Predictability, Complexity and Learning

Ilya Nemenman KITP, UCSB

Joint work with:
William Bialek (Princeton University)
Naftali Tishby (Hebrew University)

physics/0007070, physics/0103076

Outline

Outline

- A curious observation.

Outline

- A curious observation.
- Our objectives.

Outline

- A curious observation.
- Our objectives.
- Why and how to use information theory?

Outline

- A curious observation.
- Our objectives.
- Why and how to use information theory?
- A note on ensembles.

Outline

- A curious observation.
- Our objectives.
- Why and how to use information theory?
- A note on ensembles.
- Predictive information for different processes.

Outline

- A curious observation.
- Our objectives.
- Why and how to use information theory?
- A note on ensembles.
- Predictive information for different processes.
- Unique complexity measure through predictive information.

Outline

- A curious observation.
- Our objectives.
- Why and how to use information theory?
- A note on ensembles.
- Predictive information for different processes.
- Unique complexity measure through predictive information.
- Possible applications.

Entropy of words in a spin chain

Entropy of words in a spin chain

$$
\begin{aligned}
& \text { W! } 1111!1111.111 w_{w_{0}=000} \\
& \mathrm{~W}_{1}=000 \\
& \begin{array}{llllll|llllll|l|llll}
\hline 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1
\end{array} \quad W_{2}=\begin{array}{llll}
0 & 0 & 1
\end{array} \\
& \mathrm{~W}_{0} \mathrm{~W}_{1} \ldots \mathrm{~W}_{9} \ldots \mathrm{~W}_{7} \ldots \mathrm{~W}_{0} \mathrm{~W}_{1} \\
& W_{15}=111 \\
& S(N)=-\sum_{k=0}^{2^{N}-1} P_{N}\left(W_{k}\right) \log _{2} P_{N}\left(W_{k}\right)
\end{aligned}
$$

Entropy of words in a spin chain

$$
\begin{aligned}
& \mathrm{W}_{1}=000 \\
& \begin{array}{|llllllllllllllll}
\hline 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1
\end{array} \quad W_{2}=\begin{array}{llll}
0 & 0 & 1
\end{array} \quad . \quad 1 \\
& \mathrm{~W}_{0} \quad \mathrm{~W}_{1} \ldots \mathrm{~W}_{9} \ldots \mathrm{~W}_{7} \ldots \mathrm{~W}_{0} \quad \mathrm{~W}_{1} \quad \mathrm{~W}_{15}=111 \\
& S(N)=-\sum_{k=0}^{2^{N}-1} P_{N}\left(W_{k}\right) \log _{2} P_{N}\left(W_{k}\right)
\end{aligned}
$$

For this chain,
$P\left(W_{0}\right)=P\left(W_{1}\right)=P\left(W_{3}\right)=P\left(W_{7}\right)=P\left(W_{12}\right)=P\left(W_{14}\right)=2$,
$P\left(W_{8}\right)=P\left(W_{9}\right)=1$, and all other frequencies (probabilities) are zero. Thus, $S(4) \approx 2.95$ bits.

Entropy of 3 generated chains

- $J_{\mathrm{ij}}=\delta_{\mathrm{i}, \mathrm{j}+1}$
- $J_{\mathrm{ij}}=J_{0} \delta_{\mathrm{i}, \mathrm{j}+1}, J_{0}$ is taken
20
15 400000 spins
- J_{ij} is taken at random from $\mathcal{N}\left(0, \frac{1}{\mathrm{i}-\mathrm{j}}\right)$ every 400000 spins
$1 \cdot 10^{9}$ spins total.

Entropy of 3 generated chains

- $J_{\mathrm{ij}}=\delta_{\mathrm{i}, \mathrm{j}+1}$
- $J_{\mathrm{ij}}=J_{0} \delta_{\mathrm{i}, \mathrm{j}+1}, J_{0}$ is taken at random from $\mathcal{N}(0,1)$ every
15 400000 spins
- J_{ij} is taken at random from $\mathcal{N}\left(0, \frac{1}{i-\mathrm{j}}\right)$ every 400000 spins
$1 \cdot 10^{9}$ spins total.

Entropy is extensive!
 It shows no distinction between the cases.

Subextensive component of the entropy

 . . . shows a qualitative distinction between the cases!

Subextensive component of the entropy . . . shows a qualitative distinction between the cases!

Other examples:
const periodic sequences, chaotic sequences (finite correlation length)

Subextensive component of the entropy . . . shows a qualitative distinction between the cases!

Other examples:
const periodic sequences, chaotic sequences (finite correlation length)
log systems at phase transitions, or at the onset of chaos (divergent correlation length)

Subextensive component of the entropy . . . shows a qualitative distinction between the cases!

Other examples:
const periodic sequences, chaotic sequences (finite correlation length)
log systems at phase transitions, or at the onset of chaos (divergent correlation length)
power natural texts, DNA sequences, (possibly) some exotic transitions, (many divergent correlation lengths)

Subextensive component of the entropy

 . . . shows a qualitative distinction between the cases!

- Entropy density or channel capacity do not distinguish these cases.
- Theory of phase transitions may not distinguish between the last two cases.
- Complexity of underlying dynamics intuitively increases from const to power.

Objectives

Objectives

learning unified description of learning (metric and algorithm

 independent)
Objectives

learning unified description of learning (metric and algorithm

 independent)usability making distinction between useful and unusable data (noise vs. signal)

Objectives

learning unified description of learning (metric and algorithm independent)
usability making distinction between useful and unusable data (noise vs. signal)
complexity universal definition of dynamics' complexity (more rules describing dynamics \Leftrightarrow higher complexity)

Objectives

learning unified description of learning (metric and algorithm independent)
usability making distinction between useful and unusable data (noise vs. signal)
complexity universal definition of dynamics' complexity (more rules describing dynamics \Leftrightarrow higher complexity)
relations connection between the two (more rules \Leftrightarrow more difificult

```
to learn)
```


Solution - predictability

Solution - predictability

learning we learn (estimate parameters, extrapolate, classify, ...) to generalize and predict from training examples; estimation of parameters is only an intermediate step

Solution - predictability

learning we learn (estimate parameters, extrapolate, classify, ...) to generalize and predict from training examples; estimation of parameters is only an intermediate step
usability nonpredictive features in any signal are useless since we observe now and react in the future

Solution - predictability

learning we learn (estimate parameters, extrapolate, classify, ...) to generalize and predict from training examples; estimation of parameters is only an intermediate step
usability nonpredictive features in any signal are useless since we observe now and react in the future
complexity high predictability sources (more details to predict, not easier predictions) are generated by more complex sources (in particular, regular and random sources have low complexity)

Solution - predictability

learning we learn (estimate parameters, extrapolate, classify, ...) to generalize and predict from training examples; estimation of parameters is only an intermediate step
usability nonpredictive features in any signal are useless since we observe now and react in the future
complexity high predictability sources (more details to predict, not easier predictions) are generated by more complex sources (in particular, regular and random sources have low complexity)
relations more features to describe (complexity) \Leftrightarrow more data needed for reliable predictions (learning)

