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The estimation of the information carried by spike times is crucial for a
quantitative understanding of brain function, but it is difficult because
of an upward bias due to limited experimental sampling. We present
new progress, based on two basic insights, on reducing the bias problem.
First, we show that by means of a careful application of data-shuffling
techniques, it is possible to cancel almost entirely the bias of the noise
entropy, the most biased part of information. This procedure provides
a new information estimator that is much less biased than the standard
direct one and has similar variance. Second, we use a nonparametric test
to determine whether all the information encoded by the spike train can
be decoded assuming a low-dimensional response model. If this is the
case, the complexity of response space can be fully captured by a small
number of easily sampled parameters. Combining these two different
procedures, we obtain a new class of precise estimators of information
quantities, which can provide data-robust upper and lower bounds to
the mutual information. These bounds are tight even when the number
of trials per stimulus available is one order of magnitude smaller than
the number of possible responses. The effectiveness and the usefulness
of the methods are tested through applications to simulated data and
recordings from somatosensory cortex. This application shows that even
in the presence of strong correlations, our methods constrain precisely
the amount of information encoded by real spike trains recorded in vivo.

1 Introduction

A recent fundamental insight from system neuroscience is that informa-
tion about the external sensory world is often encoded by the precise tim-
ing of action potential (spikes). The timing of individual spikes has been
shown to encode precisely and reliably the occurrence of certain stimu-
lus features (Rieke, Warland, de Ruyter van Steveninck, & Bialek, 1996;
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de Ruyter van Steveninck, Lewen, Strong, Koberle, & Bialek, 1997; Buracas,
Zador, DeWeese, & Albright, 1998; Panzeri, Petersen, Schultz, Lebedev, &
Diamond, 2001; DeWeese, Wehr, & Zador, 2003; Arabzadeh, Zorzin, &
Diamond, 2005). However, one question still unanswered is how individ-
ual spikes, from either the same or a different neuron, combine together to
give rise to perception. One fundamental observation is that spike times
are correlated: for example, nearby cortical cells tend to fire in synchrony
more than expected by chance. The presence of correlations has suggested
that they are a fundamental ingredient of the neural code. The compu-
tational advantage of such a representation may be that correlations add
an information channel that can be used to either represent more sensory
and behavioral features (Abeles, Bergman, Margalit, & Vaadia, 1993; Dan,
Alonso, Usrey, & Reid, 1998) or bind together groups of features (Gray,
König, Engel, & Singer, 1989; von der Malsburg, 1999). However, whether
correlations are a crucial part of the neural code is still highly controversial
(Shadlen & Movshon, 1999).

A principled and rigorous way to address how the messages carried by
individual spike times are integrated together is to use information theory
to quantify and compare different ways and timescales at which spike
times may convey information (Rieke et al., 1996; Borst & Theunissen, 1999;
Dimitrov & Miller, 2001; Panzeri et al., 2001). The use of information theory
allows an estimate of how reliably stimuli are encoded in single trials and
which features of the neuronal response, such as independent spikes or the
correlations, contribute to stimulus discriminability.

A problem with this approach is that quantifying reliably the informa-
tion conveyed by spike timing often requires the collection of unpractically
large samples of data. This is mainly due to correlations: if correlations did
not exist, then the statistics of spike times would be completely character-
ized by the time-dependent firing rate of each neuron. However, one also
needs to measure the correlations among all possible groups of spikes. A
complete characterization of these correlations requires a number of param-
eters that are difficult to sample with realistic amounts of neuronal data.
Thus, spike timing information measures suffer from a significant sampling
bias problem (Panzeri & Treves, 1996).

Generalizing previous work of Reich and colleagues (Reich, Mechler,
Purpura, & Victor, 2000), we have recently proposed an approach to alleviate
the sampling bias problem by developing data-robust lower bounds to the
spike timing information that neglect long-lag stimulus modulations of
correlations (Pola, Petersen, Thiele, Young, & Panzeri, 2005). These bounds
can establish if there is information conveyed in spike times above and
beyond that conveyed by spike counts. However, these methods cannot be
used to test the importance of correlations in coding because they explicitly
neglect a potentially important part of the correlation structure.

In this letter, we overcome this limitation by presenting several method-
ological advances that lead to a radical improvement of the sampling
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properties of information measures and provide very tight and data-robust
upper and lower bounds to spike timing information. These advances also
permit constraining precisely the role of correlations in decoding. Overall,
this progress provides the basis for a better determination of the role of
correlations in information transmission and at the same time significantly
expands the domain of applicability of information-theoretic techniques to
the analysis of neural signals.

The letter is organized as follows. We first review basic concepts of
information theory applications to spike trains; we then discuss how to
quantify the importance of correlations in decoding; we next address the
sampling properties of these information quantities and provide bounds
that are biased either upward or downward; and we discuss how to use
model selection techniques to give virtually unbiased and tight estimations
of information. Finally, we apply the new techniques to real neuronal spike
trains recorded from rat somatosensory cortex.

2 The Information Carried by Neuronal Population Responses

We consider a time period of duration T , associated with a dynamic or
static sensory stimulus s (chosen with probability P(s) from a stimulus set
S with S elements), during which the activity of one neuron is observed.1

We assume that the spike arrival times are binned with a timing precision
�t and transformed into a sequence of spike counts in each time bin. L
denotes the number of time bins (i.e., T = L�t). The neuronal response
is denoted by a one-dimensional array r = {r (1), r (2), . . . , r (L)}, where r (t)
is the number of spikes emitted by the neuron in the tth time bin. The
maximum number of spikes that can be observed in a single time bin in
any trial is denoted by M. (If �t is very short, M is 1 and r (t) is binary.) We
indicate the response space by R (R contains (M + 1)L elements).

Following Shannon (1948), we write the mutual information I (R;S)
(often abbreviated as I in the following) transmitted by the population
response about the whole set of stimuli as

I (R;S) = H(R) − H(R|S), (2.1)

where H(R) and H(R|S) are the response entropy (stimulus-unconditional)
and the noise entropy (stimulus-conditional), respectively. They are defined

1In this letter, we consider one neuron only in order to keep notations simple. However,
the generalization to neuronal populations is relatively straightforward and does not
present conceptual difficulties. The main step in generalizing to populations is a slight
change needed in the definitions of the Markov models described below; see Pola et al.
(2005) for an example of how to carry out this generalization.
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(Cover & Thomas, 1991) as

H(R) = −
∑
r∈R

P(r) log2 P(r), (2.2)

H(R|S) = −
∑
s∈S

P(s)
∑
r∈R

P(r|s) log2 P(r|s). (2.3)

The response entropy quantifies how neuronal responses vary with the
stimulus and thus sets the capacity of the spike train to convey informa-
tion. The noise entropy quantifies the irreproducibility of the neuronal re-
sponses at fixed stimulus. Thus, mutual information quantifies how much
of the information capacity provided by stimulus-evoked differences in
neural activity is robust to the presence of trial-by-trial response variabil-
ity (de Ruyter van Steveninck et al., 1997). In equations 2.2 and 2.3, the
summation over r is over all possible neuronal responses. The summation
over s is over all possible stimuli. P(r|s) is the probability of observing
a particular response r conditional to stimulus s. Experimentally, P(r|s)
is determined by repeating each stimulus on many trials while recording
the neuronal responses. The probability P(s) is usually chosen by the ex-
perimenter. P(r) = 〈P(r|s)〉s is its average across all stimuli (the angular
brackets indicate an average over stimuli, 〈F (s)〉s ≡ ∑

s∈S P(s)F (s)). We as-
sume that there are enough stimuli in the presented set so that P(r) (which
is computed across all trials to all stimuli) is better sampled than P(r|s).
(In practice, this amounts to the requirement that more than a handful of
stimuli is presented.)

Estimating the information carried by spike times of real neuronal pop-
ulations is difficult because each stimulus-response probability has to be
measured from a limited number of data. The statistical errors in estimat-
ing the response probabilities lead to a downward systematic error (bias) in
both noise and response entropy (Miller, 1955). H(R) depends on only P(r),
which is sampled across all trials to all stimuli. Under our assumptions,
its bias is much smaller than that of H(R|S), which depends on P(r|s).
This results in an overall upward bias when estimating mutual information
(Panzeri & Treves, 1996). This makes it difficult to estimate the informa-
tion directly from equation 2.1, especially for long time windows or precise
spike time discretizations (large L).

3 Simplified Models of Correlation

Having defined the information that neuronal responses transmit about
sensory stimuli, we consider how correlations in the responses affect infor-
mation transmission.

The first step is to define precisely what we mean by correlations. In this
letter, when we say that the spike trains are correlated, we mean that, for
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some stimulus s, the “true” stimulus-response probability P(r|s) is differ-
ent from the probability Pind (r|s) obtained if spikes were independent at
fixed stimulus. By definition, the independent probability model Pind (r|s) is
the product of the stimulus-conditional marginal probabilities P(r (t)|s) of
responses in each time bin t:

Pind (r|s) =
L∏

t=1

P(r (t)|s), (3.1)

Thus, when we refer to correlations, we mean correlations at fixed stim-
ulus. These correlations are usually called noise correlations (Gawne &
Richmond, 1993; Nirenberg & Latham, 2003; Pola, Thiele, Hoffmann, &
Panzeri, 2003). For brevity, in the rest of this letter, when we use the term
correlation, we mean “noise correlation.”

After correlations have been defined, the next step is to characterize how
they affect information transmission. Correlations can affect neural infor-
mation transmission in different ways in terms of both encoding and down-
stream decoding of neuronal messages. Here, following previous work
(Latham & Nirenberg, 2005; Nirenberg & Latham, 2003), we specifically
focus on whether correlations must be taken into account to decode the
neuronal response. We consider a downstream neural system that bases its
decoding decisions on the assumption that the spikes are generated by a
simplified response model Psimp(r|s), which neglects certain aspects of the
spike train correlation structure (e.g., it considers only correlations between
spikes close together in time).2 We ask how much information is lost be-
cause the decoding operation is performed assuming that responses r are
generated with Psimp(r|s) rather than with P(r|s).

The choice of the mathematical form of Psimp(r|s) will depend on the
question that the experimenter wants to address about correlations. If, for
example, one is interested in whether correlations of any form are important
for decoding, then one considers how much information is lost when the in-
dependent model Pind (r|s) is used for decoding. If instead one is interested
in the more specific question of whether correlations within a specified
time range are important for decoding, then one considers how much in-
formation would be lost when using simplified response models Psimp(r|s)
that neglect correlations at timescales outside the specified range. When
considering neuronal population recordings, a similar strategy could be
used to study the spatial scale at which correlations influence information
transmission. In this case, Psimp(r|s) will take into account only correlations
among a specific subset of neurons.

2For example, the downstream system may decode the stimulus using, via Bayes’ rule,
a posterior probability based on the simplified model: Psimp(s|r) = P(s)Psimp(r|s)/Psimp(r).
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3.1 Assumptions on the Simplified Models of Correlation. Although
in the remainder of the letter, we will focus on a particular class of simplified
response models, in this section it is useful to keep the simplified probability
model Psimp(r|s) as general as possible and spell out the minimal require-
ments to Psimp(r|s) that are necessary to develop our information-theoretic
formalism. We will require only that Psimp(r|s) satisfies two assumptions.
These assumptions are listed below, and their importance will be made
clear in the rest of the letter.

Before we list the assumptions, we will describe our formalism by having
in mind simplified models Psimp(r|s) that depend on many fewer parameters
than P(r|s), and are thus much easier to sample than P(r|s). For example,
the simplest possible case of Psimp(r|s) is a parameter-free probability distri-
bution that is uniformly flat across all times and stimuli. Another example
of a model that is simple to sample is Psimp(r|s) = Pind (r|s). In fact, while es-
timating P(r|s) requires an evaluation of (M + 1)L − 1 parameters for each
stimulus s, estimating Pind (r|s) needs only ML parameters for each stim-
ulus. Although we have in mind very simple models for Psimp(r|s), it is
important to note that the formalism developed in this letter would be well
defined even if Psimp(r|s) is approximately as complex to sample as P(r|s).
In fact, the family of Markov models that we will study in detail below
interpolates parametrically from low to high model complexity.

