that are stable 

across the birds, while the motor behavior itself (as quantified by PTAs) varies substantially 

among the birds. 

Supporting Text 4: Reconstructed wavelets from wfANOVA analysis 

Figures S3-S6 illustrate the statistical significance of moving a single spike or a single pulse in a 

triplet by 2 ms in different experiments employed in our analysis. See below (“Supporting Text 

7: Wavelet-based Functional ANOVA”) for a full explanation of this analysis method. 

Supporting Text 5: Muscle stimulation activates motor neurons 

Another important consideration for this study is how electrical stimulation actually excites the 

muscle tissue. Electrical stimulation of muscle tissue (see Methods) might evoke muscle 

contraction in one of two (non-exclusive) ways: either by directly depolarizing muscle fibers 

and/or by inducing action potentials in the motor neurons innervating the muscles. To distinguish 

these possibilities, we examined the effect of applying curare (which blocks synaptic 

transmission at the neuromuscular junction). As expected, curare treatment largely abolished 
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EMG signals (Figure S7a,b). We then compared the effects of patterned electrical stimulation on 

air pressure with and without curare.  We found that curare completely abolished the air pressure 

changes induced by 100 mA current (Figure S7c,d) and mostly abolished air pressure changes 

induced by 250 mA current (Figure S7e,f). Therefore, although we cannot rule out some 

contribution of direct muscle fiber activation in our in vivo stimulation experiments, it seems 

likely that any such contribution is minimal. Nevertheless, to evaluate whether such a 

contribution of direct muscle fiber activation might account for the results shown in main text 

Figure 4d, we repeated this experiment with 100 mA stimulation current. As shown in Figure 

S7g, this smaller current, the effect of which is entirely mediated by motor axon activation, 

produces qualitatively identical results as the 250 mA current used in Figure 4d, providing strong 

evidence that our in vivo stimulation paradigm affect behavior via neuromuscular transmission. 

Supporting Text 6: Determining relevant time intervals 

To determine the salient duration to test 3-pulse stimulation experiments, two stimulation pulses 

(each pulse was biphasic with a 250 µs pulse width at 250 µA) were delivered with the interpulse 

interval (IPI) varied to include 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 40, and 

60ms. As controls, a single pulse and a null stimulus were also delivered. All 21 patterns were 

interleaved during the experiment. We suspected that a precise timing code would rely on muscle 

nonlinearity at short interspike or interpulse intervals to produce significant differences in forces 

due to changes in spike timing on the scale of a few milliseconds. Thus we designed experiments 

to find interpulse intervals that would have a nontrivial, supralinear effect on the motor output. 

Such interpulse and interspike intervals (≤ 20 ms in length, Figure S12) were then used in the 

rest of the research (e.g., 10-10 and 12-8 ISI patterns in main text Figure 2). 



 4 

To find the characteristic time scale for supralinear force production, we measured 

nonlinear summation by comparing the actual pressure response to a given stimulation pattern 

with the response constructed by adding the pressure response to a single stimulation pulse at the 

same times. At a small IPI of 2 ms, the nonlinear summation was large (Figure S12b), while the 

difference was negligible at an IPI of 20 ms (Figure S12c). We averaged the area difference 

between these two responses across trials, then took the absolute value for IPIs between 1 ms and 

60 ms. This metric showed that the supralinear effect disappeared at IPIs above 20ms (Figure 

S12d).  

Supporting Text 7: Wavelet-based Functional ANOVA 

To compare stimulation patterns while removing inter-bird variation, we implemented an 

analysis technique called wavelet-based functional ANOVA (wfANOVA), which does not treat 

each time point in a waveform independently since comparisons are performed in the wavelet 

space (4). While the above d’ analysis provides fine temporal resolution for comparing pressure 

waveforms from different stimulation patterns, it treats each time point as independent from 

other time points, when in fact that is not the case. These two types of analyses, therefore, 

complement each other. The wfANOVA technique was described in detail in (4), but we outline 

it briefly here. Our analysis used an adapted version of the MATLAB code used in (4). 

 In our approach, each trial was zero-padded to make the total number of time points equal 

to an exponent of two, as is required for a wavelet transform. All trials were then transformed 

into the wavelet domain using the discrete wavelet transform, which is similar to the Fourier 

transform, as it produces coefficients for a family of wavelets that can be linearly transformed 

back into the time domain. We chose to use the third-order coiflet family, as in (4), because their 

symmetry does not introduce phase shifts into the data and their shapes approximated those of 
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the pressure waveforms. The wavelets in this family are orthogonal to each other. This is 

important for implementing multivariate ANOVA, which performs poorly when there are high 

correlations between data points, as is the case in the time domain. Because wavelets are 

localized in time unlike Fourier components of a signal, wavelet transform of our signals 

featured many small or zero magnitude wavelets. The coefficients determined for each of the 

wavelets in the family were then used for subsequent ANOVA. 

