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Talk outline

Problem setup Estimation information contents of spike trains,

genomic sequences.
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Talk outline

Problem setup Estimation information contents of spike trains,

genomic sequences.

Developing intuition Why is it so difficult to estimate entropies?

The method An idea.

The method Analysis.

The method Asymptotics.

The method Synthetic experiments.

Applications Dealing with undersampling in neural data.

Applications Hints at future results.
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Neurophysiological recordings

Strong et al., 1998
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Neurophysiological recordings

Strong et al., 1998

Neurons communicate by stereotypical pulses (spikes).

Information is transmitted by spike rates and (possibly)

precise positions of the spikes.
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Estimating information rate in spike trains
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Experimental setup

Lewen, Bialek, and de Ruyter

van Steveninck, 2001
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Experimental setup

Lewen, Bialek, and de Ruyter

van Steveninck, 2001

Bialek and de Ruyter van Steveninck, 2002, Land

and Collett 1974
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Recordings and problems

100–200 repeats of 5–10 s

roller coasters rides
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1. Need to take T →∞, T > 30ms
for behavioral resolution.

2. Need to take τ → 0 and see
limiting behavior.

3. Interested in analyzing τ ≤ 1ms.

4. Need to have ∆ ≈ 100ms due to
natural stimulus correlations.

Need to estimate entropies of

words of length ∼ 40 from

< 200 samples.
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Genomics analysis

GCCTA
N︷ ︸︸ ︷

ACCGT GGTCCA︸ ︷︷ ︸
D

M︷ ︸︸ ︷
TATATAAGGAA
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Genomics analysis

GCCTA
N︷ ︸︸ ︷

ACCGT GGTCCA︸ ︷︷ ︸
D

M︷ ︸︸ ︷
TATATAAGGAA

Estimate mutual information I(M,N ;D).
Study predictability properties.

Search for motifs.

Run IB and extract predictive features.
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Why is it difficult to estimate entropies?
Suppose ε of the probability mass is in K (unknown)

number of bins.
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number of bins. This may contribute δS = ε log2K to

entropy. ∀ε� 1,M � 1, ∃K : δS > M .

{Q1, Q2} −→ {n1, n2}
−→ {Q1 + δ,Q2 − δ}−→ S − Strue < 0
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Why is it difficult to estimate entropies?
Suppose ε of the probability mass is in K (unknown)

number of bins. This may contribute δS = ε log2K to

entropy. ∀ε� 1,M � 1, ∃K : δS > M .

{Q1, Q2} −→ {n1, n2}
−→ {Q1 + δ,Q2 − δ}−→ S − Strue < 0

Last step due to nonlinearity of log2P .

More in Paninski, 2003, Grassberger 2003.

There is no unbiased finite variance estimator of entropy.

Ilya Nemenman, CompBio seminar, Columbia U, February 13, 2004 back to start



9

Undersampling: metric cases
(weather, stocks,. . . )

Possible outcomes x, a ≤ x ≤ b

Probability density Q(x)
Observed data xµ, µ = 1 . . . N
Undersampled regime always

Smoothness ∂ηQ/∂xη is small

Regularization of learning local: punish for ∂ηQ/∂xη � 1
Model selection phase space volume, self-consistent

Prior-insensitive learning probably possible
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Undersampling: non–metric cases
(languages, bioinformatics,. . . )

Discrete outcomes (bins) i, i = 1 . . .K
Probability mass qi
Observed bin occupancy ni
Undersampled regime

∑K
i=1 ni ≡ N � K

Smoothness undefined

Regularization of learning ultralocal: P({qi}) =
∏
Pi(qi)

global: P({qi}) = F (entropy)
Model selection unknown

Prior-insensitive learning probably impossible for N � K
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We choose . . .

(for discrete case)
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We choose . . .

(for discrete case)

1. Define smoothness as high entropy or low mutual

information distributions.
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We choose . . .

(for discrete case)

1. Define smoothness as high entropy or low mutual

information distributions.