We require that the simplified model Psimp(r|s) to be used satisfies the
following two assumptions:

Assumption 1. We require that the method used for transforming P(r|s)
to Psimp(r|s) operates separately and independently on the responses con-
ditioned to each stimulus. Thus, we require that the transformation from
P(r|s) to Psimp(r|s) is independent of P(s), or of P(r|s ′) and P(s ′) for any
s ′ �= s. This property is useful because the resampling (or “shuffling”) tech-
niques that, as detailed in section 4, can reduce the bias of information
estimates can be applied only to Psimp(r|s) that, for each stimulus s, are
constructed only from responses collected in response to that stimulus.

Assumption 2. We require that for each stimulus s with nonzero probability,
the simplified response model Psimp satisfies the following condition:∑

r∈R
P(r|s) log2 Psimp(r|s) =

∑
r∈R

Psimp(r|s) log2 Psimp(r|s). (3.2)

Assumption 2 is important to our analysis for three reasons. The first is
that (taking the point of view that 0 log(0) is zero and c log(0) is ill defined
for any c �= 0) assumption 2 enforces the condition that if for some r and
s, Psimp(r|s) is zero, then P(r|s) must also be zero. This fact is crucial in the
present context because, as we will see in the next section, it ensures that the
information-theoretic quantities to be introduced below are well defined.
The second reason is that, as also shown in the next section, assumption 2
ensures that we can rewrite the information-theoretic quantities in a way
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that is easier to sample. The third reason is that assumption 2 is satisfied
by all maximum entropy models constrained to preserve selected features
of the full probability model P(r|s). This will be demonstrated in section
3.3. Since maximum entropy smoothing is a principled way to fill the un-
constrained details of a simplified model, it is useful to ensure that our
formalism is applicable to all such models.

3.2 Measures of the Information Lost in Decoding with the Simpli-
fied Model. Now we turn to determining how much information is lost
when decoding the neural response with a mismatched decoding model
Psimp(r|s) instead of with the true model P(r|s). This problem has been well
studied in the information-theoretic literature (Merhav, Kaplan, Lapidoth, &
Shamai Shitz, 1994; Latham & Nirenberg, 2005). Although this information
loss cannot be expressed through a general and simple analytical expres-
sion, Latham and Nirenberg (2005) recently derived a simple closed-form
expression that is an upper bound to it, as follows:

�Isimp ≡ D(P(s|r)||Psimp(s|r)) ≡
∑

r

P(r)
∑

s

P(s|r) log2
P(s|r)

Psimp(s|r)
, (3.3)

where D is conditional Kullback-Leibler (KL) distance (see Cover &
Thomas, 1991, p. 22, eq. 2.65). Assumption 2 ensures that if for some r
and s, Psimp(r|s) is zero, then P(r|s) must also be zero, and this in turn en-
sures that �Isimp is a nonnegative and nondivergent information-theoretic
measure.

An important problem in the practical estimation of �Isimp in the case
in which Psimp(s|r) is described by many fewer parameters than P(s|r)) is
that it is heavily biased, approximately as much as the mutual information
I (Pola et al., 2005). In the next sections, we will show how to reduce the
bias problem of �Isimp and thus allow its estimation in practice.

A second quantity of interest is ILB-simp (see Pola et al., 2005), the difference
between the mutual information I and �Isimp :

ILB-simp = I − �Isimp

= −
∑
r∈R

P(r) log2 Psimp(r) +
∑
s∈S

P(s)
∑
r∈R

P(r|s) log2 Psimp(r|s)

= χsimp(R) +
∑
s∈S

P(s)
∑
r∈R

P(r|s) log2 Psimp(r|s), (3.4)

where

χsimp(R) ≡ −
∑
r∈R

P(r) log2 Psimp(r). (3.5)
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Since �Isimp is nonnegative and is an upper bound to the information
lost when decoding the neuronal responses with the mismatched response
model Psimp, ILB-simp has a well-defined meaning: it quantifies information
that can be decoded by using Psimp. As shown by Pola et al. (2005), this quan-
tity is of practical importance because it is much less biased than the mutual
information I ; therefore, it provides a useful data-robust lower bound to
the information decodable with Psimp.

A further simplification to both �I and IL B can be obtained by making
use of assumption 2, which permits rewriting ILB-simp and �Isimp as

ILB-simp =χsimp(R) − Hsimp(R|S) (3.6)

�Isimp = Hsimp(R|S) − H(R|S) + H(R) − χsimp(R), (3.7)

where Hsimp(R|S) is the noise entropy of the simple response model:

Hsimp(R|S) = −
∑
s∈S

P(s)
∑
r∈R

Psimp(r|s) log2 Psimp(r|s). (3.8)

The advantage of this rewriting is that now the stimulus-conditional func-
tionals of the simplified model are expressed as the noise entropy of
Psimp(r|s). This property is important to improving the sampling proper-
ties of the information quantities, because, as we will see in the next sec-
tion, Hsimp(R|S) can be corrected for limited sampling by very effective
techniques (Nemenman, Bialek, & de Ruyter van Steveninck, 2004), and its
presence in the expression for �Isimp will allow us to cancel out the bias of
the latter with appropriate procedures.

3.3 Maximum Entropy Models. We now consider in more detail the
problem of how to construct simplified correlation models that satisfy the
assumptions needed by our information-theoretic framework.

In constructing simplified models of correlations, it is natural to ask our
model to preserve only some properties of the true probability P(r|s). A
way to formalize this is to require our simplified model to satisfy, apart
from the usual requirements of nonnegativity and normalization to one,
a certain number m of constraints that are also satisfied by P(r|s), as
follows:

Psimp(r|s) > 0∑
r

Psimp(r|s) = 1

∑
r

Psimp(r|s)gi (r) =
∑

r

P(r|s)gi (r) i = 1, · · · , m, (3.9)
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where gi (r) are arbitrary functions on R.3 Once the constraints in equa-
tion 3.9 have been chosen, it is then desirable to simplify the response
model by removing all types of correlation in the data apart from those
enforced by the features preserved from the original distribution.

A principled way to choose a Psimp(r|s) that satisfies the constraints in
equation 3.9 and adds no further relationship between the data is to choose
Psimp(r|s) as the distribution with the maximum entropy allowed by our
constraints. This maximum entropy distribution is unique and has the fol-
lowing expression (Cover & Thomas, 1991):

Psimp(r|s) = exp

{
λ0 − 1 +

m∑
i=1

λi gi (r)

}
, (3.10)

where the parameters λ0, λi , · · · , λm are fixed (independently for each con-
ditional distribution to each stimulus) so as to satisfy the constraints in
equation 3.9. The maximum entropy distribution is in some way the most
reasonable choice of simplified model of correlations given the constraints:
to choose a distribution with lower entropy would correspond to assume
some additional structure that we do not know; to choose one with a higher
entropy would necessarily violate the constraints that we wish to enforce.

It is important to note that any maximum-entropy simplified model of
the form in equation 3.10 that satisfies constraints of equation 3.9 is a suit-
able simplified model for our analysis; in fact, any such maximum-entropy
model satisfies by construction the two assumptions of our formalism. In
particular, by using equation 3.10, equationq 3.2 of assumption 2 becomes:

∑
r

Psimp(r|s)

{
λ0 − 1 +

m∑
i=1

λi gi (r)

}
=

∑
r

P(r|s)

{
λ0 − 1 +

m∑
i=1

λi gi (r)

}
,

(3.11)

which is obviously satisfied if Psimp(r|s) meets the constraints set by equa-
tion 3.9. Another demonstration of the relationship between assumption 2
and the maximum-entropy principled is reported in appendix B.

An important class of maximum entropy distributions is made of the
distributions that preserve some marginal probabilities of P(r|s), such as
the independent model Pind (r|s) of equation 3.1, the Markov models con-
sidered in the next subsection, and the hierarchical probability models of
Amari (2001). Models preserving marginals are obtained from equation 3.10
by constraining Psimp and P to have equal sum on a number of subsets

3The functions gi (r) could in principle be different for each stimulus conditional dis-
tribution.
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Ai ,Bi , · · · of the responses space R (each subset corresponding to the re-
sponses that have to be summed to compute the marginal probability to be
preserved). This corresponds to choosing for each subset a function gi (r) in
equations 3.9 and 3.10 with value one on the subset under consideration
and zero elsewhere.

For example, the independent model of equation 3.1 is obtained from
equation 3.10 by partitioning the response space into the disjoint union of
the “marginal” subsets A1, A2 (the subset of all responses with respectively
1 or zero spikes in time bin 1), B1, B2 (the subset of all responses with
respectively 1 or zero spikes in time bin 2), and so on for all time bins, and
then by enforcing Psimp and P to have equal sum on each of the subsets.

More complex maximum entropy models can be obtained by extend-
ing the procedure to constrain Psimp also on intersections of subsets. For
example, Markov models of order 1 can be obtained by constraining the
sum of Psimp not only on the intersections of the above marginal subsets
corresponding to each time bin, but also on the pairwise intersections cor-
responding to adjacent time bins. Amari’s hierarchical models of purely
pairwise interactions (Amari, 2001) can be obtained by the stricter require-
ment of constraining the sum of Psimp on all the pairwise intersections of
marginal subsets, not only to that corresponding to adjacent time bins.

All of these transformations can be applied recursively. The recursion
leads to constructing Markov chains of arbitrary length, as well as hier-
archical models containing higher-order interactions (Amari, 2001). It is
interesting to note that in this way, one can prove that all suffix trees mod-
els satisfy our assumptions and therefore are valid choices of Psimp. In fact,
suffix tree models can be constructed with this recursive partitioning by
constraining Psimp on a smaller number of intersections than the Markov
model of corresponding length. This observation helps in understanding
the relationship between the work presented here and the recent work of
London, Schreibman, Hausser, Larkum, & Segev (2002) and Kennel, Shlens,
Abarbanel, & Chichilnisky (2005), which use suffix tree models to estimate
entropy rates.

In summary, in this section we have established that all maximum-
entropy models satisfy our assumptions and can thus be used to estimate
information with our formalism. These model include Markov chains, hi-
erarchical distributions, and suffix tree models.

We have also provided a general and explicit way to construct such sim-
plified models from the data through equations 3.9 and 3.10. This construc-
tion can be successfully applied whatever the statistics of neuronal firing
described by the response probability P(r|s). In fact, for any given choice of
the constraints in equation 3.9, the maximum entropy model fulfilling these
constraints will automatically satisfy (by construction) our assumptions,
whatever the form of P(r|s). An important implication of this result is that,
in practice, our assumptions will not restrict in any way the applicability of
the method to data sets with specific statistical properties.
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3.4 Markov Models. Despite the generality of the above constructions
of Psimp, we will illustrate and develop the main idea behind our formalism
by focusing on a specific class of simplified correlation models: the Markov
models with finite memory. We choose to illustrate our ideas using this par-
ticular class of maximum entropy simplified model because (1) by tuning
the order of the Markov process, we can vary parametrically the complex-
ity of the model and thus illustrate clearly how the sampling behavior of
the information-theoretic functional depends on the number of parameters
describing the simplified model, and (2) these models are easy to construct
and apply to data.