 To perform the ANOVA, all trials were grouped by two factors: stimulation (or spike) 

pattern and bird. Fixed-effect, two-factor ANOVA was performed on the wavelet-decomposed 

pressure waveforms from the EMG and the stimulation experiments. This analysis therefore 

determined whether different spike/stimulation patterns evoked different effects on air pressure 

by quantifying whether one or more wavelet coefficients of the response difference was 

significantly nonzero (α = 0.05, F test with separate post hoc Scheffé tests, with the null 

hypothesis being that the pressure waveforms – represented by the coefficients of the wavelet 

decomposition – from the pairs of stimulation patterns were equal). These post hoc tests were 

conducted using a significance level that was Bonferroni-corrected for the number of significant 

F-tests corresponding to the initial ANOVA with respect to the stimulation pattern factor (i.e., 

0.05 divided by the total number of post hoc tests being conducted). Wavelet coefficients that 

were significantly different between stimulation patterns were subtracted to find the coefficient 

corresponding to the difference between the two patterns. Even having one wavelet with 

significant differences in their coefficients would indicate a significant difference between the 

two input patterns. All nonsignificant coefficients were set to zero, and the entire decomposition 

was transformed back into the time domain. This produced a contrast curve between two 

stimulation patterns across birds that removed the effects of inter-subject variability on the result. 
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This analysis technique was also used for the in vitro muscle experiments, with the input being 

the force waveforms instead of the pressure waveforms. 
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Supporting Figures: 

 

Supporting Fig. S1: Timescales in the spike trains in awake birds. As in anesthetized birds 

(main text Figure 1), mutual information in jittered spike trains recorded from awake birds 

approached that in the original recordings only for jitters on the scale ~1 ms. The blue line shows 

results from the longest spike train recorded for awake birds (EMG 9), for which we had over 

9,000 recorded spikes; the band shows the range across 4 awake birds. The similarity to Figure 

1c suggests that the observed millisecond-scale regularities in the spike train were not due to 

anesthesia. The upper limits of the range shown were driven by a bird with large error bars on its 

mutual information measurements (relative error of up to 27%), resulting in a statistically 

insignificant increase in the mutual information for larger jitters. Un-normalized values of 

mutual information at σ = 0 ranged from 0.094 to 0.147 bits across awake birds, which is similar 

to anesthetized birds. 
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Supporting Fig. S2: Differences in PTAs across birds. In Figure 2d, we show that differences 

in PTAs across birds are remarkably consistent. This is not, however, a result of each bird having 

the same PTAs for each pattern, and does not mean that all of the motor units in the muscle have 

the same effect on air pressure. Here we show the PTAs for the 10-10 pattern treated in Figure 2; 

these correspond to the green trace in Figure 2b, but for all six EMG birds instead of just EMG1. 

Note that the scales on the vertical axes of Figure S2 and Figure 2b are different, and that bird 

EMG1 (whose data is also shown in Figure 2b in the main text) corresponds to the thin dark 

green line with the range of about +/- 1 Pa.” 
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Supporting Fig. S3: wfANOVA analysis of air pressure. Reconstructed signal from 

wfANOVA (18 significant wavelets, post-hoc α = 6.66 x 10-4) revealed the difference in air sac 

pressure between 3-spike patterns over 20 ms, with the middle spike either occurring at 10 ms or 

12 ms after the first spike (i.e., 10-10 vs 12-8 spike triplets), independent of inter-subject 

variability (see main text Figure 2b-d). 
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Supporting Fig. S4: wfANOVA analysis of in vitro muscle force. Reconstructed signal from 

wfANOVA revealed the effect of moving the in vitro stimulation pulse on muscle force, 

independent of inter-subject variability. Note that as in main text Figure 3b, force measurements 

are normalized to the maximum force during tetanic contraction. For 3-pulse in vitro stimulations 

taking place over 20 ms (see Figure 3), significant wavelets demonstrated the difference between 

patterns with the middle pulse at (a) 10 ms and 12 ms (i.e., 10-10 vs. 12-8 triplets, 29 significant 

wavelets, post-hoc α = 2.71 x 10-4) and at (b) 2 ms and 4 ms (2-18 vs. 4-16 stimulation triplets, 

47 significant wavelets, post-hoc α = 2.97 x 10-4). 
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Supporting Fig. S5: Motor timing showed significant effects on force and behavior when 

middle pulse is close to the beginning of interval (in the main text, we studied cases when the 

middle pulse was near the middle of the interval). (a) Force waveforms were significantly 

different when moving the middle stimulation pulse from 2 ms to 4 ms after the first spike in a 