2. Prior-insensitive learning of useful functionals (like

entropy) may be possible for N � K even if it’s

impossible for {qi} (these are just a few numbers).
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Learning with nearly uniform priors
(ultra–local, Dirichlet priors)

Pβ({qi}) =
1

Z(β)
δ

(
1−

K∑
i=1

qi

)
K∏
i=1

qβ−1
i
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Maximum likelihood β → 0

Ilya Nemenman, CompBio seminar, Columbia U, February 13, 2004 back to start



12

Learning with nearly uniform priors
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i
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(ultra–local, Dirichlet priors)
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(
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)
K∏
i=1

qβ−1
i

Some common choices:
Maximum likelihood β → 0
Laplace’s successor rule β = 1
Krichevsky–Trofimov (Jeffreys) estimator β = 1/2
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Learning with nearly uniform priors
(ultra–local, Dirichlet priors)

Pβ({qi}) =
1

Z(β)
δ

(
1−

K∑
i=1

qi

)
K∏
i=1

qβ−1
i

Some common choices:
Maximum likelihood β → 0
Laplace’s successor rule β = 1
Krichevsky–Trofimov (Jeffreys) estimator β = 1/2
Schurmann–Grassberger estimator β = 1/K

Ilya Nemenman, CompBio seminar, Columbia U, February 13, 2004 back to start



13

Numerics of the Dirichlet family
To generate distributions: Successively select each qi according to

P (qi) = B

(
qi

1−
∑
j<i qj

;β, (K − i)β

)

B (x; a, b) =
xa−1(1− x)b−1

B(a, b)
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Numerics of the Dirichlet family
To generate distributions: Successively select each qi according to

P (qi) = B

(
qi

1−
∑
j<i qj

;β, (K − i)β

)

B (x; a, b) =
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Typical distributions (K = 1000).

Note that the β = 1 distribution is

very non–uniform, but has almost

the maximum entropy (maybe

reorder bins?)
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Bayesian inference with Dirichlet priors

Pβ({qi}|{ni}) = P ({ni}|{qi})Pβ({qi})
Pβ({ni})

P ({ni}|{qi}) =
K∏
i=1

(qi)ni

〈qi〉β =
ni + β

N +Kβ

Ilya Nemenman, CompBio seminar, Columbia U, February 13, 2004 back to start



14

Bayesian inference with Dirichlet priors

Pβ({qi}|{ni}) = P ({ni}|{qi})Pβ({qi})
Pβ({ni})

P ({ni}|{qi}) =
K∏
i=1

(qi)ni

〈qi〉β =
ni + β

N +Kβ

Equal pseudocounts added to each bin.
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Bayesian inference with Dirichlet priors

Pβ({qi}|{ni}) = P ({ni}|{qi})Pβ({qi})
Pβ({ni})

P ({ni}|{qi}) =
K∏
i=1

(qi)ni

〈qi〉β =
ni + β

N +Kβ

Equal pseudocounts added to each bin.

Larger β means less sensitivity to data, thus more smoothing.
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A problem: A priori entropy expectation

Pβ(S) =
∫
dq1dq2 · · · dqK Pβ({qi}) δ

[
S +

K∑
i=1

qi log2 qi

]
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A problem: A priori entropy expectation

Pβ(S) =
∫
dq1dq2 · · · dqK Pβ({qi}) δ

[
S +

K∑
i=1

qi log2 qi

]
ξ(β) ≡ 〈S[ni = 0] 〉β

= ψ0(Kβ + 1)− ψ0(β + 1) ,

σ2(β) ≡ 〈 (δS)2[ni = 0]〉β

=
β + 1
Kβ + 1

ψ1(β + 1)− ψ1(Kβ + 1)

ψm(x) = (d/dx)m+1 log2 Γ(x) –the polygamma function
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The problem: Analysis
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1. Because of the Jacobian of the
{qi} → S transformation, a priori
distribution of entropy is strongly
peaked.
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1. Because of the Jacobian of the
{qi} → S transformation, a priori
distribution of entropy is strongly
peaked.