Quantifying predictability

Information theory: non-metric, universal way to quantify learning

Quantifying predictability

Information theory: non-metric, universal way to quantify learning

T, N	0	$T^{\prime}, N^{\prime} x$
past	now	future

Quantifying predictability

Information theory: non-metric, universal way to quantify learning

$$
\begin{array}{rcc}
T, N & 0 & T^{\prime}, N^{\prime} x \\
\hline \text { past } & \text { now } & \text { future } \\
\mathcal{I}_{\text {pred }}\left(T, T^{\prime}\right) & =\left\langle\log _{2}\left[\frac{P\left(x_{\text {future }} x_{\text {past }}\right)}{P\left(x_{\text {future }}\right)}\right]\right\rangle \\
& =S(T)+S\left(T^{\prime}\right)-S\left(T+T^{\prime}\right)
\end{array}
$$

Quantifying predictability

Information theory: non-metric, universal way to quantify learning

$$
\begin{array}{rcc}
T, N & 0 & T^{\prime}, N^{\prime} x \\
\hline \text { past } & \text { now } \\
\begin{aligned}
\mathcal{I}_{\text {pred }}\left(T, T^{\prime}\right) & =\left\langle\log _{2}\left[\frac{P\left(x_{\text {future }} \mid x_{\text {past }}\right)}{P\left(x_{\text {future }}\right)}\right]\right\rangle \\
& =S(T)+S\left(T^{\prime}\right)-S\left(T+T^{\prime}\right) \\
S(T) & =\mathcal{S}_{0} \cdot T+S_{1}(T)
\end{aligned}
\end{array}
$$

Extensive component cancels in predictive information.

Quantifying predictability

Information theory: non-metric, universal way to quantify learning

$$
\begin{array}{rcc}
T, N & 0 & T^{\prime}, N^{\prime} x \\
\hline \text { past } & \text { now } \\
\begin{aligned}
\mathcal{I}_{\text {pred }}\left(T, T^{\prime}\right) & =\left\langle\log _{2}\left[\frac{P\left(x_{\text {future }} \mid x_{\text {past }}\right)}{P\left(x_{\text {future }}\right)}\right]\right\rangle \\
& =S(T)+S\left(T^{\prime}\right)-S\left(T+T^{\prime}\right) \\
S(T) & =\mathcal{S}_{0} \cdot T+S_{1}(T)
\end{aligned}
\end{array}
$$

Extensive component cancels in predictive information.
Predictability is a deviation from extensivity!

Quantifying predictability

Information theory: non-metric, universal way to quantify learning

\[

\]

Extensive component cancels in predictive information.
Predictability is a deviation from extensivity!

$$
I_{\text {pred }}(T) \equiv \mathcal{I}_{\text {pred }}(T, \infty)=S_{1}(T)
$$

Properties of $I_{\mathrm{pred}}(T)$

- $I_{\text {pred }}(T)$ is information, so $I_{\text {pred }}(T) \geq 0$

Properties of $I_{\mathrm{pred}}(T)$

- $I_{\text {pred }}(T)$ is information, so $I_{\text {pred }}(T) \geq 0$
- $I_{\text {pred }}(T)$ is subextensive, $\lim _{T \rightarrow \infty} \frac{I_{\text {pred }}(T)}{T}=0$

Properties of $I_{\text {pred }}(T)$

- $I_{\text {pred }}(T)$ is information, so $I_{\text {pred }}(T) \geq 0$
- $I_{\text {pred }}(T)$ is subextensive, $\lim _{T \rightarrow \infty} \frac{I_{\text {pred }}(T)}{T}=0$
- diminishing returns, $\lim _{T \rightarrow \infty} \frac{I_{\text {pred }}(T)}{S(T)}=0$

Properties of $I_{\text {pred }}(T)$

- $I_{\text {pred }}(T)$ is information, so $I_{\text {pred }}(T) \geq 0$
- $I_{\text {pred }}(T)$ is subextensive, $\lim _{T \rightarrow \infty} \frac{I_{\text {pred }}(T)}{T}=0$
- diminishing returns, $\lim _{T \rightarrow \infty} \frac{I_{\text {pred }}(T)}{S(T)}=0$
- prediction and postdiction are symmetric

Properties of $I_{\text {pred }}(T)$

- $I_{\text {pred }}(T)$ is information, so $I_{\text {pred }}(T) \geq 0$
- $I_{\text {pred }}(T)$ is subextensive, $\lim _{T \rightarrow \infty} \frac{I_{\text {pred }}(T)}{T}=0$
- diminishing returns, $\lim _{T \rightarrow \infty} \frac{I_{\text {pred }}(T)}{S(T)}=0$
- prediction and postdiction are symmetric
- it relates to and generalizes many relevant quantities

Properties of $I_{\text {pred }}(T)$

- $I_{\text {pred }}(T)$ is information, so $I_{\text {pred }}(T) \geq 0$
- $I_{\text {pred }}(T)$ is subextensive, $\lim _{T \rightarrow \infty} \frac{I_{\text {pred }}(T)}{T}=0$
- diminishing returns, $\lim _{T \rightarrow \infty} \frac{I_{\text {pred }}(T)}{S(T)}=0$
- prediction and postdiction are symmetric
- it relates to and generalizes many relevant quantities
- learning: universal learning curves

Properties of $I_{\text {pred }}(T)$

- $I_{\text {pred }}(T)$ is information, so $I_{\text {pred }}(T) \geq 0$
- $I_{\text {pred }}(T)$ is subextensive, $\lim _{T \rightarrow \infty} \frac{I_{\text {pred }}(T)}{T}=0$
- diminishing returns, $\lim _{T \rightarrow \infty} \frac{I_{\text {pred }}(T)}{S(T)}=0$
- prediction and postdiction are symmetric
- it relates to and generalizes many relevant quantities
- learning: universal learning curves
- complexity: complexity measures

Properties of $I_{\text {pred }}(T)$

- $I_{\text {pred }}(T)$ is information, so $I_{\text {pred }}(T) \geq 0$
- $I_{\text {pred }}(T)$ is subextensive, $\lim _{T \rightarrow \infty} \frac{I_{\text {pred }}(T)}{T}=0$
- diminishing returns, $\lim _{T \rightarrow \infty} \frac{I_{\text {pred }}(T)}{S(T)}=0$
- prediction and postdiction are symmetric
- it relates to and generalizes many relevant quantities
- learning: universal learning curves
- complexity: complexity measures
- coding: coding length

Grassberger vs. Kolmogorov

Average or typical vs. particular cases

Grassberger vs. Kolmogorov

Average or typical vs. particular cases

- nothing to learn (predict, encode, describe) for only one string

Grassberger vs. Kolmogorov

Average or typical vs. particular cases

- nothing to learn (predict, encode, describe) for only one string
- atypical data is possible

Grassberger vs. Kolmogorov

Average or typical vs. particular cases

- nothing to learn (predict, encode, describe) for only one string
- atypical data is possible

Complexity (learning properties) is an ensemble (averaged) quantity, even if the ensemble is only implicit.

Grassberger vs. Kolmogorov

Average or typical vs. particular cases

- nothing to learn (predict, encode, describe) for only one string
- atypical data is possible

Complexity (learning properties) is an ensemble (averaged) quantity, even if the ensemble is only implicit.

Example: all pictures can be random, but we do not perceive them this way.