A neurophysiological motivation of the use of Markov models stems
from the fact that in many neural systems, correlations are significant only
between spikes that are separated by a short time lag, in the range 1 to
15 ms (Gray et al., 1989; Brosch, Bauer, & Eckhorn, 1997; Dan et al., 1998;
Nirenberg, Carcieri, Jacobs, & Latham, 2001; Golledge et al., 2003). In such
cases, to preserve the whole information, it is sufficient to take into account
only correlations extending over a short lag. Thus, one can approximate
the real probability of current response r (t) given the past firing with a
finite-memory Markov model that looks back only q time steps, as follows:

Pq (r|s) = P(r (1)|s)
L∏

t=2

P(r (t)|r (t − q ), . . . , r (t − 1); s), if q = 1, . . . , L − 1,

P0(r|s) = Pind (r|s), if q = 0. (3.12)

The probability conditional on the response in the previous time steps at
fixed stimulus in the above equation can be computed from the experimen-
tal probabilities via

P(r (t)|r (t − q ), . . . , r (t − 1); s) = P(r (t − q ), . . . , r (t − 1), r (t)|s)
P(r (t − q ), . . . , r (t − 1)|s)

, (3.13)

where P(r (t − q ), . . . , r (t − 1), r (t)|s) and P(r (t − q ), . . . , r (t − 1)|s) are
marginal distributions of the full model P(r|s), computed by integrating
away the dependence on all the response variables that do not enter in
their argument. This simple procedure to construct the Markov model is
equivalent to the maximum-entropy one described above.

Markov models interpolate parametrically between the independent
model (q = 0) and the full probability model (obtained for q = L − 1,
because PL−1(r|s) = P(r|s)). Pq (r|s) preserves all correlations extending up
to q time bins in the past, and it neglects all correlations of range longer than
q . Thus, it is a perfect description of neuronal firing if correlations extend
to a lag shorter than or equal to q time bins.
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The information-theoretic probability functionals corresponding to the
choice Psimp(r|s) = Pq (r|s) will be indicated by a subscript q in place of the
subscript simp. For completeness, their expression is reported below:

IL B−q =χq (R) − Hq (R|S) (3.14)

�Iq = Hq (R|S) − H(R|S) + H(R) − χq (R), (3.15)

where Hq (R|S) is the noise entropy of the simple response model,

Hq (R|S) = −
∑
s∈S

P(s)
∑
r∈R

Pq (r|s) log2 Pq (r|s), (3.16)

and χq (R) is

χq (R) = −
∑
r∈R

P(r) log2 Pq (r). (3.17)

4 Bias Cancellations Obtained by Shuffling the Responses

As discussed above, mutual information has been broken down into two
terms, ILB-simp and �Isimp, with radically different sampling properties, the
former easy to sample and the latter very difficult to sample. Here we
examine in detail the sampling behavior of �Isimp and show how to reduce
its bias dramatically without increasing its variance. Since �Isimp is the
most biased part of I , this will also improve the sampling properties of the
mutual information. Since I , ILB-simp and �Isimp consist of four quantities—
H(R|S), Hsimp(R|S), H(R), and χsimp(R)—the relative sampling properties
of I , ILB-simp, and �Isimp can be established by considering the sampling
properties of the above four quantities.

4.1 The Independent Decoder: Ignoring All Correlations. For clarity,
we start by considering in detail the sampling properties of the quanti-
ties corresponding to the q = 0, independent probability model Psimp(r|s) =
Pind (r|s) = P0(r|s). The corresponding information-theoretic functionals are
IL B−0 and �I0, taken from equations 3.16 and 3.17 with q = 0.

4.1.1 Uncorrected Estimators. There are two relevant aspects of the sam-
pling properties of a probability functional: its bias and its variance. We will
consider the bias first and the variance later. The bias of a functional F (P)
of the probabilities P is defined as the difference between 〈F (PN)〉N, the
ensemble-averaged value of the functional computed from the probability
distributions PN empirically obtained from N trials, and the true value of the
functional F (P) computed with the true probability distribution P . Thus,
the bias is a systematic error that cannot be eliminated just by averaging.
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We illustrate the sampling behavior of the entropy functionals by com-
puting them on a set of realistically simulated neuronal data, generated as
follows. We simulated the spiking response of one neuron in somatosensory
cortex to 49 different stimuli consisting of sinusoidal whisker vibrations
with different amplitude and frequency (Arabzadeh, Petersen, & Diamond,
2003; Arabzadeh, Panzeri, & Diamond, 2004). We simulated neuronal re-
sponses over a 0 to 50 ms poststimulus time window. We then digitized,
with time precision �t equal to 5 ms, these responses into L = 10 binary
words. The simulations were performed using a Markov process with order
q = 3, with all the marginal probabilities of order 3 or less and the transition
probabilities taken from real responses of a cortical somatosensory neuron.4

The spike train simulated in this way retains a faithful description of all the
real neuronal marginal distributions and their correlations up to q = 3 time
bins.

In Figure 1A we report the sampling behavior of the four quantities
χ0(R), H(R), H0(R|S), and H(R|S) as a function of the number of trials
per stimulus. For each simulation with a fixed number of trials, we com-
puted the plug-in value of the functional by plugging into their equations
the empirical estimates of the probability (without application of any bias
correction procedure) and then averaging all simulations with the same
number of trials.

We first consider the noise entropy H(R|S). Figure 1A shows that
this is by far the most downward biased of the four functionals consid-
ered. This is because it requires the simultaneous measure of all P(r|s)
to all stimuli. To understand better its sampling behavior, it is useful to
find analytical approximations to the bias. These can be easily derived
in the asymptotic sampling regime. The latter is defined as the case in
which the number of trials Ns to each stimulus s is so large that each re-
sponse bin with nonzero probability is observed many times, Ns P(r|s) � 1
(Panzeri & Treves, 1996). In this asymptotic sampling regime, the bias of
H(R|S) (and, similarly, of all other functionals) can be expanded in inverse
powers of 1/N (N being the total number of trials across all stimuli), as
follows:

Bias[H(R|S)] ≈ C1

N
+ C2

N2 + · · · , (4.1)

4For each stimulus condition s, Ns binary spike trains were generated with a q -order
Markov model as follows (see equation 3.13). The response in the first bin was assigned
to be a 1 or a 0 (spike or no spike) according to P(r (1)|s), the latter being computed from
the real data. Responses in successive time bins were generated one after the other, one
by one, using the corresponding transition probabilities. For instance, the response at
bin k was generated according to the real-data probability P(r (k)|r (k − j), . . . , r (k − 1); s),
where j ≤ min(q , k − 1).



2926 M. Montemurro, R. Senatore, and S. Panzeri

4 6 8 10 12
2

2.5

3

3.5

4

4.5

Log
2
(trials)

E
n

tr
o

p
y 

[b
it

s]

 

 

0
(R)

H(R)
H

0
(R|S)

H (R|S)

H(R|S)
4 6 8 10 12

0

0.5

1

1.5

2

Log
2
(trials)

In
fo

rm
at

io
n

 [
b

it
s]

 

 
I
I
sh

I

 I
0

 I

A B

Figure 1: Comparison of the sampling properties of plug-in estimations of
different probability functionals. The plug-in estimators of the probability func-
tionals are plotted as a function of the number of trials per stimulus available.
Results were averaged over a number of repetitions of the simulation (decreas-
ing from 200 to 10 as the number of trials per stimulus available increased). We
simulated a neuron responding to 49 different stimuli. We considered a time
precision of 5 ms and a poststimulus time window of 50 ms; thus, L was equal
to 10. The spike train was simulated with a Markov process with the same
mean firing rates and up-to-third-order marginal probabilities as a real spike
train recorded in Arabzadeh et al. (2003) in response to 49 different sinusoidal
whisker vibrations. (A) Average values of plug-in estimators of χ0(R), H(R),
H0(R), H(R|S), and H0−sh(R|S) obtained without any bias correction. (B) Av-
erage values of plug-in estimators of I (R, S), IL B−0, �I0, and �I0−sh obtained
without any bias correction.

The leading term in 1/N has a simple analytical expression,

Bias[H(R|S)] ≈ − 1
2N ln 2

∑
s

(R̃(s) − 1), (4.2)

where R̃(s) denotes the number of “relevant" responses of the stimulus
conditional response probability distribution P(r|s), that is, the number
of different responses r with nonzero probability of being observed when
stimulus s is presented (Panzeri & Treves, 1996). R̃(s) is of order (M + 1)L

for each stimulus. Thus, it follows that for the bias in equation (4.2) to be
small, N should be much bigger than S × (M + 1)L .

Let us now consider H0(R|S). It is apparent from Figure 1A that it is
almost unbiased. The reason is that it can be expressed as the sum of
single-bin entropies (see Pola et al., 2005). As a consequence, its bias is
≈SML/2N log(2) and is thus much smaller than that of H(R|S).

Figure 1A shows that the noise entropy H(R) is considerably simpler to
sample than H(R|S). The reason is that since H(R) depends only on P(r),
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its bias is approximately S times smaller than the bias of H(R|S). This is an
advantage when many different stimuli are presented.

Figure 1A shows that the bias of χ0(R) is much smaller than the bias
of H(R). The reason is as follows. Bias arises from the logarithmic form of
entropy functionals. The log in χ0(R) depends on P0(r). Since P0(r) is better
sampled than P(r), χ0(R) has less bias than H(R), whose log depends on
P(r).

Now we study how the properties of the four functionals combine to-
gether to give rise to the sampling properties of I (R;S), IL B−0 and �I0.

The bias of the mutual information I (R;S) is the difference between the
biases of H(R) and H(R|S). As the most biased term is H(R|S), the mutual
information is upward biased (Panzeri & Treves, 1996).

The bias of IL B−0 (see equation 3.14 with q = 0) is the difference between
the biases of χ0(R) and H0(R;S). As both these quantities are virtually
unbiased, so is IL B−0.

Let us now consider the bias of �I0 (see equation 3.15 with q = 0). When
many stimuli are presented, the contribution of the χ0(R) and H(R) is
only very mildly biased and determined by the bias of H(R). Thus, most
of the bias comes from the stimulus-conditional term H0(R|S) − H(R|S).
Since H(R|S) is very strongly biased downward and H0(R|S) is essentially
unbiased, the two biases do not cancel out, and as a result, �I0 is biased
upward and behaves like −H(R|S).

An important practical problem is how to reduce the bias of H0(R|S) −
H(R|S) and thus improve the sampling properties of �I0. A solution to
this problem is to compute H0(R|S) not only directly from the single bin
marginal probability as in equation 3.16 but by randomly shuffling the re-
sponses and then computing their entropy. In the q = 0 case considered
here, we can generate a new set of shuffled responses to stimulus s by
randomly permuting, for each time bin, the order of trials collected in re-
sponse to the stimulus s considered, and then joining together the shuffled
responses in different time bins into a response vector r0−sh . This shuf-
fling operation leaves each single-time-bin marginal probability unchanged
(because responses in each bin are just randomly permuted), while de-
stroying any within-trial correlation between different time bins. We define
H0−sh(R|S) as the noise entropy of the shuffled distribution:

H0−sh(R|S) = −
∑
s∈S

P(s)
∑

rsh∈R
P0−sh(r|s) log2 P0−sh(r|s), (4.3)

where P0−sh(r|s) is the distribution of response values obtained from r0−sh .
The asymptotic large N value of H0−sh(R|S) is the same of that of H0(R|S),
but its scaling with the number of trials is much different. This is shown
in Figure 1A. Unlike H0(R|S), H0−sh(R|S) scales with N approximately
as H(R|S), but with a slightly more negative slope (i.e., slightly more
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downward bias) as the number of trials decreases. The fact that the bi-
ases of H0−sh(R|S) and H(R|S) are of similar size can be intuitively un-
derstood from the fact that P0−sh(r|s) is sampled with the same number of
trials as P(r|s) from responses with the same dimensionality. To understand
why H0−sh(R|S) is more biased downward than H(R|S), we computed
the bias of H0−sh(R|S) in the “asymptotic sampling” regime. We found
that the asymptotic bias of H0−sh(R|S) has the same expression as that of
H(R|S) in equation 4.2, after replacing R̃(s) with R̃0−sh(s), the number of
bins relevant to P0−sh(r|s). Since P0(r|s) = 0 implies P(r|s) = 0 and since
the shuffled responses are generated according to P0(r|s), then it must be
that R̃0−sh(s) ≥ R̃(s). Thus, at the leading order in the asymptotic regime,
H0−sh(R|S) is never less downward biased than H(R|S).5 Therefore, if we
are in the asymptotic sampling regime (or at least the number of trials is
enough to make the asymptotic equations a decent estimate of the size of
the bias) and if R̃0−sh(s) and R̃(s)) are roughly similar, H0−sh(R|S) − H(R|S)
will either (1) have a leading-order 1/N bias term that is negative and arises
from a partial cancellation of roughly similar leading bias terms of two en-
tropies, or (2) (in case R̃0−sh(s) = R̃(s)) it will have a very small bias, only at
the order 1/N2 or higher.