2. Narrow peak: maxσ(β) =
0.61 bits � log2K at β ≈ 1/K;
σ(β) ∝ 1/

√
Kβ for Kβ � 1;

σ(β) ∝
√
Kβ for Kβ � 1.
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1. Because of the Jacobian of the
{qi} → S transformation, a priori
distribution of entropy is strongly
peaked.

2. Narrow peak: maxσ(β) =
0.61 bits � log2K at β ≈ 1/K;
σ(β) ∝ 1/

√
Kβ for Kβ � 1;

σ(β) ∝
√
Kβ for Kβ � 1.

3. As β varies from 0 to ∞, the peak
smoothly moves from ξ(β) = 0 to
log2K. For any finite β, ξ(β) =
log2K −O(K0).

Ilya Nemenman, CompBio seminar, Columbia U, February 13, 2004 back to start



17

The problem

1. No a priori way to specify β.
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The problem
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2. Choosing β fixes allowed “shapes” of {qi}, and thus

defines the a priori expectation of entropy.
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The problem

1. No a priori way to specify β.

2. Choosing β fixes allowed “shapes” of {qi}, and thus

defines the a priori expectation of entropy.

3. Since, for large Kβ, σ(β) ∼ 1/
√
Kβ it takes N ∼ K

data to influence entropy estimation.
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The problem

1. No a priori way to specify β.

2. Choosing β fixes allowed “shapes” of {qi}, and thus

defines the a priori expectation of entropy.

3. Since, for large Kβ, σ(β) ∼ 1/
√
Kβ it takes N ∼ K

data to influence entropy estimation.

4. All common estimators are, therefore, bad for learning

entropies.
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Problems of common estimators

Maximum likelihood
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Maximum likelihood
P0(S) = δ(S)
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Problems of common estimators

Maximum likelihood
P0(S) = δ(S)
S = SML + K∗

2N +O
(

1
N2

)
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Problems of common estimators

Maximum likelihood
P0(S) = δ(S)
S = SML + K∗

2N +O
(

1
N2

)
(K∗ is estimated ad hoc)

Laplace and KT
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√
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Problems of common estimators

Maximum likelihood
P0(S) = δ(S)
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Problems of common estimators

Maximum likelihood
P0(S) = δ(S)
S = SML + K∗

2N +O
(

1
N2

)
(K∗ is estimated ad hoc)

Laplace and KT

σ(β = 1, 1/2) ∼ 1/
√
K
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5

N

<S
> β − S

β = 0.001
β = 0.02 
β = 1    

Schurmann–Grassberger

σ(1/K) ≈ 0.61 bit

(least biased)

Still strongly biased towards

S = 1/ ln 2 bits.
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Removing the entropy bias at the source

Need such P({qi}) that P(S[qi]) is (almost) uniform.
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Removing the entropy bias at the source

Need such P({qi}) that P(S[qi]) is (almost) uniform.

Our options:

1. Pflat
β ({qi}) = Pβ({qi})

Pβ(S[qi])
.
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Need such P({qi}) that P(S[qi]) is (almost) uniform.

Our options:

1. Pflat
β ({qi}) = Pβ({qi})

Pβ(S[qi])
. Difficult.

2. P(S) ∼ 1 =
∫
δ(S − ξ)dξ.
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Removing the entropy bias at the source

Need such P({qi}) that P(S[qi]) is (almost) uniform.

Our options:

1. Pflat
β ({qi}) = Pβ({qi})

Pβ(S[qi])
. Difficult.

2. P(S) ∼ 1 =
∫
δ(S − ξ)dξ. Easy: Pβ(S) is almost a

δ-function!
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Solution

Average over β — infinite Dirichlet mixtures.

P({qi};β) =
1
Z
δ

(
1−

K∑
i=1

qi

)
K∏
i=1

qβ−1
i

dξ(β)
dβ

P(ξ(β))

Ŝm =

∫
dξ ρ(ξ, {ni})〈Sm[ni] 〉β(ξ)∫

dξ ρ(ξ, [ni])

ρ(ξ, [ni]) = P (ξ)
Γ(Kβ(ξ))

Γ(N +Kβ(ξ))

K∏
i=1

Γ(ni + β(ξ))
Γ(β(ξ))

.
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Solution: explanations

1. dξ/dβ insures a priori uniformity over expected entropy.
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1. dξ/dβ insures a priori uniformity over expected entropy.