The ghost of Bayes

\quad Model family (ensemble) A
$Q_{A}\left(x_{1} \ldots x_{N} \mid \boldsymbol{\alpha}\right), \mathcal{P}_{A}(\boldsymbol{\alpha}), \operatorname{Pr}(A)$

Model family (ensemble) B $Q_{B}\left(x_{1} \ldots x_{N} \mid \boldsymbol{\beta}\right), \mathcal{P}_{B}(\boldsymbol{\beta}), \operatorname{Pr}(B)$

The ghost of Bayes

The ghost of Bayes

$$
\begin{gathered}
\begin{array}{c}
\text { Model family (ensemble) } A \\
Q_{A}\left(x_{1} \ldots x_{N} \mid \boldsymbol{\alpha}\right), \mathcal{P}_{A}(\boldsymbol{\alpha}), \operatorname{Pr}(A)
\end{array} \text { is } X=\left\{x_{1} \ldots x_{N}\right\} \text { from } A \text { or } B ? \\
Q_{B}\left(x_{1} \ldots x_{N} \mid \boldsymbol{\beta}\right), \mathcal{P}_{B}(\boldsymbol{\beta}), \operatorname{Pr}(B) \\
P(A \mid X)=\frac{P(X \mid A) \operatorname{Pr}(A)}{P(X)}=\frac{P r(A) \int d \boldsymbol{\alpha} \mathcal{P}_{A}(\boldsymbol{\alpha}) Q_{A}(X \mid \boldsymbol{\alpha})}{P(X \mid A) \operatorname{Pr}(A)+P(X \mid B) \operatorname{Pr}(B)}
\end{gathered}
$$

The ghost of Bayes

$$
\begin{gathered}
\left.\begin{array}{c}
\text { Model family (ensemble) } A \\
Q_{A}\left(x_{1} \ldots x_{N} \mid \boldsymbol{\alpha}\right), \mathcal{P}_{A}(\boldsymbol{\alpha}), \operatorname{Pr}(A)
\end{array}\right) \\
P(A \mid X)=\frac{P(X \mid A) \operatorname{Pr}(A)}{P(X)}=\frac{P\left(x_{1} \ldots x_{N}\right\} \text { from } A \text { or } B ?}{Q_{B}\left(x_{1} \ldots x_{N} \mid \boldsymbol{\beta}\right), \mathcal{P}_{B}(\boldsymbol{\beta}), \operatorname{Pr}(B)} \\
P(X \mid A) \operatorname{Pr}(A)+P(X \mid B) \operatorname{Pr}(B)
\end{gathered}
$$

Large N expansion around maximum likelihood value is almost always valid

$$
\log P(A \mid X) \rightarrow \sum_{i} \underbrace{\log Q_{A}\left(X \mid \boldsymbol{\alpha}_{\mathrm{ML}}\right)}-\underbrace{\frac{1}{2} \log \operatorname{det} \underbrace{\frac{\partial^{2} \log Q_{A}\left(X \mid \boldsymbol{\alpha}_{\mathrm{ML}}\right)}{\partial \alpha_{a} \partial \alpha_{b}}}+\ldots}
$$

The ghost of Bayes

$$
\begin{gathered}
\left.\begin{array}{c}
\text { Model family (ensemble) } A \\
Q_{A}\left(x_{1} \ldots x_{N} \mid \boldsymbol{\alpha}\right), \mathcal{P}_{A}(\boldsymbol{\alpha}), \operatorname{Pr}(A)
\end{array}\right) \\
P(A \mid X)=\frac{P(X \mid A) \operatorname{Pr}(A)}{P(X)}=\frac{P\left(x_{1} \ldots x_{N}\right\} \text { from } A \text { or } B ?}{Q_{B}\left(x_{1} \ldots x_{N} \mid \boldsymbol{\beta}\right), \mathcal{P}_{B}(\boldsymbol{\beta}), \operatorname{Pr}(B)} \\
P(X \mid A) \operatorname{Pr}(A)+P(X \mid B) \operatorname{Pr}(B)
\end{gathered}
$$

Large N expansion around maximum likelihood value is almost always valid

$$
\log P(A \mid X) \rightarrow \sum_{i} \underbrace{\log Q_{A}\left(X \mid \boldsymbol{\alpha}_{\mathrm{ML}}\right)}_{\text {goodness of fit }}-\underbrace{\frac{1}{2} \log \operatorname{det} \frac{\partial^{2} \log Q_{A}\left(X \mid \boldsymbol{\alpha}_{\mathrm{ML}}\right)}{\partial \alpha_{a} \partial \alpha_{b}}}_{\text {generalization error, fluctuations, complexity }}+\ldots
$$

How can $I_{\text {pred }}$ behave?

$\lim _{N \rightarrow \infty} I_{\text {pred }}=$ const no long-range structure - simply predictable (periodic, constant, etc.) processes - fully stochastic (Markov) processes

How can $I_{\text {pred }}$ behave?

$\lim _{N \rightarrow \infty} I_{\text {pred }}=$ const no long-range structure

- simply predictable (periodic, constant, etc.) processes
- fully stochastic (Markov) processes
$\lim _{N \rightarrow \infty} I_{\text {pred }}=$ const $\times \log _{2} N$ precise learning of a fixed set of parameters
- learning finite-parameter densities
- well known as $I(N$, parameters $)=I_{\text {pred }}(N)$

How can $I_{\text {pred }}$ behave?

$\lim _{N \rightarrow \infty} I_{\text {pred }}=$ const no long-range structure

- simply predictable (periodic, constant, etc.) processes
- fully stochastic (Markov) processes
$\lim _{N \rightarrow \infty} I_{\text {pred }}=$ const $\times \log _{2} N$ precise learning of a fixed set of parameters
- learning finite-parameter densities
- well known as $I(N$, parameters $)=I_{\text {pred }}(N)$
$\lim _{N \rightarrow \infty} I_{\text {pred }}=$ const $\times N^{\xi}$ learning more features as N grows
- learning continuous densities
- not well studied

Specific examples: problem setup

Specific examples: problem setup

$Q(\vec{x} \mid \boldsymbol{\alpha}) \quad$ p. d. f. for \vec{x} parameterized by unknown parameters $\boldsymbol{\alpha}$ $\operatorname{dim} \boldsymbol{\alpha}=K$ dimensionality of $\boldsymbol{\alpha}$, may be infinite $\mathcal{P}(\boldsymbol{\alpha}) \quad$ prior distribution of parameters $\vec{x}_{1} \cdots \vec{x}_{\mathrm{N}}$ random samples from the distribution

Specific examples: problem setup

$Q(\vec{x} \mid \boldsymbol{\alpha}) \quad$ p. d. f. for \vec{x} parameterized by unknown parameters $\boldsymbol{\alpha}$ $\operatorname{dim} \alpha=K$ dimensionality of α, may be infinite $\mathcal{P}(\boldsymbol{\alpha}) \quad$ prior distribution of parameters $\vec{x}_{1} \cdots \vec{x}_{\mathrm{N}}$ random samples from the distribution

$$
P\left(\vec{x}_{1}, \vec{x}_{2}, \cdots, \vec{x}_{\mathrm{N}} \mid \boldsymbol{\alpha}\right)=\prod_{\mathrm{i}=1}^{\mathrm{N}} Q\left(\vec{x}_{\mathrm{i}} \mid \boldsymbol{\alpha}\right)
$$