The sampling behavior of H0−sh(R|S) suggests a simple strategy to re-
duce the bias of �I0: use H0−sh(R|S) instead of H0(R|S). We call this esti-
mator �I0−sh :

�I0−sh = H0−sh(R|S) − H(R|S) + H(R) − χ0(R). (4.4)

Simulations in Figure 1B show that �I0−sh is much less biased than �I0, but
it converges to the same asymptotic large-N value. The biases of H0−sh(R|S)
and H(R|S) almost cancel each other, leaving an overall small negative
bias.6

The good sampling properties of �I0−sh suggest a new, alternative way
to estimate mutual information, as follows:

Ish = IL B−0 + �I0−sh . (4.5)

5There are different types of resampling methods that have been used to generate sur-
rogate data sets for the validation of information-theoretic calculations (Johnson, Gruner,
Baggerly, & Seshagiri, 2001). It is important to note that R̃0−sh (s) ≥ R̃(s) holds for the
resampling procedure “without replacement” used here to generate the surrogate data,
but it does not necessarily hold for other resampling techniques “with replacement.”

6The idea of using shuffling to cancel out the biases in the stimulus-dependent part
of �I was first proposed by Nirenberg et al. (2001). However, the fact that H0−sh (R|S)
is more downward biased than H(R|S), and thus �I0 computed in this way is mildly
downward biased, has not been reported before.
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Since IL B−0 is virtually unbiased and �I0−sh is mildly biased downward,
Ish is also mildly biased downward. This is confirmed by the simulation
results in Figure 1B: using Ish compares very favorably with computing
mutual information directly as I in equation 2.1.

In summary, we now have two classes of estimators of �I0 and therefore
of I : the direct estimator �I0 and I in equations 3.3 and 2.1, which are
strongly biased upward, and the shuffled estimators �I0−sh and Ish , which
are mildly biased downward. The difference in the sign of the bias of the
two different estimators is very important in practice. In fact, computing
�I0 and I with both upward- and downward-biased algorithms provides
a mean to bound from both above and below. This can greatly improve
the confidence in estimates obtained from experimental data. In the rest of
this letter, we devote our attention to how to make both upper and lower
bounds tighter than they are in Figure 1.

4.1.2 Effect of Different Bias Correction Methods. The above shows the
behavior of the probability functionals when estimated by plugging in the
probabilities estimated directly from the data. However, these estimates can
be improved by using available bias correction techniques. In this section,
we apply different bias correction techniques to the probability functionals
in order to understand how best to evaluate each functional from a limited
number of data.

We first evaluated the performance of a quadratic extrapolation proce-
dure (Strong, Koberle, de Ruyter van Steveninck, & Bialek, 1998), performed
computing the quantities from fractions of the data available and then fit-
ting the resulting data-scaling behavior to a quadratic function of 1/N as
in equation 4.1. This procedure should work well in the asymptotic regime
where the number of trials N is large.7 Simulations suggest that in practice,
a good bias correction from quadratic extrapolations or other asymptotic
requires the number of trials per stimulus to be at least as big as the number
of possible responses R (Panzeri & Treves, 1996).

Results are shown in Figures 2A and 2B. Figure 2A shows that χ0(R) after
the quadratic extrapolation procedures become completely unbiased, even
with as few as 32 trials per stimulus. After applying the quadratic extrapo-
lation, H0(R|S) also becomes almost unbiased even at 32 trials per stimulus.
This can be understood by remembering that H0(R|S) can be expressed as
a sum of single bin entropies, and the sampling of each single bin entropy
can be considered to be in asymptotic regime even for a small number of
trials. Thus, the quadratic extrapolation performs very well on H0(R|S). As

7We also considered the performance of other bias correction methods developed to
work in the asymptotic regime, such as computing analytically the coefficients of the
1/N expansion of the bias as a function of probabilities (Panzeri & Treves, 1996; Pola
et al., 2005). As we found no overall increase in performance with respect to the quadratic
extrapolation, we decided to work with the latter, which is easier to implement.
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Figure 2: Comparison of the sampling properties of estimators computed with
the quadratic extrapolation and the NSB bias correction procedure. Results are
plotted as a function of the number of trials per stimulus and were averaged over
a number of repetitions of the simulation. The simulated data were obtained
exactly as in Figure 1, again considering a poststimulus window of 50 ms
discretized into L = 10 bins of size �t = 5 ms. (A, B) Quadratic extrapolation.
(A) Averaged estimated values of χ0(R), H(R), H0(R), H(R|S), and H0−sh(R|S).
(B) Averaged estimated values of I (R, S), IL B−0, �I0, and �I0−sh . (C, D) NSB
estimation. (C) Averaged estimated values of χ (R), H(R), H0(R), H(R|S), and
H0−sh(R|S). (D) Averaged estimated values of I (R, S), IL B−0, �I0, and �I0−sh .

a result, the extrapolated IL B−0 estimator (see Figure 2B) becomes almost
unbiased, even with as few as 32 trials per stimulus.

Figure 2A shows that the response entropy H(R) is still mildly biased
after correction, requiring at least 128 trials per stimulus for good estima-
tion. In contrast, the noise entropies H0−sh(R|S) and H(R|S) remain highly
biased even after the extrapolation procedure, requiring at least 210 = 1024
trials per stimulus for unbiased estimation. The reason is that P(r|s) and
P0−sh(r|s) are high dimensional, and thus the number of trials needed to
get them into the asymptotic sampling regime is much higher. As a conse-
quence, �I0 is still substantially biased upward, and applying a quadratic
extrapolation procedure is still not enough: we still need at least 210 trials
per stimulus for unbiased estimation (see Figure 2B). However, the good
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news from Figure 2B is that the behavior of �I0−sh is better than the one
of �I0. Because of the partial bias cancellation in H0−sh(R|S) − H(R|S), the
quadratic extrapolation is able to remove most of the downward bias of
�I0−sh from at least 128 trials per stimulus. Similarly, estimating mutual
information as Ish (rather than directly as I in the mutual information defi-
nition in equation 2.1) leads to a much less biased estimation (see Figure 2B).

In summary, we simulated data with L = 10 time bins and 210 possible
responses, and we use the quadratic extrapolation bias correction. Estimat-
ing �I0 and I directly requires approximately 210 trials per stimulus, of
the order of the size of the response space. However, estimating the same
quantities through the �I0−sh and Ish shuffling procedure required only 27

trials per stimulus, eight times smaller than the size of the responses space.
To check how these results scaled with L , we simulated data with the same
procedure as in Figures 1 and 2, but using different sizes of poststimulus
windows (ranging from L = 8 to L = 14). The results were always compara-
ble to the L = 10 case: estimating �I0 and I directly requires approximately
a number of trials per stimulus of the order of the size of the response space.
Estimating �I0−sh and Ish shuffling procedure required only a number of
trials per stimulus eight times smaller than the size of the response space
(results not shown).

We now consider the effect of using a more sophisticated Bayesian en-
tropy bias correction proposed by Nemenman et al. (2004). This procedure
(called NSB) was designed to operate beyond the asymptotic regime8 and
is briefly reviewed in appendix A. As shown in (Nemenman et al. (2004),
it works well even when data are scarce and the response space is high-
dimensional, so that each response is observed in no more than handful of
trials. Figures 2C and 2D report the values of the functional corrected with
the NSB procedure and show that the NSB method in general performs
well. The response entropy H(R) (see Figure 2C) is even better behaved
than with the quadratic correction and is now essentially unbiased, requir-
ing only 32 trials per stimulus for good estimation. The noise entropies
H0−sh(R|S) and H(R|S) are also better evaluated with the NSB procedure
than with the quadratic extrapolation procedure. However, both H0−sh(R|S)
and H(R|S) still remain substantially biased. As a consequence, Figure 2D
shows that �I0 and I are still substantially biased upward, requiring at
least 29 trials per stimulus for unbiased computation. However, the unbi-
ased computation of �I0−sh and of Ish requires only 26 trials per stimulus,
because the residual biases of H0−sh(R|S) and −H(R|S) cancel out almost
exactly. Estimating mutual information as Ish (see equation 4.5) works much

8We also considered the performance of the procedure of Paninski (2003), which also
aims at working beyond the asymptotic sampling regime. We found that on the simulated
data and information-theoretic quantities, the Paninski procedure helped to reduce the
bias but did not perform as well as the NSB and the quadratic extrapolation. Thus, we
omitted the presentation of its results.
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better than estimating I directly. However, it should be noted that as a re-
sult of applying the NSB procedure, the residual bias for Ish is not always
negative. Thus, using the Nemenman et al. (2004) procedure to estimate
Ish gives an almost unbiased estimator for small numbers of trials, but not
necessarily a lower bound to the true information (as it instead happens
when correcting Ish with the quadratic extrapolation).

The only entropy term that performed worse when corrected with the
NSB procedure is the independent entropy H0(R;S). As discussed in
appendix A, the reason is that the Nemenman et al. (2004) procedure is
tailored to work for high-dimensional response spaces, and thus its assump-
tions do not work well for H0(R;S), which is essentially a sum of single-
bin entropies. This problem is particularly serious for low firing rates (see
appendix A).

Finally, we note that the procedure of Nemenman et al. (2004) has been
developed so far only for entropy quantities. Therefore, it cannot be ap-
plied to χ0(R). Thus, χ0(R) will always be corrected with the extrapolation
procedure, which, as demonstrated before, works extremely well for this
quantity.

It is now useful to come back to discuss why assumption 2 on the prob-
ability model, the one that enabled us to express ILB-simp and �Isimp as in
equations 3.6 and 3.7, is very important to improve the sampling prop-
erties. There are two reasons behind it. The first is that the term outside
the logarithm in the stimulus-conditional part of ILB-simp now is Psimp(r|s)
rather than P(r|s), and this is expected to reduce statistical fluctuations. The
second, and more important, reason is that now the stimulus-dependent
part of �ILB-simp can be expressed as a difference of entropies. This has a
big impact on the ways the sampling bias of this quantity can be corrected.
In fact, the sampling bias correction techniques of Nemenman et al. (2004)
and the shuffling bias relationships used above both depend crucially on
being able to express the stimulus-conditional part of ILB-simp and of �Isimp
entirely in terms of entropies.