20 ms 3-spike pattern (47 significant wavelets, post-hoc α = 2.97 x 10-4, see Figure S4b). (b) This 

significant effect, as measured by d’, was observed across all 5 subjects. (c) The same 

stimulation patterns caused a significant difference in air sac pressure (16 significant wavelets, 

post-hoc α = 1.64 x 10-4, see Figure S6b below). (d) This effect, measured by d’, was also 
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observed across all 6 subjects. Note that these stimulation patterns tested the limits of the system, 

but they were not observed as spike patterns during EMG recordings in unstimulated birds. 
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Supporting Fig. S6: Reconstructed signal from wfANOVA revealed the effect of moving the in 

vivo stimulation pulse on air sac pressure, independent of inter-subject variability. For 3-pulse in 

vivo stimulations taking place over 20 ms (main text Figure 4), significant wavelets demonstrated 

the difference between patterns with the middle pulse at (a) 10 ms and 12 ms (i.e., 10-10 vs. 12-8 

pulse triplets, 14 significant wavelets, post-hoc α = 1.18 x 10-4), and at (b) 2 ms and 4 ms (i.e., 2-

18 vs. 4-16 triplets, 16 significant wavelets, post-hoc α = 1.64 x 10-4). 
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Supporting Fig. S7: Curare experiments suggest that EXP stimulation activates the axons 

of motor neurons, and not the muscle fibers directly. (a) EMG recordings showed strong 
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activity when saline was applied to the muscle, (b) but that activity quickly disappeared when 

curare, which locally blocked synaptic transmission at the neuromuscular junction, was applied 

to the muscle. (c) Various stimulation patterns at 100 µA had clear effects on air sac pressure, (d) 

but curare abolished those effects at the same stimulation current. (e) The same stimulation 

effects at 250 µA were (f) greatly reduced by curare. (g) Our experiments in the main text 

described the effects of EXP stimulation at a current of 250 µA. We saw similar effects at 

currents such as 100 µA shown here, where stimulation effects were abolished by curare as in 

(c). The color bars represent mean +/- s. e. m. 
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Supporting Fig. S8: Distinguishability of Pattern Triggered Averages (PTAs) on 1 ms scale. 

Similar to main text Figure 2d, here we plot d’ (mean +/- s.e.m, bootsrapped) for the 

distinguishability of the pressure traces triggered by 10-10 and 11-9 ms ISI patterns — different 

only by the position of the middle spike in a spike triplet by 1ms. Of the six birds analyzed in 

Figure 2d, four (EMG1, EMG2, EMG3, and EMG5) had statistically significantly nonzero d' 

curves triggered by these 1-ms different spike patterns. At peak, EMG1 showed d’=0.08+/-0.02. 

The decrease in statistical significance likely reflects having many fewer equivalent patterns if 

viewed at a higher temporal resolution (N = 23,991 and 6,507 for 10-10 triplet for EMG1 at 2 ms 

and 1 ms resolution, respectively). 
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Supporting Fig. S9: In vitro stimulation of EXP did not show any qualitative differences 

across sexes. Across all four stimulation patterns (a-d), all subjects showed similar force 

trajectories, with no subjects showing differences outside of normal inter-subject variability. 

Sample size for each group was too small to perform a statistical comparison, but the data shown 

above suggest that using muscle fibers from both male and female birds for in vitro studies (see 

Methods) did not greatly affect our results. 
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Supporting Fig. S10: Estimation of mutual information between consecutive ISIs for 

EMG1. (a) The plot of mutual information vs. data set size shows stability of the calculated 

values, and hence absence of the sample-size dependent bias in the estimation of information. 

The full data set here includes N = 154,548 consecutive ISIs pairs (red dot). Estimates for other 

data set sizes (blue circles) are obtained by taking 1/m fraction of the total amount of data, with 

m shown on the horizontal axis (see Methods: Mutual Information: Consecutive ISIs). (b) For 

subsampled data (blue), we estimate the variance, 𝜎!, of the mutual information estimates (𝜎  is 

also shown as error bars in panel (a)) as the variance of m non-overlapping subsamples. We 

repeated this ten times at each m and averaged the variances. As discussed in Methods: Mutual 

Information: Consecutive ISIs, we then extrapolated the variance to the full data set using linear 

regression (red line and dot), and the extrapolated standard deviation is shown as the error bar in 

panel (a). 
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Supporting Fig. S11: Estimation of mutual information between spikes and pressure for 

EMG1.  (a) We plot mutual information as a function of inverse data size, similar to Figure S10a 

for the chosen k, the number of nearest neighbors in the mutual information estimator (see panel 

(b)), and p, the number of data points used to represent the pressure (see panel (c)). Here the full 

data set is N=16,516 breathing cycles (solid circle, inverse data fraction of 1). Information 

between the spike count and the pressure (blue) and the spike timing and the pressure (red) are 

shown separately (also reproduced in main text Figure 2a for p = 11, k = 3, and the full data set). 