Specific examples: problem setup

$Q(\vec{x} \mid \boldsymbol{\alpha}) \quad$ p. d. f. for \vec{x} parameterized by unknown parameters $\boldsymbol{\alpha}$ $\operatorname{dim} \alpha=K$ dimensionality of α, may be infinite
$\mathcal{P}(\boldsymbol{\alpha}) \quad$ prior distribution of parameters
$\vec{x}_{1} \cdots \vec{x}_{\mathrm{N}}$ random samples from the distribution

$$
\begin{aligned}
P\left(\vec{x}_{1}, \vec{x}_{2}, \cdots, \vec{x}_{\mathrm{N}} \mid \boldsymbol{\alpha}\right) & =\prod_{\mathrm{i}=1}^{\mathrm{N}} Q\left(\vec{x}_{\mathrm{i}} \mid \boldsymbol{\alpha}\right) \\
P\left(\vec{x}_{1}, \vec{x}_{2}, \cdots, \vec{x}_{\mathrm{N}}\right) & =\int d^{K} \alpha \mathcal{P}(\boldsymbol{\alpha}) \prod_{\mathrm{i}=1}^{\mathrm{N}} Q\left(\vec{x}_{\mathrm{i}} \mid \boldsymbol{\alpha}\right)
\end{aligned}
$$

Specific examples: problem setup

$Q(\vec{x} \mid \boldsymbol{\alpha}) \quad$ p. d. f. for \vec{x} parameterized by unknown parameters $\boldsymbol{\alpha}$ $\operatorname{dim} \boldsymbol{\alpha}=K$ dimensionality of $\boldsymbol{\alpha}$, may be infinite
$\mathcal{P}(\boldsymbol{\alpha}) \quad$ prior distribution of parameters
$\vec{x}_{1} \cdots \vec{x}_{\mathrm{N}} \quad$ random samples from the distribution

$$
\begin{aligned}
P\left(\vec{x}_{1}, \vec{x}_{2}, \cdots, \vec{x}_{\mathrm{N}} \mid \boldsymbol{\alpha}\right) & =\prod_{\mathrm{i}=1}^{\mathrm{N}} Q\left(\vec{x}_{\mathrm{i}} \mid \boldsymbol{\alpha}\right) \\
P\left(\vec{x}_{1}, \vec{x}_{2}, \cdots, \vec{x}_{\mathrm{N}}\right) & =\int d^{K} \alpha \mathcal{P}(\boldsymbol{\alpha}) \prod_{\mathrm{i}=1}^{\mathrm{N}} Q\left(\vec{x}_{\mathrm{i}} \mid \boldsymbol{\alpha}\right) \\
S\left(\vec{x}_{1}, \vec{x}_{2}, \cdots, \vec{x}_{\mathrm{N}}\right) & \equiv S(N) \\
& =-\int d \vec{x}_{1} \cdots d \vec{x}_{\mathrm{N}} P\left(\left\{\vec{x}_{\mathrm{i}}\right\}\right) \log _{2} P\left(\left\{\vec{x}_{\mathrm{i}}\right\}\right)
\end{aligned}
$$

Separating the extensive term

$$
S(N)=-\int d^{K} \overline{\boldsymbol{\alpha}} \mathcal{P}(\overline{\boldsymbol{\alpha}})\left\{d^{N} \vec{x} \prod_{\mathrm{j}=1}^{N} Q\left(\vec{x}_{\mathrm{j}} \mid \overline{\boldsymbol{\alpha}}\right) \log _{2} \int d^{K} \alpha \mathcal{P}(\boldsymbol{\alpha}) \prod_{\mathrm{i}=1}^{N} Q\left(\vec{x}_{i} \mid \boldsymbol{\alpha}\right)\right\}
$$

Separating the extensive term

$$
\begin{aligned}
S(N)= & -\int d^{K} \overline{\boldsymbol{\alpha}} \mathcal{P}(\overline{\boldsymbol{\alpha}})\left\{d^{N} \vec{x} \prod_{\mathrm{j}=1}^{\mathrm{N}} Q\left(\vec{x}_{\mathrm{j}} \mid \overline{\boldsymbol{\alpha}}\right) \log _{2} \int d^{K} \alpha \mathcal{P}(\boldsymbol{\alpha}) \prod_{\mathrm{i}=1}^{\mathrm{N}} Q\left(\vec{x}_{\mathrm{i}} \mid \boldsymbol{\alpha}\right)\right\} \\
= & -\int d^{K} \overline{\boldsymbol{\alpha}} \mathcal{P}(\overline{\boldsymbol{\alpha}})\left\{d^{N} \vec{x} \prod_{\mathrm{j}=1}^{\mathrm{N}} Q\left(\vec{x}_{\mathrm{j}} \mid \overline{\boldsymbol{\alpha}}\right)\right. \\
& \left.\times \log _{2} \prod_{\mathrm{j}=1}^{\mathrm{N}} Q\left(\vec{x}_{\mathrm{j}} \mid \overline{\boldsymbol{\alpha}}\right) \int d^{K} \alpha \mathcal{P}(\boldsymbol{\alpha}) \prod_{\mathrm{i}=1}^{\mathrm{N}}\left[\frac{Q\left(\vec{x}_{\mathrm{i}} \mid \boldsymbol{\alpha}\right)}{Q\left(\vec{x}_{\mathrm{i}} \mid \overline{\boldsymbol{\alpha}}\right)}\right]\right\}
\end{aligned}
$$

Separating the extensive term

$$
\begin{aligned}
S(N)= & -\int d^{K} \overline{\boldsymbol{\alpha}} \mathcal{P}(\overline{\boldsymbol{\alpha}})\left\{d^{N} \vec{x} \prod_{\mathrm{j}=1}^{N} Q\left(\vec{x}_{j} \mid \overline{\boldsymbol{\alpha}}\right) \log _{2} \int d^{K} \alpha \mathcal{P}(\boldsymbol{\alpha}) \prod_{\mathrm{i}=1}^{N} Q\left(\vec{x}_{i} \mid \boldsymbol{\alpha}\right)\right\} \\
= & -\int d^{K} \overline{\boldsymbol{\alpha}} \mathcal{P}(\overline{\boldsymbol{\alpha}})\left\{d^{N} \vec{x} \prod_{\mathrm{j}=1}^{N} Q\left(\vec{x}_{j} \mid \overline{\boldsymbol{\alpha}}\right)\right. \\
& \times \log _{2} \prod_{\mathrm{j}=1}^{N} Q\left(\vec{x}_{j} \mid \overline{\boldsymbol{\alpha}}\right) \int d^{K} \alpha \mathcal{P}(\boldsymbol{\alpha}) \overbrace{\prod_{\mathrm{i}=1}^{N}\left[\frac{Q\left(\vec{x}_{i}\right.}{\mathrm{N}}[\boldsymbol{\alpha})\right.}^{Q\left(\vec{x}_{i} \mid \overline{\boldsymbol{\alpha}}\right)}]\}
\end{aligned}
$$

This separates $S(N)$ into the extensive and the subextensive terms

$$
\begin{aligned}
S_{0} & =\int d^{K} \alpha \mathcal{P}(\boldsymbol{\alpha})\left[-\int d \vec{x} Q(\vec{x} \mid \boldsymbol{\alpha}) \log _{2} Q(\vec{x} \mid \boldsymbol{\alpha})\right] \\
S_{1}(N) & =-\int d^{K} \bar{\alpha} d^{N} \overrightarrow{x_{\mathrm{i}}} \mathcal{P}(\overline{\boldsymbol{\alpha}}) \log _{2}\left[\int d^{K} \alpha P(\boldsymbol{\alpha}) \mathrm{e}^{-N \mathcal{E}_{N}}\right]
\end{aligned}
$$