4.1.3 Variance of Shuffling-Based Estimators. We now consider whether
the reduction in bias of the shuffled estimators �I0−sh and Ish comes at
the expense of an increase in their variance. Equation 4.5 indicates that the
variance of Ish is largely determined by that of �I0−sh , its worst-sampled
component. The most biased terms in the computation of �I0−sh are the
stimulus-conditional entropies H(R|S) and H0−sh(R|S), with their bias al-
most canceling out (see equation 4.4). The amount of variance of �I0−sh will
depend on the degree of correlation (across independent realizations with
the same number of trials) between the values of H(R|S) and H0−sh(R|S).
If these two quantities were positively correlated, then their statistical fluc-
tuations would tend to cancel out, and the resulting variance of �I0−sh

would be under control. If instead H(R|S) and H0−sh(R|S) were either
uncorrelated or negatively correlated across different realizations, then their
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statistical fluctuations would either not cancel out or even increase, thus
making the variance of �I0−sh larger. The scatter plot in Figure 3A shows
that H0−sh(R|S) and H(R|S) are strongly positively correlated when taken
from the same realization of simulations. (The data were simulated exactly
as in Figure 2 and were obtained using 128 trials per stimulus in each sim-
ulation). The fact that H0−sh(R|S) and H(R|S) are correlated stems from
the fact that fluctuations in the values of single bin marginal probabili-
ties have a major impact on the fluctuations of entropy values (Schultz &
Panzeri, 2001). These fluctuations are reflected with the same sign in both
H0−sh(R|S) and H(R|S). Thus, the correlation between the entropies en-
sures that the variances of Ish and I (R;S) remain comparable. This is clearly
demonstrated in Figure 3B (quadratic extrapolation correction procedure
used).

To better understand the importance of the correlation of H(R|S) and
H0−sh(R|S) across different realizations, we paired values of H(R|S) and
H0−sh(R|S) taken from randomly chosen realizations of the simulation. The
scatter plot of these randomly paired entropies is reported in Figure 3C.
Computing information Ish from the randomly paired entropies H(R|S) and
H0−sh(R|S) leads to a considerable increase in invariance of the information
Ish (results reported in Figure 3D).

Thus, we conclude that the reduction of bias in estimating information
with Ish rather than directly with I does not come at the expense of in-
creased variance, because the computation of Ish involves a cancellation of
fluctuations between similarly biased terms. Ish is a very efficient estimator
of information in terms of both bias and variance.

4.1.4 Performance of Shuffling-Based Estimators in the Presence of Strong
Correlation. An important question is how the bias properties of H(R|S),
H0−sh(R|S), and Ish are affected by the strength of correlations between
spikes. As it was discussed above, when the responses are shuffled, the
new value of relevant responses, R̃0−sh(s), will be equal to or larger than the
original R̃(s). Thus, because of equation 4.2, if correlations are not strong
enough to induce radical differences of shape and support between P(r|s)
and Pind (r|s), �I0−sh is expected to have a downward bias that is much
smaller in absolute magnitude than the upward bias of �I0. The previously
shown simulations (based on a correlation structure taken from a real corti-
cal neuron) confirmed this expectation and suggest that �I0−sh and Ish are
only very mildly biased in realistic neurophysiological conditions.

However, this argument also suggests that the magnitude of the down-
ward bias may be affected by the overall strength of correlation. High corre-
lation tends to favor certain patterns in the response and thus decrease the
number of possible responses. The stronger the correlations, the larger
the number of new response words that may appear after shuffling and
the larger the resulting downward bias. If correlations are strong enough
to make the number of shuffled relevant responses R̃0−sh(s) much larger
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Figure 3: Variance of shuffling estimators. The plug-in estimates of the prob-
ability functionals were computed (without any bias corrections) from exactly
the same simulated neural data as in Figure 1, again with L = 10. (A) Scatter
plot of H0−sh(R|S) versus H(R|S) computed from 100 random realizations of
the simulated spike trains, each realization of the simulation consisting of 128
simulated trials per stimulus condition. Each point in the scatter plot represents
a data pair taken from the same realization of the numerical simulation. (B)
The variance (across realizations of the simulation) of the estimators of I and
Ish plotted as a function of the number of trials per stimulus condition. In this
case, Ish was estimated using values of H0−sh(R|S) from the same realization
of the simulation. (C) Scatter plot of H0−sh(R|S) versus H(R|S) computed from
100 random realizations of the simulated spike trains, each realization being
made of 128 trials per stimulus condition. Now each point in the scatter plot
represents a data pair taken from different randomly paired realizations of the
numerical simulation. (D). The variance (across realizations of the simulation)
of the estimators of I and Ish plotted as a function of the number of trials per
stimulus condition. Now Ish was estimated using values of H0−sh(R|S) from
different randomly paired realizations of the numerical simulation.

than the original R̃(s), then �I0−sh may become strongly downward
biased.

It is thus important to assess numerically the dependence of the sam-
pling properties of �I0−sh on the correlation strength. To address this
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issue, we next simulated spike trains as a first-order (q = 1) Markov process
with a firing rate ρ to each stimulus and a given coefficient c quantifying
Pearson correlation of spikes across adjacent time bins (both parameters
were taken as constant over time). Reference values for the parameters ρ0

and c0 were, similar to previous simulations, measured (as an average over
a poststimulus time window of 20–40 ms poststimulus onset) from the ex-
perimental cortical responses recorded in response to 49 different whisker
vibration stimuli by Arabzadeh et al. (2004). In the simulations, we then
took the same rate ρ0 as the real data and produced a simulated correlation
strength c that was f times stronger than the real one: c = f c0. Figure 4
reports how the bias of H(R|S) and of H0−sh(R|S) depends on the correla-
tion strength (no bias correction procedure was applied). Figure 4A shows
the results obtained for f = 0 (i.e., absence of correlations). In this case, the
number of possible responses is, on average, unchanged by shuffling. Thus,
H(R|S) and H0−sh(R|S) have exactly the same bias, and Ish is unbiased. For
f = 1 (i.e., real neuronal correlation value, shown in Figure 4B), the bias of
H0−sh(R|S) is still very close to that of H(R|S). For correlation four times
stronger than that of the real neuron (see Figure 4C), there is some difference
between the biases of H(R|S) and of H0−sh(R|S). However, with 64 trials
per stimulus or more, the bias of the two entropies cancels out and Ish is
unbiased. H0−sh(R|S) becomes considerably more biased downward than
H(R|S) only for correlation eight times stronger than that of the real neuron
(see Figure 4D). Thus, we conclude that although their sampling properties
will worsen as the amount of correlation in the data grows, the shuffled
estimators �I0−sh and Ish can be very useful for the analysis of a wide range
of neurophysiological experiments.

4.2 The Markov Model Decoder. The above section dealt with the use
of the simplest decoding model, P0(r|s). How do the sampling properties
of IL B−q and �Iq change when using more detailed decoding models such
as Pq (r|s) with q > 0?

To address this issue, we consider the properties of χq (R) and Hq (R|S)
with q > 0. As q increases, χq (R) is expected to become more biased be-
cause it depends on Pq (r|s) logarithmically. The bias of Hq (R|S) is expected
to increase even more significantly with q . In fact, it can be decomposed
into a sum of stimulus-conditional entropies of the marginal probability
distributions of up to q + 1 consecutive time bins (Pola et al., 2003). For
this reason, although the bias of Hq (R|S) is smaller than that of H(R|S),
it grows for larger q values. The bias of IL B−q is given by the difference
between the biases of χq (R) and Hq (R|S). Thus, as q increases, IL B−q will
be more biased.

These expectations are confirmed by the simulations shown in
Figure 5. These simulations were performed as in Figure 1, by creating a
somatosensory-like, simulated spike train over L = 10 time bins responding
to 49 different stimuli with realistic firing rates and correlations described
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Figure 4: Effect of correlations on the performance of the shuffling estimators.
We simulated spike trains as a first-order (q = 1) Markov process with constant
rate ρ and a given Pearson correlation coefficient c. The value of ρ was taken
from experimental data (Arabzadeh et al., 2004) as an average over a poststimu-
lus time window of 40 ms after stimulus onset. The correlation coefficient c was
then adjusted to produce different correlation strengths commensurate with
correlation value found in the real data, c0. The relationship between the real
and the simulated correlation strength was given by a factor f as c = f c0, where
f is a multiplicative factor. (A–D) Plots of the bias of H(R|S) and H0−sh(R|S)
as a function of the number of trials per stimulus, for different values of the
correlation strength f . No bias correction was used to compute these entropies.

by a q = 3 Markov model. A quadratic extrapolation procedure was used
to correct for the bias. IL B−q , �Iq , and �Iq−sh were computed for q = 1, 3,
and 6 and plotted in Figures 5A, 5C, and 5E, respectively. Figure 5 confirms
the intuition that as the value of q increases, IL B−q becomes more biased.
The asymptotic value of IL B−1 can be computed well even with as few as 32
trials (see Figure 5A). However, since the actual length of the Markov model
used to generate the data was equal to q = 3, the asymptotic value of IL B−1

is only 0.69 bits, which is less than the true value of the full mutual infor-
mation carried by the spike train (0.82 bits). This correction reflects the fact
that some information would be lost by a decoder neglecting correlations
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Figure 5: Bias and standard deviation of estimators making use of simplified
Markov models of different orders q . We computed IL B−q , �Iq , and �Iq−sh for
q 1, 3, and 6 as a function of the number of trials per stimulus. Results are
plotted as a function of the number of trials per stimulus. (A, C, E) Report of the
average of these quantities over a number of repetitions of the simulation. (B,
D, F) Report of the standard deviation across simulations. The simulated data
were obtained exactly as in Figure 1, again considering a poststimulus window
of 50 ms discretized into L = 10 bins of size �t = 5 ms. It is worth noticing that
the underlying Markov process to generate the simulated data was of order 3.

of range longer than one bin. On the contrary, IL B−3 and IL B−6 can reach the
correct asymptotic value of information (see Figures 5C and E). However,
they are considerably more biased than IL B−1.

Figures 5A, 5C, and 5E show that the bias of �Iq has a completely dif-
ferent dependence on q : the higher q , the smaller the bias of �Iq . This is
because as q increases, the difference H(R|S) − Hq (R|S) becomes smaller,
and thus the overall bias of �Iq decreases. Similar to the q = 0 case con-
sidered in the previous section, the bias in �Iq can be further reduced by
using a shuffling procedure. In fact, it is easy to construct a “q -shuffling”
procedure that generate simulated responses rq−sh preserving all marginals
and correlations up to q + 1 consecutive time bins, but destroying all the
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higher length correlations.9 As in equation 4.3, we can construct from the
probabilities of q-shuffled responses rq−sh a “shuffled noise entropy of order
q” Hq−sh(R|S), which converges to the same asymptotic value of Hq (R|S)
for large numbers of trials but presents a higher bias for small trial num-
bers. The introduction of Hq−sh(R|S) allows us to define, in analogy to
equation 4.4, a shuffled estimator �Iq−sh , as follows:

�Iq−sh = Hq−sh(R|S) − H(R|S) + H(R) − χq (R). (4.6)

�Iq−sh must be less biased than �Iq , because there are substantial bias can-
cellations between Hq−sh(R|S) and H(R|S). This expectation is investigated
numerically in Figure 5. Figures 5A, 5C, and 5E show the sampling behavior
of �Iq−sh for q = 1, 3, and 6, respectively. The bias of �Iq−sh has a negative
sign, for the same reasons given above for the case of �I0−sh . However, for
any q value, the asymptotic value of �Iq−sh for large trial numbers is the
same as �Iq , but they differ significantly for low trial numbers. �Iq−sh is
biased downward and is much less biased than �Iq .

Figures 5B, 5D, and 5F consider the behavior of the variances of the
information-theoretic quantities as the value of q increases. The most no-
table finding is that like their bias, the variances of both �Iq and �Iq−sh also
decrease with q . Moreover, for the same reasons presented above for q = 0,
the variance of �Iq−sh is never higher than that of �Iq . Thus, the decrease of
bias of �Iq−sh does not come at the expense of an increase of variance. This
stresses the competitiveness of the shuffling procedures for the estimation
of �Iq .