To further establish statistical significance of the timing mutual information estimate, we show 

the mutual information between the pressure traces and randomly shuffled spike timings, while 

Inverse Data Fraction
0 2 4 6 8 10

M
ut

ua
l I

nf
o 

(b
its

)

0

0.05

0.1
Timing
Counts
Random Timing

k = 3
p = 11

a

k: No. Nearest Neighbors
0 2 4 6 8 10 12 14 16

M
ut

ua
l I

nf
o 

(b
its

)

0

0.05

0.1
Total
Timing
Counts

b

p: No. Points in 100 ms of Pressure
0 20 40 60 80 100

M
ut

ua
l I

nf
o 

(b
its

)

0

0.05

0.1 Total
Timing
Counts

c



 20 

keeping the number of spikes fixed (brown). This information falls within error bars from zero, 

as it should because random spike timing does not carry information about the pressure. (b) As 

explained in Methods, we chose the number of nearest neighbors, k, for the estimation algorithm 

(k = 3 for EMG1) such that k is large enough to have small estimated error bars, and yet small 

enough so that fine features in the distribution are not averaged out and the information does not 

decrease a lot from the maximum.  We verify the choice of k by insisting on the smallest possible 

sample size dependent drift in the estimated information, as in panel (a). Spike timing (red), 

spike count (blue), and total (magenta) mutual information values are shown.  (c) As elaborated 

on in Methods, we chose the same number of points (p = 11, 10 ms apart) to represent 100 ms of 

pressure in all EMG birds. The choice was guided by the requirement of using the smallest p that 

leads to both best sampling and smallest overall error bars, while large enough to result in a 

mutual information that has reached its large-p plateau value across all birds simultaneously, 

within error bars. As in panel (b), spike timing (red), spike count (blue), and total (magenta) 

mutual information values are shown. 
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Supporting Fig. S12: Nonlinear summation in thoracic air sac pressure in response to in 

vivo stimulation. (a) During respiration, stimulation of a varying interpulse interval (IPI) was 

delivered after air sac pressure crossed a user-defined threshold (see Methods: In Vivo Muscle 

Stimulation). (b) At small IPIs ~2 ms, the actual pressure response was much greater than that 

produced from summing two single pulse responses separated by 2 ms. (c) On the other hand, the 

responses were quite similar for an IPI of 20 ms. In these plots, the width of the color bands 

represent the mean +/- s.e.m. (d) The difference between the actual and the summed response 

dropped as IPI increased, leveling off after 20 ms. The red band denotes the mean +/- s.e.m. 

when calculating the (unsigned) difference of areas between responses to individual pulses and 
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the mean single pulse response; the area of this region provides an estimate of the measurement 

variability introduced by computing the difference between many individual pressure traces and 

the mean trace. As expected, the uncertainty of measurements of area difference between two-

pulse responses and a sum of two single pulse responses at different pulse intervals (blue error 

bars) are of roughly the same magnitude as the red area. At >20 ms IPI, the area differences are 

indistinguishable from zero. Data shown are from bird pSTIM3. 

 

Supporting Tables: 

Supporting Table S1: Results of wfANOVA  

Type of 

Experiment 

Number of 

Significant 

Wavelets 

Bonferroni-

Corrected 

Alpha 

Smallest 

p-value 

Largest p-

value 

Figure 

Reference 

EMG 18 1.10 x 10-3 3.36 x 10-86 6.66 x 10-4 Fig. 2, 

Fig. S3 

In vitro stim  

(10-10 vs 12-8) 

39 3.70 x 10-4 4.04 x 10-

105 

2.71 x 10-4 Fig. 3, 

Fig. S4a 

In vitro stim  

(2-18 vs 4-16) 

47 3.47 x 10-4 3.47 x 10-82 2.97 x 10-4 Figs. S4b, 

S5a-b 

Air Sac Stim 

(10-10 vs 12-8) 

14 1.18 x 10-4 5.31 x 10-56 6.79 x 10-5 Fig. 4, 

Fig. S6a 

Air Sac Stim  

(2-18 vs 4-16) 

16 1.64 x 10-4 2.73 x 10-50 1.43 x 10-4 Figs. S5c-d, 

S6b 
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