Annealed approximation

Under some (known) conditions we may have

$$
\psi\left(\boldsymbol{\alpha}, \overline{\boldsymbol{\alpha}} ;\left\{x_{\mathrm{i}}\right\}\right) \equiv \underbrace{\mathcal{E}_{N}\left(\boldsymbol{\alpha}, \overline{\boldsymbol{\alpha}} ;\left\{\vec{x}_{\mathrm{i}}\right\}\right)}-\underbrace{D_{\mathrm{KL}}(\overline{\boldsymbol{\alpha}} \| \boldsymbol{\alpha})}
$$

Annealed approximation

Under some (known) conditions we may have

$$
\psi\left(\boldsymbol{\alpha}, \overline{\boldsymbol{\alpha}} ;\left\{x_{\mathrm{i}}\right\}\right) \equiv \underbrace{\mathcal{E}_{N}\left(\boldsymbol{\alpha}, \overline{\boldsymbol{\alpha}} ;\left\{\vec{x}_{\mathrm{i}}\right\}\right)}_{\text {quenched energy }}-\underbrace{D_{\mathrm{KL}}(\overline{\boldsymbol{\alpha}} \| \boldsymbol{\alpha})}_{\text {annealed energy }}
$$

Annealed approximation

Under some (known) conditions we may have

$$
\begin{aligned}
\psi\left(\boldsymbol{\alpha}, \overline{\boldsymbol{\alpha}} ;\left\{x_{\mathrm{i}}\right\}\right) & \equiv \underbrace{\mathcal{E}_{N}\left(\boldsymbol{\alpha}, \overline{\boldsymbol{\alpha}} ;\left\{\vec{x}_{\mathrm{i}}\right\}\right)}_{\text {quenched energy }}-\underbrace{D_{\mathrm{KL}}(\overline{\boldsymbol{\alpha}}| | \boldsymbol{\alpha})}_{\text {annealed energy }} \\
& \equiv-\frac{1}{N} \sum_{\mathrm{i}=1}^{N} \ln \left[\frac{Q\left(\vec{x}_{\mathrm{i}} \mid \boldsymbol{\alpha}\right)}{Q\left(\vec{x}_{\mathrm{i}} \mid \overline{\boldsymbol{\alpha}}\right)}\right]+\int d \vec{x} Q(\vec{x} \mid \overline{\boldsymbol{\alpha}}) \ln \left[\frac{Q(\vec{x} \mid \boldsymbol{\alpha})}{Q(\vec{x} \mid \overline{\boldsymbol{\alpha}})}\right] \\
& \simeq 0
\end{aligned}
$$

Annealed approximation

Under some (known) conditions we may have

$$
\begin{aligned}
\psi\left(\boldsymbol{\alpha}, \overline{\boldsymbol{\alpha}} ;\left\{x_{\mathrm{i}}\right\}\right) & \equiv \underbrace{\mathcal{E}_{N}\left(\boldsymbol{\alpha}, \overline{\boldsymbol{\alpha}} ;\left\{\vec{x}_{\mathrm{i}}\right\}\right)}_{\text {quenched energy }}-\underbrace{D_{\mathrm{KL}}(\overline{\boldsymbol{\alpha}}| | \boldsymbol{\alpha})}_{\text {annealed energy }} \\
& \equiv-\frac{1}{N} \sum_{\mathrm{i}=1}^{\mathrm{N}} \ln \left[\frac{Q\left(\vec{x}_{\mathrm{i}} \mid \boldsymbol{\alpha}\right)}{Q\left(\vec{x}_{\mathrm{i}} \mid \overline{\boldsymbol{\alpha}}\right)}\right]+\int d \vec{x} Q(\vec{x} \mid \overline{\boldsymbol{\alpha}}) \ln \left[\frac{Q(\vec{x} \mid \boldsymbol{\alpha})}{Q(\vec{x} \mid \overline{\boldsymbol{\alpha}})}\right] \\
& \simeq 0 \\
S_{1}(N) & \simeq S_{1}^{(\mathrm{a})}(N)
\end{aligned}
$$

$$
\equiv-\int d^{K} \bar{\alpha} \mathcal{P}(\overline{\boldsymbol{\alpha}}) \underbrace{\log _{2} \overbrace{\int d^{K} \alpha P(\boldsymbol{\alpha}) \mathrm{e}^{-N D_{\mathrm{KL}}}}}
$$

Annealed approximation

Under some (known) conditions we may have

$$
\begin{aligned}
\psi\left(\boldsymbol{\alpha}, \overline{\boldsymbol{\alpha}} ;\left\{x_{\mathrm{i}}\right\}\right) & \equiv \underbrace{\mathcal{E}_{N}\left(\boldsymbol{\alpha}, \overline{\boldsymbol{\alpha}} ;\left\{\vec{x}_{\mathrm{i}}\right\}\right)}_{\text {quenched energy }}-\underbrace{D_{\mathrm{KL}}(\overline{\boldsymbol{\alpha}} \| \boldsymbol{\alpha})}_{\text {annealed energy }} \\
& \equiv-\frac{1}{N} \sum_{\mathrm{i}=1}^{\mathrm{N}} \ln \left[\frac{Q\left(\vec{x}_{\mathrm{i}} \mid \boldsymbol{\alpha}\right)}{Q\left(\vec{x}_{\mathrm{i}} \mid \overline{\boldsymbol{\alpha}}\right)}\right]+\int d \vec{x} Q(\vec{x} \mid \overline{\boldsymbol{\alpha}}) \ln \left[\frac{Q(\vec{x} \mid \boldsymbol{\alpha})}{Q(\vec{x} \mid \overline{\boldsymbol{\alpha}})}\right] \\
& \simeq 0 \\
S_{1}(N) & \simeq S_{1}^{(\mathrm{a})}(N)
\end{aligned}
$$

$$
\equiv-\int d^{K} \bar{\alpha} \mathcal{P}(\overline{\boldsymbol{\alpha}}) \underbrace{\log _{2} \overbrace{\int d^{K} \alpha P(\boldsymbol{\alpha}) \mathrm{e}^{-N D_{\mathrm{KL}}}}^{\text {ancin }}}_{\text {annealed free energy, } F(\bar{\alpha} ; N)}
$$

Density of states

We can rewrite the partition function

$$
Z(\overline{\boldsymbol{\alpha}} ; N)=\int d D \rho(D ; \overline{\boldsymbol{\alpha}}) \exp [-N D]
$$

Density of states

We can rewrite the partition function

$$
\begin{aligned}
Z(\overline{\boldsymbol{\alpha}} ; N) & =\int d D \rho(D ; \overline{\boldsymbol{\alpha}}) \exp [-N D] \\
\rho(D ; \overline{\boldsymbol{\alpha}}) & =\int d^{K} \alpha \mathcal{P}(\boldsymbol{\alpha}) \delta\left[D-D_{\mathrm{KL}}(\overline{\boldsymbol{\alpha}} \| \boldsymbol{\alpha})\right]
\end{aligned}
$$