5 Tighter Upper and Lower Information Bounds Using
Model Selection

We introduced information-theoretic quantities �Iq that quantify, for any
value of memory length q , the information-theoretic cost of using a sim-
plified decoding model described by a Markov model of order q rather
than by the full-response probability distribution. Intuition suggests that
the shorter the memory needed to decode the neuronal spike trains, the

9The “q -shuffled” responses rq−sh can be constructed as follows. The response in
the first time bin is chosen as a random permutation of the first time bins across all
trials. Then the response in each bin r (k) for k = 2, . . . , L is taken randomly without
replacement from the subset of trials that satisfy r ′(k − j) = r (k − j) for j = 1, . . . , m,
where m = min(k − 1, q ). In other words, q -shuffled bins are concatenated with others
taken at random without replacement from the subset of trials that have the same state of
up to q past bins. Naturally, as q approaches the total length L of the time window, it could
happen that if data are scarce, the q -shuffling procedure becomes trivial by regenerating
exactly the original data set for each random shuffling. Thus, care should be taken to
verify that this is not happening with the data under analysis
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fewer data are needed to compute its information content. However, we
have not explored yet the specific advantages offered by knowing that to
decode all information, we need to consider only response chains extending
over a number w of time bins, which is shorter than the L time bins making
up the time window used to analyze spike trains.

Suppose that we know that the shorter history depth needed to decode
all information is w time bins. This amounts to requiring that �Iq = 0 for
any q ≥ w and will happen if P(s|r)/Pq (s|r) is not stimulus modulated for
each response and each q ≥ w. This condition will be met if the stimulus-
conditional probability of the neuronal responses P(r|s) is generated accord-
ing to a Markov process with length not higher than w for every stimulus.
What are the further advantages offered to us in computing information
quantities when we know the actual value of w?

If the shortest Markov order needed to decode all the information in
the spike train is equal to w (i.e., �Iq = 0 for any q ≥ w), then any IL B−q

(with q ≥ w) will be equal to the total mutual information I . Therefore, this
knowledge offers a huge advantage when computing I . In fact, in this case,
it will be most convenient to compute the true value of I by using IL B−w,
which will be equal to I in the asymptotic sampling regime, but it will be
much less biased than I if w is much shorter than the window length L .10

The knowledge that the shortest Markov order needed to decode all the
information encoded in the spike train is equal to w offers an advantage in
the estimation of the quantities �Iq , which may still be larger than zero if
q < w. Using the fact that �Iw = 0, it is easy to show that all �Iq for q < w

are in this case equal to a simpler and much less biased quantity, called δ Iq ,
and defined as follows:11

δ Iq ≡ �Iq − �Iw = Hq (R|S) − Hw(R|S) + χw(R) − χq (R) if q < w. (4.7)

Since �Iw = 0, it is clear than δ Iq = �Iq . However, when estimating
the quantities from finite samples, δ Iq is much less biased than �Iq . If
w < L − 1, then term Hq (R|S) − Hw(R|S) (the dominant term for the bias
in equation 4.7) will have a resulting upward bias that will be smaller
than the bias in the corresponding term in the definition of �Iq , namely,
Hq (R|S) − H(R|S). The smaller w is with respect to L , the better the sam-
pling advantage is in using δ Iq .

Along the same lines explained above, we can used the q-shuffling pro-
cedure to obtain a very weakly downward-biased estimator of δ Iq . By

10In this case, one could in principle use any other IL B−q (with q > w) to compute
information I . However it is more efficient to use IL B−w because the bias of IL B−q grows
with q . See Figure 5.

11The quantity δ Iq should have a further index w, which we omit for compactness of
notation.
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computing the noise-entropy difference Hq (R|S) − Hw(R|S) by using the
“q-shuffled” distribution, we can define the following quantity:

δ Iq−sh = Hq−sh(R|S) − Hw−sh(R|S) + χw(R) − χq (R). (4.8)

In this case, the difference of entropies Hq−sh(R|S) − Hw−sh(R|S) will have
only a very small downward bias. Hq−sh(R|S) − Hw−sh(R|S) will be less
biased than its counterpart Hq−sh(R|S) − H(R|S) in �Iq . Thus, δ Iq−sh will
be a tighter downward-biased estimator than �Iq−sh .

In summary, knowing the true shortest length of the Markov model w

that can decode all information encoded by the spike train is useful because
it leads to computing �Iq through two tight estimators, δ Iq and δ Iq−sh ,
which bound precisely the information from above and below, respectively,
and that are tighter and less biased than the corresponding estimators �Iq

and �Iq−sh obtained in the absence of knowledge about w.
In the next two sections we illustrate how the knowledge about w can

reduce the sampling bias in a dramatic way. We consider two cases: when
we are given some independent knowledge of the value of w and when we
do not have this knowledge and have to guess w from the data.

5.1 Using a Prior Knowledge of the Shortest Markov Order Needed
to Decode All Information. There may be situations in which there is
precise knowledge about the memory length w needed to decode all the
information encoded in the spike train. For example, when analyzing the
information properties of some simulated data, we often have theoretical
insights into the value of w. Alternatively, for some well-studied neural
systems, there may be data available indicating that there is no correlation
between spike times exceeding a certain time separation of w time bins. In
this case, we are entitled to use straightforwardly the quantities δ Iq and
δ Iq−sh as bounds to the true value of �Iq .

In Figure 6A we analyze again the simulated cortical responses to 49
stimuli (generated as in Figures 1 and 2 over L = 10 time bins) and show the
behavior of various information estimators. (Here, a quadratic extrapolation
bias correction was used.) As usual, I and �I0 are strongly biased upward
and require at least 210 trials per stimulus to give estimates close to the
asymptotic values. In contrast, �I0−sh , which is also computed without any
assumption on the order w of the Markov model underlying the real spike
train, gives an accurate estimate at around 256 trials per stimulus. What
is the effect of making use of the knowledge that the true order w of the
underlying Markov model is equal to 3? This amounts to using δ Iq and
δ Iq−sh in equations 4.7 and 4.8 with w = 3. Figures 6A and 6B show that
δ I0, δ I0−sh provide much tighter and data-robust upper- and lower-bound
estimations than �Iq , �Iq−sh . As expected by the above considerations, δ I0

is a much tighter upward-biased estimator than the direct use of �I0. This
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Figure 6: Performance of estimators δ I0 and δ I0−sh when the Markov order
of the underlying model is known in advance. In addition to δ I0 and δ I0−sh ,
for comparison we also show the average values of I (R, S), �I0, �Ish as a
function of the number of trials per stimulus. (A, C) Report of the average of
these quantities over a number of repetitions of the simulation. (B, D) Report of
the standard deviation across simulations. The simulated data were obtained
exactly as in Figure 1, again considering a poststimulus window of 50 ms
discretized into L = 10 bins of size �t = 5 ms. The underlying Markov process
used to generate the simulated data was of order 3. (A) Data corrected with the
quadratic extrapolation method. (B) Standard deviations of the data shown in
B. (C) Estimation based on the method of Nemenman et al. (2004). (D) Standard
deviations of the data shown in C.

is because the knowledge of w = 3 ensures that we compute the functionals
in equation 4.7 on a response space with 24 different responses, a number
much smaller than the 210 possible responses characterizing the probability
distribution over 10 bins. The downward-biased shuffled estimator δ I0−sh is
even tighter than �I0−sh , whcih provides reliable estimates of information
with as few as 64 trials per stimulus.

The standard deviation of the estimators δ I0 and δ I0−sh is considered in
Figure 6B. It is apparent that the reduction in bias of δ I0 and δ I0−sh , with
respect to �I0 and �I0−sh , is not obtained at the expense of an increase in
variance.
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In Figure 6C we show the performance of the same estimators obtained
with the NSB method bias-correction method rather than with the quadratic
extrapolation procedure. The comparison with Figure 6A shows that the
direct estimation of I and �I0 is less biased than that obtained with the
quadratic extrapolation. However, this increase in performance is greatly
enhanced when using the δ I0 and δ I0−sh . The NSB method is in general
effective, and �I0−sh and δ I0−sh gave a good estimate of the asymptotic
value of �I0, even down to 128 trials per stimulus. A potential problem
with using the NSB method in this context is that although it performs well,
in general it does not preserve the sign of the residual bias. Therefore, for
very low trial values, it could happen that the downward bias quantities
�I0−sh and δ I0−sh occasionally become higher than the asymptotic values
of �I0.

Figure 6D compares the standard deviations of the estimates obtained
with the NSB method. A comparison of the estimates and the performance
of the quadratic extrapolation suggests that the reduction of bias obtained
using the NSB method comes at the expense of a relatively small but appre-
ciable increase in variance and that this increase is higher for the shuffled
estimators.

5.2 Selecting the Order of the Decoding Model with a Nonparamet-
ric Test. In general, when analyzing real spike trains recorded during a
neurophysiological experiment, we do not have precise prior knowledge
of the temporal extent of correlations between spikes. How can we take
advantage of the sampling properties offered by δ I0 and δ I0−sh to the case
in which we do not know the value of w a priori? In this section, we address
this problem and show that nonparametric statistical techniques (Efron &
Tibshirani, 1993) can be used to compute empirically an effective shortest
Markov order w needed to decode all information encoded by the spike
train.

The crucial property in the derivation of the expression for δ Iq was that
�Iq = 0 for all q ≥ w. Therefore, we can suggest a simple way to determine
effectively a statistical procedure to estimate the value of the memory length
w to be inserted in the definition of δ Iq . This value can be defined as the w

representing the the highest value of Markov order above that all �Iq are
zero for any q > w. In practice, this is not easy to determine from data as
individual values of �Iq that should be zero in the asymptotic large-N limit
may be estimated as greater than zero because of statistical fluctuations
or because of a residual bias not entirely corrected for (see, e.g., Figure 5).
However, the likelihood of an individual outcome of �Iq to be significantly
greater than zero could be established easily with a statistical test evaluating
the null hypothesis that �Iq is zero. Once a particular statistical test has
been chosen, the value of w can be determined as follows. We start from the
largest possible value of q for which �Iq can be > 0 (i.e., q = L − 2), and we
use the statistical test to determine whether �Iq is significantly more than
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0. If this is the case, we cannot discard any correlation of any length, and
we set w = L − 1. If instead the null hypothesis that �IL−2 is zero cannot
be discarded, we repeat the process by decreasing q at each step and test
again whether �Iq is significantly different from zero. The parameter q is
then decreased until we find that �Iq is significantly more than 0. At this
point, the procedure is stopped, and we take w as the last value of q for
which the null hypothesis could not be discarded.

A simple way to test the null hypothesis that �Iq = 0 for some q is
to use the following nonparametric “bootstrap” test (Efron & Tibshirani,
1993). We first generated a set of bootstrapped data sets obtained by the
q -shuffled procedure described above by destroying all correlations longer
than q − 1 bins. We then use these q -shuffled responses to compute �Iq . For
each random realization of these shuffled responses, the corresponding �Iq

must be zero. However, because of statistical fluctuations and errors in fully
eliminating the bias, the distribution of �Iq will peak above zero. We can
use this empirically generated distribution to set boundaries on accepting
the null hypothesis that the value of �Iq computed with the original data
set is zero.

In our simulations, we found that the distribution of values of �Iq com-
puted on the q -shuffled distribution was approximated by a gaussian (data
not shown). Thus, our statistical criterion for rejection was simply that the
actual value of �Iq computed with the original data set was higher than
two standard deviations above the mean of the bootstrapped distribution
(the cutoff at two standard deviation was chosen because it gave the best
estimates of information quantities when applied to the simulated data
shown below).

In Figures 7A and 7B, we show the resulting histograms after applying
the bootstrap test to simulated data. The simulations were again the same
as in Figures 1 and 2, simulating a somatosensory neuron with underlying
memory length w = 3 and a response word of length L = 10. In Figure 7A,
we plotted the distribution of estimated w values obtained with the boot-
strap test when 128 trials per stimulus were available. This distribution is
broad and peaked at the correct order of the simulations. As the number of
trials per stimulus increases to 256 (see Figure 7B), the test becomes more
effective as more of the estimated values of w are correct. The trend contin-
ues as the number of trials increases, and the test almost always reports the
correct w for number of trials larger than 512 (results not shown).