2. P(ξ) embodies actual expectations about entropy.

3. Smaller β means larger allowed volume in the space of {qi}. Thus

averaging over β is Bayesian model selection.
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Solution: explanations

1. dξ/dβ insures a priori uniformity over expected entropy.

2. P(ξ) embodies actual expectations about entropy.

3. Smaller β means larger allowed volume in the space of {qi}. Thus

averaging over β is Bayesian model selection.

4. If ρ(ξ) is peaked, then some β(ξ) (model) dominates (is

“selected”), and the variance of the estimator is small.
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Too rough or too smooth?

Typical rank–ordered plots:

qi ≈ 1−
[
βB(β, κ− β)(K − 1) i

K

]1/(κ−β)

, i� K ,

qi ≈
[
βB(β, κ− β)(K − i+ 1)

K

]1/β
, K − i+ 1 � K
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Typical rank–ordered plots:

qi ≈ 1−
[
βB(β, κ− β)(K − 1) i

K

]1/(κ−β)

, i� K ,

qi ≈
[
βB(β, κ− β)(K − i+ 1)

K

]1/β
, K − i+ 1 � K

Faster decaying – too rough.

Slower decaying – too smooth.

Ilya Nemenman, CompBio seminar, Columbia U, February 13, 2004 back to start



22

Too rough or too smooth?

Typical rank–ordered plots:

qi ≈ 1−
[
βB(β, κ− β)(K − 1) i

K

]1/(κ−β)

, i� K ,

qi ≈
[
βB(β, κ− β)(K − i+ 1)

K

]1/β
, K − i+ 1 � K

Faster decaying – too rough.

Slower decaying – too smooth.

Usually only the first regime is observed.
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First attempts to estimate entropy

Typical distributions
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Estimating entropy: first observations

1. Relative error ∼ 10% at N as low as 30 for K = 1000.
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Ilya Nemenman, CompBio seminar, Columbia U, February 13, 2004 back to start



24

Estimating entropy: first observations

1. Relative error ∼ 10% at N as low as 30 for K = 1000.

2. Reliable estimation of error (posterior variance).

3. Little bias, as it should be. Exception: too smooth distributions.

4. Key point: learn entropies directly without finding {qi}!
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Estimating entropy: first observations

1. Relative error ∼ 10% at N as low as 30 for K = 1000.

2. Reliable estimation of error (posterior variance).

3. Little bias, as it should be. Exception: too smooth distributions.

4. Key point: learn entropies directly without finding {qi}!
5. The dominant β stabilizes for typical distributions; drifts down (to

complex models) for rough ones and up (to simpler models) for

too smooth cases.
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Asymptotics – many coincidences

For K � N � 1, and ∆ ≡ N −K(nonzero counts) ≡ Nδ � 1, find

β∗ = κ∗/N (saddle point).

κ∗ = κ0 +
1
K
κ1 +

1
K2

κ2 + . . .
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For K � N � 1, and ∆ ≡ N −K(nonzero counts) ≡ Nδ � 1, find

β∗ = κ∗/N (saddle point).

κ∗ = κ0 +
1
K
κ1 +

1
K2

κ2 + . . .

κ0 = N

(
b−1

δ
+ b0 + b1δ + . . .

)
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Asymptotics – many coincidences

For K � N � 1, and ∆ ≡ N −K(nonzero counts) ≡ Nδ � 1, find

β∗ = κ∗/N (saddle point).

κ∗ = κ0 +
1
K
κ1 +

1
K2

κ2 + . . .

κ0 = N

(
b−1

δ
+ b0 + b1δ + . . .

)
other κi and bi are O(1)
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Asymptotics – many coincidences

For K � N � 1, and ∆ ≡ N −K(nonzero counts) ≡ Nδ � 1, find

β∗ = κ∗/N (saddle point).

κ∗ = κ0 +
1
K
κ1 +

1
K2

κ2 + . . .