Density of states

We can rewrite the partition function

$$
\begin{aligned}
Z(\overline{\boldsymbol{\alpha}} ; N) & =\int d D \rho(D ; \overline{\boldsymbol{\alpha}}) \exp [-N D] \\
\rho(D ; \overline{\boldsymbol{\alpha}}) & =\int d^{K} \alpha \mathcal{P}(\boldsymbol{\alpha}) \delta\left[D-D_{\mathrm{KL}}(\overline{\boldsymbol{\alpha}} \| \boldsymbol{\alpha})\right] \\
\int d D \rho(D ; \overline{\boldsymbol{\alpha}}) & =\int d^{K} \alpha \mathcal{P}(\boldsymbol{\alpha})=1
\end{aligned}
$$

Density of states

We can rewrite the partition function

$$
\begin{aligned}
Z(\overline{\boldsymbol{\alpha}} ; N) & =\int d D \rho(D ; \overline{\boldsymbol{\alpha}}) \exp [-N D] \\
\rho(D ; \overline{\boldsymbol{\alpha}}) & =\int d^{K} \alpha \mathcal{P}(\boldsymbol{\alpha}) \delta\left[D-D_{\mathrm{KL}}(\overline{\boldsymbol{\alpha}} \| \boldsymbol{\alpha})\right] \\
\int d D \rho(D ; \overline{\boldsymbol{\alpha}}) & =\int d^{K} \alpha \mathcal{P}(\boldsymbol{\alpha})=1
\end{aligned}
$$

The density ρ could be very different for different targets.

Density of states

We can rewrite the partition function

$$
\begin{aligned}
Z(\overline{\boldsymbol{\alpha}} ; N) & =\int d D \rho(D ; \overline{\boldsymbol{\alpha}}) \exp [-N D] \\
\rho(D ; \overline{\boldsymbol{\alpha}}) & =\int d^{K} \alpha \mathcal{P}(\boldsymbol{\alpha}) \delta\left[D-D_{\mathrm{KL}}(\overline{\boldsymbol{\alpha}} \| \boldsymbol{\alpha})\right] \\
\int d D \rho(D ; \overline{\boldsymbol{\alpha}}) & =\int d^{K} \alpha \mathcal{P}(\boldsymbol{\alpha})=1
\end{aligned}
$$

The density ρ could be very different for different targets.
Thus learning is annealing at decreasing temperature.
Properties of predictive information (and learning) almost always depend on $D=0$ behavior of the density.

Power-law density function

$$
\rho(D \rightarrow 0 ; \overline{\boldsymbol{\alpha}}) \approx A(\overline{\boldsymbol{\alpha}}) D^{(d-2) / 2}
$$

Power-law density function

$$
\rho(D \rightarrow 0 ; \overline{\boldsymbol{\alpha}}) \approx A(\overline{\boldsymbol{\alpha}}) D^{(d-2) / 2}
$$

Example: sound finite parameter models, $\operatorname{dim} \alpha=d$.

Power-law density function

$$
\rho(D \rightarrow 0 ; \overline{\boldsymbol{\alpha}}) \approx A(\overline{\boldsymbol{\alpha}}) D^{(d-2) / 2}
$$

Example: sound finite parameter models, $\operatorname{dim} \alpha=d$.

$$
D_{\mathrm{KL}}(\overline{\boldsymbol{\alpha}} \| \boldsymbol{\alpha}) \stackrel{\alpha \rightarrow \overline{\boldsymbol{\alpha}}}{ } \frac{1}{2} \sum_{\mu \nu}\left(\bar{\alpha}_{\mu}-\alpha_{\mu}\right) \mathcal{F}_{\mu \nu}\left(\bar{\alpha}_{\nu}-\alpha_{\nu}\right)+\cdots
$$

Power-law density function

$$
\rho(D \rightarrow 0 ; \overline{\boldsymbol{\alpha}}) \approx A(\overline{\boldsymbol{\alpha}}) D^{(d-2) / 2}
$$

Example: sound finite parameter models, $\operatorname{dim} \boldsymbol{\alpha}=d$.

$$
\begin{aligned}
D_{\mathrm{KL}}(\overline{\boldsymbol{\alpha}} \| \boldsymbol{\alpha}) & \stackrel{\alpha \rightarrow \overline{\boldsymbol{\alpha}}}{ } \frac{1}{2} \sum_{\mu \nu}\left(\bar{\alpha}_{\mu}-\alpha_{\mu}\right) \mathcal{F}_{\mu \nu}\left(\bar{\alpha}_{\nu}-\alpha_{\nu}\right)+\cdots \\
\rho(D ; \overline{\boldsymbol{\alpha}}) & \xrightarrow{D \rightarrow 0} \mathcal{P}(\overline{\boldsymbol{\alpha}}) \frac{2 \pi^{d / 2}}{\Gamma(d / 2)}(\operatorname{det} \mathcal{F})^{-1 / 2} D^{(d-2) / 2}
\end{aligned}
$$

Power-law density function

$$
\rho(D \rightarrow 0 ; \overline{\boldsymbol{\alpha}}) \approx A(\overline{\boldsymbol{\alpha}}) D^{(d-2) / 2}
$$

Example: sound finite parameter models, $\operatorname{dim} \boldsymbol{\alpha}=d$.

$$
\begin{aligned}
D_{\mathrm{KL}}(\overline{\boldsymbol{\alpha}} \| \boldsymbol{\alpha}) & \stackrel{\alpha \rightarrow \overline{\boldsymbol{\alpha}}}{ } \frac{1}{2} \sum_{\mu \nu}\left(\bar{\alpha}_{\mu}-\alpha_{\mu}\right) \mathcal{F}_{\mu \nu}\left(\bar{\alpha}_{\nu}-\alpha_{\nu}\right)+\cdots \\
\rho(D ; \overline{\boldsymbol{\alpha}}) & \xrightarrow{D \rightarrow 0} \mathcal{P}(\overline{\boldsymbol{\alpha}}) \frac{2 \pi^{d / 2}}{\Gamma(d / 2)}(\operatorname{det} \mathcal{F})^{-1 / 2} D^{(d-2) / 2} \\
S_{1}^{(\mathrm{a})} & \approx \frac{d}{2} \log _{2} N
\end{aligned}
$$

Power-law density function

$$
\rho(D \rightarrow 0 ; \overline{\boldsymbol{\alpha}}) \approx A(\overline{\boldsymbol{\alpha}}) D^{(d-2) / 2}
$$

Example: sound finite parameter models, $\operatorname{dim} \boldsymbol{\alpha}=d$.

$$
\begin{aligned}
D_{\mathrm{KL}}(\overline{\boldsymbol{\alpha}} \| \boldsymbol{\alpha}) & \stackrel{\alpha \rightarrow \overline{\boldsymbol{\alpha}}}{ } \frac{1}{2} \sum_{\mu \nu}\left(\bar{\alpha}_{\mu}-\alpha_{\mu}\right) \mathcal{F}_{\mu \nu}\left(\bar{\alpha}_{\nu}-\alpha_{\nu}\right)+\cdots \\
\rho(D ; \overline{\boldsymbol{\alpha}}) & \xrightarrow{D \rightarrow 0} \mathcal{P}(\overline{\boldsymbol{\alpha}}) \frac{2 \pi^{d / 2}}{\Gamma(d / 2)}(\operatorname{det} \mathcal{F})^{-1 / 2} D^{(d-2) / 2} \\
S_{1}^{(\mathrm{a})} & \approx \frac{d}{2} \log _{2} N
\end{aligned}
$$

Speed of approach to this asymptotics is rarely investigated.