In Figures 8A and 8B, we plotted δ I0 and δ Ish−0, computed from equa-
tions 4.7 and 4.8, with w determined for each simulation through the test
described above (values were corrected with the quadratic extrapolation
method). Figure 8A shows that even in the case in which w is not known
a priori but must be determined through a statistical test, the lower bound
given by δ I0−sh has already reached the asymptotic value of �I for as small
as 27 trials per stimulus. The upper bound, δ I0, converges more slowly to-
ward the asymptote; it represents a significant improvement with respect
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Figure 7: Bootstrap test to estimate model complexity. We simulated spike trains
as in Figure 1 using a Markov process of order 3. The poststimulus time window
used in the analysis was of 50 ms and was discretized into L = 10 bins with
resolution �t = 5 ms. For each realization (out of a total of 100) of the simulated
spike trains, we estimated w using the bootstrap test described in the text. (A,
B) Histograms of the distribution of w values obtained in this way for 128 and
256 trials per stimulus, respectively.

to the direct estimation of �Iq . δ I0−sh and δ I0 bound the true value of �I
with an error of less than 10% for 256 trials per stimulus, and L = 10. Thus,
δ I0−sh and δ I0 behave much better than I (R, S), �I , and �I0−sh , quantities
that do not depend on the determination of the order of the process.

In Figure 8C we report the information values estimated using the NSB
method. It is apparent from Figure 8C that both δ I0−sh and δ I0 perform
much better than for the quadratic extrapolation case shown in Figure 8A.
The estimates bound the exact value of �I0 less than 5% for as low as 128
trials per stimulus.12

The above results were obtained using simulated data generated by a
Markov process of order w = 3. To check that this procedure also worked for
data generated by higher-order Markov processes, we repeated the analysis
on synthetic data simulating a somatosensory neuron with different values
of Markov order ranging from w = 3 to w = 8, and the usual response word
of length L = 10. We found results consistent with that of Figures 7 and 8
(data not shown). In brief, the bootstrap test continued to give estimates
of w peaked around the correct highest value of w with �Iw > 0 (which in
this simulation was constructed to be equal to the w value used to generate
the data). The distributions of values obtained with the bootstrap test were

12The NSB method performed less well than the quadratic extrapolation only when
computing low-dimensional entropies such as H0(R|S) (see appendix A). Thus, a useful
practical consideration is that when pairing the bootstrap test with the NSB correction
method, it is safer to use a quadratic extrapolation to compute entropies such as H0(R|S)
that appear in equations 4.7 and 4.8 when the statistical test suggests a value of w = 0 as
the most likely.
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Figure 8: Performance of estimators δ I0 and δ I0−sh when the Markov order of
the underlying model is selected with the bootstrap test. In addition to δ I0

and δ I0−sh , for comparison we also show the values of I (R, S), �I0, �I0−sh as a
function of the number of trials per stimulus. The data correspond to simulated
spike trains as in Figure 1 using a Markov process of order w = 3. However, the
knowledge of the true Markov order w used to generate the data was not used;
w was instead estimated on each simulation using the bootstrap test described
in the text. (A, C) Report of the average of these quantities over a number of
repetitions of the simulation. (B, D) Report of the standard deviation across
simulations. (A) Data corrected with the quadratic extrapolation method. (B)
Standard deviations of the data shown in A. (C) Estimation based on the method
of Nemenman et al. (2004). (D) Standard deviations of the data shown in C.

slightly narrower for simulated processes with higher w values, probably
because �Iq has a smaller variance for higher q values (see Figure 5). As
the number of trials increased, the information quantities δ I0 and δ I0−sh

always converged (from above and below, respectively) to their correct
asymptotic value and were less biased than �I0 and �I0−sh . Obviously, the
lower the Markov order used to generate the process, the bigger was the
bias advantage of δ I0 and δ I0−sh over �I0 and �I0−sh .

Using a simplified model of the Markov family and selecting the most
economic decoding model with a statistical test leads to drastic reduc-
tions of the bias of the information quantities. However, it is likely that
future extensions of this work to include other families of simplified mod-
els may lead to even better performance. For example, it is likely that in the
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presence of serial correlation of adjacent but long interspike intervals, se-
lecting among a class of suffix tree model would perform much better than
selecting only among full Markov models, because the depth of history of
a suffix tree could be made to depend on when and if the previous spike
occurred (Kennel et al., 2005).

6 Analysis of Real Data

In this section we illustrate the application of the methods developed above
to two different data sets of real neuronal recordings from the whisker
representation in somatosensory (“barrel”) cortex of rats anesthetized with
urethane.

The first data set consisted of 21 neural clusters, each recorded from a
different electrode in a silicon array made up of a total of 100 electrodes
(see Petersen & Diamond, 2000, for further details). Spike times from each
electrode were determined by a voltage threshold set to a value 2.5 times
the root mean square voltage. Since it was not possible to sort well-isolated
units from each channel, spikes from the same recording channel were all
considered together as a single neural cluster. It has been estimated that
each cluster captured the spikes of approximately two to five neurons (see
Petersen & Diamond, 2000). Neural activity was recorded in response to
individual stimulation of one of nine different whiskers (whisker D2 and
its eight nearest neighbors); individual whiskers were stimulated near their
base by a piezoelectric wafer, controlled by a voltage generator. The stimulus
was an up-down step function of 80 µm amplitude and 100 msec duration,
delivered once per second. The trials per stimulus available were 200 to 500
for this first data set.

The time course of the estimates of the information transmitted about
stimulus location by spike times from a neuronal cluster in response to
instantaneous whisker deflection is reported in Figure 9A. For the infor-
mation analysis, we considered the response r to be a spike timing code
(binarized with temporal resolution �t = 5 ms) defined in a poststimulus
time window that began at 5 ms poststimulus and whose end was grad-
ually increased in 5 ms steps up to 55 ms poststimulus. The 21 clusters in
the data set were analyzed separately and then averaged. The estimation of
all the entropy quantities was done using the NSB method (similar conclu-
sions were reached using the quadratic extrapolation; results not shown).
The full spike timing mutual information was computed through the esti-
mator Ish and was found to increase smoothly along the entire time range
analyzed. Consistently with the fact that under these conditions neurons
typically stop firing after 40 to 50 ms, Ish also saturated after 40 to 50 ms. We
also computed the temporal evolution of �I0 and �I0−sh . �I0−sh was small
over all time ranges and accounted for no more than 8% of the total in-
formation Ish . �I0 was also small, but unlike �I0−sh , it increased markedly
for longer time windows. This indicates that �I0, unlike �I0−sh , suffers
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Figure 9: Analysis of rat somatosensory cortex data. We show the total mutual
information Ish , �I0, and �I0−sh . The gray area shows the region delimited
by the upper and lower bounds δ I0 and δ I0−sh . The NSB method was used to
correct for finite sampling. (A) Information about stimulus location conveyed by
individual neural clusters recorded in rat somatosensory cortex in response to
instantaneous whisker deflections (Petersen & Diamond, 2000). Results reported
as average (± SEM) over 21 different clusters. (B) Information about amplitude
and frequency of sinusoidal whisker vibration conveyed by individual neural
clusters recorded in rat somatosensory cortex (Arabzadeh et al., 2004). Results
reported as average (± SEM) over 24 different clusters.

sampling problems when the number of bins L is more then 8 to 10. The
fact that �I0−sh is a good estimator of the asymptotic value of �I0 is con-
firmed by the computation of the tight upper and lower bounds δ I and
δ Ish . The latter quantities were computed by selecting the w value required
for their computation with the bootstrap test. The mean value of w across
channels was 3.7 ± 2.8 (mean ± SEM). In Figure 9A the gray region rep-
resents the area enclosed by the upper and lower bounds δ I0 and δ I0−sh .
�I0−sh remained within the two bounds along the whole timescale consid-
ered. In contrast, �I0 overshot the data-robust upper bound δ I0 for longer
time windows, indicating that it was suffering from sampling problems in
that time range. To summarize, this analysis shows that the use of Ish and
�I0−sh gives precise estimates of the asymptotic values of I and �I0 for up
to 10 time bins. This an excellent performance considered that the number
of trials per stimulus was 200 to 500. It is much beyond what could be
achieved, for example, with a standard direct method to estimate �I0.

The second data set consisted of 24 recordings of neural clusters, again
from rat barrel cortex, obtained with the same type of electrodes and anes-
thesia as above. In this case, the stimulation protocol was different. The
set of stimuli consisted of 49 different types of sinusoidal whisker vibra-
tions, each defined by a unique combination of amplitude and frequency
of vibration and delivered for 500 ms (see Arabzadeh et al., 2004, for full
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details). The trials per stimulus available were 200. As before, we consid-
ered the response r to be a spike timing code (resolution �t = 5 ms) defined
in a poststimulus time window starting at 5 ms poststimulus and gradually
increasing in 5 ms steps up to 55 ms poststimulus.

The time courses of the estimates of the information transmitted by spike
times from a single neural cluster (averaged over the set of available clus-
ters) about the parameters of whisker vibration are reported in Figure 9B.
In contrast to the previous case, the spike timing mutual information (com-
puted as Ish) continued to grow over time, consistent with the fact that
neurons show stimulus-evoked activity for several hundred ms in response
to these sinusoidal vibrations (Arabzadeh et al., 2003). As in the previous
example, both Ish and �I0−sh increased smoothly over time (with no sudden
upward jump reflecting a potential bias problem). The accuracy of �I0−sh

in estimating the asymptotic value of �I0 was substantiated by the fact that
it was tightly bound by δ I0 and δ I0−sh (gray area) up to 55 time bins. (δ I0

and δ I0−sh were computed by selecting the w value with the bootstrap test.
The estimated mean value of w across channels was 6.2 ± 1.6.) In contrast,
�I0 overshot the gray area for long windows, indicating it suffers from an
upward bias problem in this time range. A potentially interesting neuro-
physiological observation is that unlike in the case of instantaneous whisker
deflection, �I0−sh is now considerable (29% of the total information Ish at
50 ms poststimulus), and it grows supralinearly over time. This suggests
that correlation may be useful in decoding complex whisker vibrations from
cortical neuronal activity and is consistent with the approximated analytical
prediction of Panzeri and Schultz (2001), which suggests that when neurons
keep firing over a sustained period of time, �I0 is expected to grow at least
quadratically as a function of time.

7 Discussion

Using information theory to probe the neural code over fine time resolu-
tions, large populations or large time windows remain technically difficult
because the analysis of long sequences of spikes requires the collection of
large amounts of data to sample the probability of occurrence of each pos-
sible spike sequence. Under this condition, information measures suffer
from serious bias problems, which impose severe limitations to the range
of timescales and population sizes available for analysis (Panzeri & Treves,
1996; Strong et al., 1998).

In this letter, we have developed a new procedure to estimate the infor-
mation carried by spike trains that drastically alleviates its sampling prob-
lems. The starting point of the procedure is the observation that if we break
down the mutual information I into a Kullback-Leibler divergence �Isimp
(which bounds the information lost by decoding when ignoring stimulus-
dependent correlations) and the rest (called ILB-simp), then almost all the bias
usually comes from �Isimp. The second key observation is that the bias of



Robust Bounds to Mutual Information 2949

�Isimp (and, as a consequence, that of the total mutual information) can be
drastically reduced (and be made negative) at no increase of variance by an
appropriate shuffling procedure. The third key observation is that the bias
of �Isimp (and thus that of the mutual information) can be further reduced
by the use of a nonparametric test to find the minimal complexity within a
class of models of correlation that still permits computing �Isimp correctly.