κ0 = N

(
b−1

δ
+ b0 + b1δ + . . .

)
other κi and bi are O(1)

∂2(− log ρ)
∂ξ2

∣∣∣∣
ξ(β∗)

=
[
∂2(− log ρ)

∂β2

1
(dξ/dβ)2

]
β∗

= ∆ +NO(δ2)
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Asymptotics – few coincidences

For K →∞, ∆ ∼ 1, δ → 0

Ŝ ≈ (Cγ − ln 2) + 2 lnN − ψ0(∆) +O(
1
N
,

1
K

)

̂(δS)2 ≈ ψ1(∆) +O(
1
N
,

1
K

)
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Estimator: Properties

1. K can potentially be infinite.
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1. K can potentially be infinite.

2. Estimation for small ∆ is only reliable if distribution is not

atypically smooth.

3. Expansion parameter for saddle point analysis is ∆.

4. Selection of K by Bayesian integration not an option: small K

means smaller phase space and better approximation.
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3. Expansion parameter for saddle point analysis is ∆.

4. Selection of K by Bayesian integration not an option: small K

means smaller phase space and better approximation.

5. The estimator is consistent.
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Estimator: Properties

1. K can potentially be infinite.

2. Estimation for small ∆ is only reliable if distribution is not

atypically smooth.

3. Expansion parameter for saddle point analysis is ∆.

4. Selection of K by Bayesian integration not an option: small K

means smaller phase space and better approximation.

5. The estimator is consistent.

6. The estimator should work (in some cases) for N � K, N � 2S,

and N ∼ 2S/2 (cf. Ma, 1981).
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Estimator: Synthetic test

Refractory Poisson process: r = 0.26ms−1, R = 1.8ms, T = 15ms,

τ = 0.5ms.
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Estimator: Synthetic test

Refractory Poisson process: r = 0.26ms−1, R = 1.8ms, T = 15ms,

τ = 0.5ms. K = 230, Kref < 216, S = 13.57bits.

Ilya Nemenman, CompBio seminar, Columbia U, February 13, 2004 back to start



28

Estimator: Synthetic test

Refractory Poisson process: r = 0.26ms−1, R = 1.8ms, T = 15ms,

τ = 0.5ms. K = 230, Kref < 216, S = 13.57bits.
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Refractory Poisson process: r = 0.26ms−1, R = 1.8ms, T = 15ms,

τ = 0.5ms. K = 230, Kref < 216, S = 13.57bits.
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Refractory spikes, T = 15 ms, τ = 0.5 ms

NSB, K=230

NSB, K=216

ML
ML fit

Strue

True value reached within

the error bars for N2 ∼ 2S,

when coincidences start to

occur.

Estimator is unbiased if it is

consistent and agrees with

itself for all N within error

bars.
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Natural data: Slice entropy vs. sample size
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ML estimator cannot be extrapolated.

NSB estimator is always within error

bars.

(SNSB − SML)/δSNSB has zero mean if SML is reliable.
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Natural data: Error vs. mean
ε(N) ≡ SNSB(N)−S

δSNSB(N)
≈ SNSB(N)−SNSB(196)

δSNSB(N)
. Remember: log2 196 ≈ 7.5bit.
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Ilya Nemenman, CompBio seminar, Columbia U, February 13, 2004 back to start



30

Natural data: Error vs. mean
ε(N) ≡ SNSB(N)−S
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Almost no bias.
Empirical variance < 1 due to long tails in posterior.
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Natural data: Error vs. mean
ε(N) ≡ SNSB(N)−S

δSNSB(N)
≈ SNSB(N)−SNSB(196)

δSNSB(N)
. Remember: log2 196 ≈ 7.5bit.
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Almost no bias.
Empirical variance < 1 due to long tails in posterior.

Bands are due to discrete nature of ∆.
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Natural data: Hints of future results

Some preliminary results for information rate estimation. Further

work is needed to properly estimate error bars due to signal

correlations.
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Conclusions

1. Found new entropy estimator.
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Conclusions

1. Found new entropy estimator.

2. Know if we should trust it.

3. Neural data seems to be well matched to the estimator.
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