Another example

Learning $Q\left(\vec{x}_{1} \cdots \vec{x}_{\mathrm{N}} \mid \boldsymbol{\alpha}\right)$, a finite parameter Markov process with long range intrinsic correlations such that

$$
\begin{aligned}
S\left[\left\{\vec{x}_{\mathrm{i}}\right\} \mid \boldsymbol{\alpha}\right] & \equiv-\int d^{N} \vec{x} Q\left(\left\{\vec{x}_{\mathrm{i}}\right\} \mid \boldsymbol{\alpha}\right) \log _{2} Q\left(\left\{\vec{x}_{\mathrm{i}}\right\} \mid \boldsymbol{\alpha}\right) \\
& \rightarrow N \mathcal{S}_{0}+\mathcal{S}_{0}^{*} ; \quad \mathcal{S}_{0}^{*}=\frac{K^{\prime}}{2} \log _{2} N
\end{aligned}
$$

Another example

Learning $Q\left(\vec{x}_{1} \cdots \vec{x}_{\mathrm{N}} \mid \boldsymbol{\alpha}\right)$, a finite parameter Markov process with long range intrinsic correlations such that

$$
\begin{aligned}
S\left[\left\{\vec{x}_{\mathrm{i}}\right\} \mid \boldsymbol{\alpha}\right] & \equiv-\int d^{N} \vec{x} Q\left(\left\{\vec{x}_{\mathrm{i}}\right\} \mid \boldsymbol{\alpha}\right) \log _{2} Q\left(\left\{\vec{x}_{\mathrm{i}}\right\} \mid \boldsymbol{\alpha}\right) \\
& \rightarrow N \mathcal{S}_{0}+\mathcal{S}_{0}^{*} ; \quad \mathcal{S}_{0}^{*}=\frac{K^{\prime}}{2} \log _{2} N \\
S_{1}^{(a)}(N) & \approx \frac{K+K^{\prime}}{2} \log _{2} N
\end{aligned}
$$

Another example

Learning $Q\left(\vec{x}_{1} \cdots \vec{x}_{\mathrm{N}} \mid \boldsymbol{\alpha}\right)$, a finite parameter Markov process with long range intrinsic correlations such that

$$
\begin{aligned}
S\left[\left\{\vec{x}_{\mathrm{i}}\right\} \mid \boldsymbol{\alpha}\right] & \equiv-\int d^{N} \vec{x} Q\left(\left\{\vec{x}_{\mathrm{i}}\right\} \mid \boldsymbol{\alpha}\right) \log _{2} Q\left(\left\{\vec{x}_{\mathrm{i}}\right\} \mid \boldsymbol{\alpha}\right) \\
& \rightarrow N \mathcal{S}_{0}+\mathcal{S}_{0}^{*} ; \quad \mathcal{S}_{0}^{*}=\frac{K^{\prime}}{2} \log _{2} N \\
S_{1}^{(a)}(N) & \approx \frac{K+K^{\prime}}{2} \log _{2} N
\end{aligned}
$$

Predictive information does not distinguish predictability coming from unknown parameters and from intrinsic long-range correlations.

This is similar to describing physical systems with correlations using order parameters.

Essential singularity in the density

As $d \rightarrow \infty$ we may imagine the following behavior

$$
\rho(D \rightarrow 0 ; \overline{\boldsymbol{\alpha}}) \approx A(\overline{\boldsymbol{\alpha}}) \exp \left[-\frac{B(\overline{\boldsymbol{\alpha}})}{D^{\mu}}\right], \quad \mu>0
$$

Essential singularity in the density

As $d \rightarrow \infty$ we may imagine the following behavior

$$
\begin{aligned}
\rho(D \rightarrow 0 ; \overline{\boldsymbol{\alpha}}) & \approx A(\overline{\boldsymbol{\alpha}}) \exp \left[-\frac{B(\overline{\boldsymbol{\alpha}})}{D^{\mu}}\right], \quad \mu>0 \\
C(\overline{\boldsymbol{\alpha}}) & =[B(\overline{\boldsymbol{\alpha}})]^{1 /(\mu+1)}\left(\frac{1}{\left.\mu^{\mu /(\mu+1)}+\mu^{1 /(\mu+1)}\right)}\right. \\
S_{1}^{(a)}(N) & \approx \frac{1}{\ln 2}\langle C(\overline{\boldsymbol{\alpha}})\rangle_{\bar{\alpha}} N^{\mu /(\mu+1)}
\end{aligned}
$$

Essential singularity in the density

As $d \rightarrow \infty$ we may imagine the following behavior

$$
\begin{aligned}
\rho(D \rightarrow 0 ; \overline{\boldsymbol{\alpha}}) & \approx A(\overline{\boldsymbol{\alpha}}) \exp \left[-\frac{B(\overline{\boldsymbol{\alpha}})}{D^{\mu}}\right], \quad \mu>0 \\
C(\bar{\alpha}) & =[B(\bar{\alpha})]^{1 /(\mu+1)}\left(\frac{1}{\left.\mu^{\mu /(\mu+1)}+\mu^{1 /(\mu+1)}\right)}\right. \\
S_{1}^{(a)}(N) & \approx \frac{1}{\ln 2}\langle C(\bar{\alpha})\rangle_{\bar{\alpha}} N^{\mu /(\mu+1)}
\end{aligned}
$$

- finite parameter model with increasing number of parameters

$$
K \sim N^{\mu /(\mu+1)} ; S_{1}(N) \sim N^{\mu / \mu+1}, \operatorname{not} S_{1}(N) \sim \frac{N^{\mu / \mu+1}}{2} \log N
$$

Essential singularity in the density

As $d \rightarrow \infty$ we may imagine the following behavior

$$
\begin{aligned}
\rho(D \rightarrow 0 ; \overline{\boldsymbol{\alpha}}) & \approx A(\overline{\boldsymbol{\alpha}}) \exp \left[-\frac{B(\overline{\boldsymbol{\alpha}})}{D^{\mu}}\right], \quad \mu>0 \\
C(\overline{\boldsymbol{\alpha}}) & =[B(\bar{\alpha})]^{1 /(\mu+1)}\left(\frac{1}{\left.\mu^{\mu /(\mu+1)}+\mu^{1 /(\mu+1)}\right)}\right. \\
S_{1}^{(\mathrm{a})}(N) & \approx \frac{1}{\ln 2}\langle C(\bar{\alpha})\rangle_{\bar{\alpha}} N^{\mu /(\mu+1)}
\end{aligned}
$$

- finite parameter model with increasing number of parameters $K \sim N^{\mu /(\mu+1)} ; S_{1}(N) \sim N^{\mu / \mu+1}, \operatorname{not} S_{1}(N) \sim \frac{N^{\mu / \mu+1}}{2} \log N$
- as $\mu \rightarrow \infty$ complexity grows and then vanishes to the leading order when $S_{1}^{(a)}$ becomes extensive

Example of the power-law $I_{\text {pred }}$

Learning a nonparameteric (infinite parameter) density $Q(x)=1 / l_{0} \mathrm{e}^{-\phi(x)}, x \in[0, L]$, with some smoothness constraints (Bialek, Callan, and Strong 1996).

$$
\mathcal{P}[\phi(x)]=\frac{1}{\mathcal{Z}} \exp \left[-\frac{l}{2} \int d x\left(\frac{\partial \phi}{\partial x}\right)^{2}\right] \delta\left[\frac{1}{l_{0}} \int d x \mathrm{e}^{-\phi(x)}-1\right]
$$