From a practical point of view, the overall reduction of the bias is useful
because it extends the domain of applicability of information theory. To ap-
preciate how this domain is extended, we note that our numerical examples,
based on a response space made of 210 different responses, showed that our
techniques eliminated the bias even with number of samples as low as 32
trials per stimulus, a number of the order of the square root of the number
of different responses. This is a significant advance over the previous re-
quirement that the number of trials is comparable to the number of different
responses. This effectively allows one to double the timing precision, the
time window length, or the population size that can be analyzed. This fact is
timely because large-scale recording techniques are rapidly becoming avail-
able, and because there are theoretical arguments (reviewed in Averbeck,
Latham, & Pouget, 2006) that suggest that the impact of correlations to the
neural code may be particularly important when considering larger popu-
lations. The bias-reduction techniques open up the possibility of analyzing
populations twice as big than those previously considered in information-
theoretic studies of neural codes. Although this is a significant step forward,
it is important to recognize that due to the “dimensionality curse,” even this
advance will not ultimately be enough for the direct analysis of very large
populations or very long temporal sequences at very fine timescales. Alter-
native approaches that may work better in these more extreme situations
include algorithms not relying on binning (Victor & Purpura, 1997; Victor,
2002).

The reduction of the bias problem may also help in extending the in-
formation analysis to the domain of graded brain signals, such as fMRI
or local field potentials (Logothetis, 2003). These graded signals are more
difficult to analyze because, unlike spikes, they cannot simply be converted
into a binary word sampled with a certain temporal precision. The tech-
niques presented here may lend themselves to the analysis of LFPs/fMRI,
by first discretizing the graded signals into a number of different levels,
characterizing the correlation structure among them, and finally fitting it to
a low-dimensional stochastic model.

A useful property of the shuffled information estimator presented here is
that besides reducing the overall magnitude of the bias when compared to a
direct procedure, it makes the bias negative rather than positive. This down-
ward bias property is useful in practical studies of neural codes because a
finding of significant extra information in spike timing obtained with this
new method will ensure that this additional spike timing information is
genuine and not an artefict due to sampling problems.
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An important technical step in the reduction of the mutual information
bias was the selection, within a predefined class, of the minimal complexity
of the simplified model of correlation that still captures the correct value
of �Isimp. This was achieved in practice by introducing a parametric family
of Markov models to approximate the correlation structure of the real data
and by using a nonparametric bootstrap statistical test to select the order
q of the Markov model that best described the neural response. While we
showed that the simple nonparametric test and the simple class of models
described here are effective at reducing the data constraints in information
calculations, it is important to note that neither of these steps must neces-
sarily be performed exactly in this form. Particularly interesting families of
maximum-entropy simplified correlation models are those considered by
Amari (2001) and Schneidman, Berry, Segev, and Bialek (2006). The model
selection can be also performed in different ways, for example, through
log-likelihood ratio model selection or other types of inference (see, e.g.,
Cover & Thomas, 1991; Kennel et al., 2005). An important step of future
research is to understand which class of models describes neural data more
economically and which statistical model selection technique is more pow-
erful under different circumstances.

In recent years, there has been a debate on how best to measure the
role of correlations in neural coding (see Nirenberg & Latham, 2003; Pola
et al., 2003; Schneidman, Bialek, & Berry, 2003 for different points of view).
The measure used in this letter is �I , which was proposed by Nirenberg
and Latham (2003). It has an interpretation as an upper bound to the in-
formation lost by a decoder that neglects correlation. In this letter, �I was
used to break-down the information into mildly biased and strongly biased
components and to obtain a more data-robust estimator of the total mutual
information through this breakdown. The considerable sampling advan-
tages in the computation of the mutual information obtained in this way
would also be available to situations when the computation of �I is not of
interest, either because the only purpose is to quantify mutual information
or because other measures of the importance of correlation are used. In fact,
the other measures proposed (Pola et al., 2003; Schneidman et al., 2003)
quantify the importance of correlation as differences of certain mutual in-
formation quantities; therefore, the bias of each such information quantity
could be substantially reduced with the techniques presented here. The bias
reduction procedure presented here is thus useful to better compute other
measures of the importance of correlations on coding.

In summary, the combination of the simplified models and the shuffling
methods allowed us to extend the range of applicability of information
theory to neuronal responses. Usually computing information accurately
with a straight application of the best bias correction methods available re-
quires a sample size comparable to the number of possible different neural
responses. By applying the same bias correction techniques to the shuffled
estimators after a model selection procedure, it is now possible to estimate



Robust Bounds to Mutual Information 2951

accurately information quantities with amounts of data one order of mag-
nitude smaller.

Appendix A: The NSB Method

In this appendix we sketch some theoretical considerations and present
some additional numerical simulations on the performance of the NSB bias
correction method (Nemenman et al., 2004) when entropies are computed
from response spaces of different sizes and reflecting different firing rates.
While these considerations follow straight from Nemenman et al., they are
helpful to understand why this method is not suited for correcting IL B−q

at low q values, especially at low firing rates. For simplicity, we focus
on correcting the response entropy H(R). However, similar considerations
hold for the stimulus-conditional entropies.

The NSB method (Nemenman et al., 2004) is rooted in the Bayesian in-
ference approach to estimate the entropy H(R) (a function of a generally
unknown underlying probability P(r)). The Bayesian approach assumes
that there exists some a priori probability density function Ppr (P) in the
continuum space of all the possible probability distributions on the re-
sponse space R with R elements. The Bayesian estimation of the entropy
after the observation of {n(r)} (the experimental number of times {n(r)} in
which each response is observed) can be computed as an average of the
corresponding entropy over all the possible hypothetical probability distri-
butions weighted by their conditional probability given the data.

Unless we have some other criteria to select a preferred value in the
entropy range [0, log2 R] , we would like to have a flat a priori distribu-
tion of entropy. However, the choice of the prior has a strong impact on
the value of H Bayes unless very many data are observed. Nemenman et al.
(2004) have addressed this problem by using a mixture of Dirichlet priors,
the latter being defined in terms of a parameter β ranging between 0 and
∞. Nemenman et al. have shown that after fixing β (i.e., after choosing the
prior within the family), the Bayesian estimate of the entropy is sharply
defined and monotonically dependent on the parameter β (naturally, until
the number of samples becomes large, in which case the likelihood domi-
nates the estimate). It can be shown that at fixed β, the variance of entropy
estimation before any observation (i.e., when n(r) = 0) scales as 1/R as R
grows, and it is thus small compared to the range of possible entropy values
[0, log2 R]. Therefore, the goal of constructing a prior on the space of proba-
bility distributions that generates a nearly uniform distribution of entropies
can be approximately achieved by an average over the Bayesian estimation
over all the one-parameter Dirichlet family of priors labeled by β.

While this procedure is designed to work well for large R, it may work
less well for small values of R. In fact, if R is small, then the variance of
a priori entropy estimation is not small anymore with respect to the range
of possible entropies. Thus, the result of integration over β will not be flat
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but will typically be smaller near the edges 0 and log2 R than in the central
region of possible entropies. Thus, the method is likely to give problems in
the estimation of low entropy values for low R values. In particular, the NSB
method is likely to give problems when estimating the entropy of processes
generated with very low firing rates. In this case, since the probability of
observing a spike in each bin is low, the entropy value would be much
nearer zero than to log2(R); since in this case, the NSB prior distribution of
entropy values is instead higher in the central part of the interval [0, log2 R],
the resulting NSB estimation of a low-firing rate, the entropy for low R may
strongly overestimate the entropy unless many experimental observations
are available. In the latter case, asymptotic bias correction procedures might
work better anyway.

We tested these considerations by applying the NSB method to a homo-
geneous Poisson process. The spike times generated by the Poisson pro-
cesses were binned using a bin size of �t = 5 ms. In Figure 10 we report the
performance of the NSB by comparing it to the quadratic extrapolation pro-
cedure and the uncorrected measure of the entropy. We tested two different
values of R and two different firing rates. Figures 10A and 10B compare
the estimations of the entropy using R = 2 for a firing rate of 2 Hz in Fig-
ure 10A and 40 Hz in Figure 10B. In both cases the estimation with the NSB
method performs worse than the extrapolation procedure of Strong et al.
(1998). Figures 10C and 10D show the estimators applied to Poisson pro-
cesses with the same firing rates as with Figures 10A and 10B, respectively,
and using R = 26. It is apparent now that the NSB performs substantially
better than the quadratic extrapolation procedure. We consistently found
that for higher R values, the NSB method was always more competitive
than the quadratic extrapolation (data not shown, but see Figure 2 for the
L = 10 case).

When the NSB estimator is clearly the best estimator (low N and large
R; see Figures 10C and 10D), it is dominated by the prior. Thus, a potential
concern is that this superb performance might be specific to the Poisson
process used in the simulation, perhaps because this process is a good match
to a distribution within the family of Dirichlet priors. It is conceivable that
for some class of strongly correlated response distributions, there may not
be a good match in the Dirichlet family, and thus the superiority of the NSB
method in the large-R regime may suffer. To test for this potential problem,
we repeated the analysis in Figure 10 using the same correlated processes
used to generate the data in Figures 1 and 4 (and described in the main
text). We found results consistent with those plotted in Figures 10C and
10D. Although these results cannot rule out completely the above concern,
they suggest that the NSB method will perform well in the large R regime
on a wide range of processes with realistic neuronal statistics.

Since the Markov noise entropies Hq (R|S) of order q can be written as
sums of entropies defined over q adjacent time bins, it follows that the NSB
method is not suited for correcting IL B−q at low q values, especially at low
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Figure 10: Bias in the NSB method. Average and standard error of the bias ratio
(defined as the bias divided by the true asymptotic value of the entropy) for the
NSB, quadratic extrapolation, and uncorrected estimators of the entropy. The
estimators were applied to homogeneous Poisson process. The generated spike
times were binned using a bin size of �t = 5 ms. The average and standard
error were computed over 1000 realizations of the simulations. (A, B) Panels
correspond to R = 2, and the rates of the homogeneous Poisson process were 2
Hz in A and 40 Hz in B. In both A and B the quadratic extrapolation outperforms
the NSB method. (C, D) Panels correspond to R = 26, and the rates of the Poisson
processes were respectively the same as in A and B. For larger R, the NSB method
performs better than the quadratic extrapolation.

firing rates. However, it appears to be an excellent method for correcting
the quantities involving entropies defined over long response times, such
as IL B−q at high q values.

Appendix B: A Link Between Our Assumptions and the
Maximum-Entropy Principle

A direct contact between assumption 2 and the maximum-entropy principle
can be made as follows. Consider a one-dimensional family of simplified
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models Psimp(r|s) that are obtained from the true P(r|s) as a one-dimensional
trajectory in probability space parameterized by λ:

Psimp(r|s) = P(r|s) + λu(r|s), (B.1)

with the “modulator” u satisfying the normalization
∑

r u(r|s) = 0. By com-
puting the zeroes of the derivative of the entropy of Psimp(r|s) with respect
to λ, it is easy to show that the entropy of such Psimp(r|s) is maximized (as a
function of λ) when λ is chosen so that

∑
r

u(r|s) log2(P(r|s) + λu(r|s)) = 0. (B.2)

Using equation B.1, the maximum entropy condition in equation B.2 can be
rewritten as

∑
r

(P(r|s) − Psimp(r|s)) log2(Psimp(r|s)) = 0 (B.3)

which is exactly the condition 3.2 requested by our assumption 2. Thus,
for any simplified model belonging to the family defined in equation B.1,
the only one that satisfies our assumption 2 is the model with the highest
entropy within the family.

This parametric entropy maximization can be related to the construction
of the classes of maximum-entropy models developed in section 3.3, for
example by considering the extremization of entropy with respect to a
large number of modulator functions. Thus, assumption 2 is related to a
maximum entropy principle.
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