Example of the power-law $I_{\text {pred }}$

Learning a nonparameteric (infinite parameter) density $Q(x)=1 / l_{0} \mathrm{e}^{-\phi(x)}, x \in[0, L]$, with some smoothness constraints (Bialek, Callan, and Strong 1996).

$$
\begin{aligned}
\mathcal{P}[\phi(x)] & =\frac{1}{\mathcal{Z}} \exp \left[-\frac{l}{2} \int d x\left(\frac{\partial \phi}{\partial x}\right)^{2}\right] \delta\left[\frac{1}{l_{0}} \int d x \mathrm{e}^{-\phi(x)}-1\right] \\
\rho(D \rightarrow 0 ; \bar{\phi}) & =A[\bar{\phi}(x)] D^{-3 / 2} \exp \left(-\frac{B[\bar{\phi}(x)]}{D}\right)
\end{aligned}
$$

Example of the power-law $I_{\text {pred }}$

Learning a nonparameteric (infinite parameter) density $Q(x)=1 / l_{0} \mathrm{e}^{-\phi(x)}, x \in[0, L]$, with some smoothness constraints (Bialek, Callan, and Strong 1996).

$$
\begin{aligned}
\mathcal{P}[\phi(x)] & =\frac{1}{\mathcal{Z}} \exp \left[-\frac{l}{2} \int d x\left(\frac{\partial \phi}{\partial x}\right)^{2}\right] \delta\left[\frac{1}{l_{0}} \int d x \mathrm{e}^{-\phi(x)}-1\right] \\
\rho(D \rightarrow 0 ; \bar{\phi}) & =A[\bar{\phi}(x)] D^{-3 / 2} \exp \left(-\frac{B[\bar{\phi}(x)]}{D}\right) \\
S_{1}^{(a)}(N) & \approx \frac{1}{2 \ln 2} \sqrt{N}\left(\frac{L}{l}\right)^{1 / 2}
\end{aligned}
$$

Power-law density example: continuation

- increasing number of 'effective parameters' (bins) of adaptive size $\sim \sqrt{l / N Q(x)}$

Power-law density example: continuation

- increasing number of 'effective parameters' (bins) of adaptive size $\sim \sqrt{l / N Q(x)}$
- heuristic arguments for the dimensionality ζ and the smoothness exponent η give $S_{1}(N) \sim N^{\zeta / 2 \eta}$ demonstrates a crossover from complexity to randomness

Which complexity do we want to define?

Which complexity do we want to define?

- complexity of dynamics that generates a time series (not computational or descriptive complexity); thus it must be zero for totally random and for easily predictable processes

Which complexity do we want to define?

- complexity of dynamics that generates a time series (not computational or descriptive complexity); thus it must be zero for totally random and for easily predictable processes
- usable for Occam-style punishment in statistical inference

Which complexity do we want to define?

- complexity of dynamics that generates a time series (not computational or descriptive complexity); thus it must be zero for totally random and for easily predictable processes
- usable for Occam-style punishment in statistical inference
- expressible in conventional physical terms

Which complexity do we want to define?

- complexity of dynamics that generates a time series (not computational or descriptive complexity); thus it must be zero for totally random and for easily predictable processes
- usable for Occam-style punishment in statistical inference
- expressible in conventional physical terms
- must be attached to an ensemble, not a single realization

Complexity measure

Complexity measure

- some kind of entropy (we proclaim Shannon's postulates: monotonicity, continuity, additivity)

Complexity measure

- some kind of entropy (we proclaim Shannon's postulates: monotonicity, continuity, additivity)
- invariant under invertible temporally local transformations ($x_{k} \rightarrow x_{k}+\xi x_{k-1}$: measuring device with inertia, article with misprints, same book in different languages - same universality class)
$\log P_{1}(x)=\log P_{2}(x)+$ loc. oper. $\Rightarrow C\left[P_{1}(x)\right]=C\left[P_{2}(x)\right]$
This may present a problem in higher dimensions.

Complexity measure

- some kind of entropy (we proclaim Shannon's postulates: monotonicity, continuity, additivity)
- invariant under invertible temporally local transformations ($x_{k} \rightarrow x_{k}+\xi x_{k-1}$: measuring device with inertia, article with misprints, same book in different languages - same universality class)
$\log P_{1}(x)=\log P_{2}(x)+$ loc. oper. $\Rightarrow C\left[P_{1}(x)\right]=C\left[P_{2}(x)\right]$
This may present a problem in higher dimensions.
The divergent subextensive term measures complexity uniquely!

Relations to other definitions ...

... are mostly straightforward.

Relations to other definitions ...

... are mostly straightforward.
For Kolmogorov complexity:

Relations to other definitions ...

... are mostly straightforward.
For Kolmogorov complexity:

- partition all strings into equivalence classes

Relations to other definitions . . .

... are mostly straightforward.
For Kolmogorov complexity:

- partition all strings into equivalence classes
- define Kolmogorov complexity $C_{K}(s)$ of a sequence s with respect to the partition as a length of the shortest program that can generate a sequence from the class s belongs to

Relations to other definitions . . .

... are mostly straightforward.
For Kolmogorov complexity:

- partition all strings into equivalence classes
- define Kolmogorov complexity $C_{K}(s)$ of a sequence s with respect to the partition as a length of the shortest program that can generate a sequence from the class s belongs to
- equivalence $=$ indistinguishable conditional distributions of futures

Relations to other definitions . . .

... are mostly straightforward.
For Kolmogorov complexity:

- partition all strings into equivalence classes
- define Kolmogorov complexity $C_{K}(s)$ of a sequence s with respect to the partition as a length of the shortest program that can generate a sequence from the class s belongs to
- equivalence $=$ indistinguishable conditional distributions of futures

If sufficient statistics exist, then $C_{K} \approx I_{\text {pred }}$. Otherwise $C_{K}>I_{\text {pred }}$.
C_{K} is unique up to a constant.

What's next?

What's next?

extraction separating predictive information from non-predictive using the 'relevant information' technique

What's next?

extraction separating predictive information from non-predictive using the 'relevant information' technique
physics of phase transitions, connection to subextensive statistical mechanics

What's next?

extraction separating predictive information from non-predictive using the 'relevant information' technique
physics of phase transitions, connection to subextensive statistical mechanics
statistics extensions of MDL (predictive information is a property of the data, not of the model)

What's next?

extraction separating predictive information from non-predictive using the 'relevant information' technique
physics of phase transitions, connection to subextensive statistical mechanics
statistics extensions of MDL (predictive information is a property of the data, not of the model)
learning unification of approaches: Bayesian, SRM, MDL, Cucker-Smale. . .

Continuation: What's next?

Continuation: What's next?

neuro- and cognitive sciences is predictive information maximization a guiding principle for animal behavior? how complex are the models we use in learning?

Continuation: What's next?

neuro- and cognitive sciences is predictive information maximization a guiding principle for animal behavior? how complex are the models we use in learning?
bioinformatics what is predictive information of natural symbolic sequences? (DNA, languages, spike trains) can we use changes in predictability for data partitioning? for model building?

Continuation: What's next?

neuro- and cognitive sciences is predictive information maximization a guiding principle for animal behavior? how complex are the models we use in learning?
bioinformatics what is predictive information of natural symbolic sequences? (DNA, languages, spike trains) can we use changes in predictability for data partitioning? for model building?
dynamical systems theory what is predictive information and complexity of various systems?

