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The method Analysis.
The method Asymptotics.
The method Synthetic experiments.
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The method Analysis.

The method Asymptotics.

The method Synthetic experiments.

Applications Dealing with undersampling in neural data.
Applications Hints at future results.
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filtered signal (Volt)

Strong et al., 1998
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Strong et al., 1998
Neurons communicate by stereotypical pulses (spikes).
Information is transmitted by spike rates and (possibly)
precise positions of the spikes.
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electrode holder
and amplifier

Niz)'tation axis

Lewen, Bialek, and de Ruyter

van Steveninck, 2001
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electrode holder
and amplifier

Niz)'tation axis

Lewen, Bialek, and de Ruyter  Bialek and de Ruyter van Steveninck, 2002, Land

van Steveninck, 2001 and Collett 1974

[lya Nemenman, CompBio seminar, Columbia U, February 13, 2004 back to start



N
o
o
o

velocity (°/s)

1600 1700 1800 1900

( 2000
time (ms)

[lya Nemenman, CompBio seminar, Columbia U, February 13, 2004

back to start




velocity (°/s)

sesses sessssees o

0 s
1500 1600 1700 1800
time (ms)

1900 2000

[lya Nemenman, CompBio seminar, Columbia U, February 13, 2004

back to start



velocity (°/s)

sesses sessssees o

0 s
1500 1600 1700 1800
time (ms)

1900 2000

[lya Nemenman, CompBio seminar, Columbia U, February 13, 2004

back to start



velocity (°/s)

sesses sessssees o

0 s
1500 1600 1700 1800
time (ms)

1900 2000

[lya Nemenman, CompBio seminar, Columbia U, February 13, 2004

back to start



_ | | ' | _ . Interested in analyzing 7
OJ\V/\\///\ e yzing 7 =

mSs.

velocity (°/s)

4. Need to have A ~ 100ms due to
natural stimulus correlations.

trial

2000

0 : Lo R E:
1500 1600 1700 1800 1900
time (ms)

[lya Nemenman, CompBio seminar, Columbia U, February 13, 2004 back to start



- | | I | - . Interested 1N analyzing 7 mSs.
OJ\V/\\//—/\ PN yzIig 7 =

2000 | | | | | 4. Need to have A ~ 100ms due to
SIS SIISIN IR b natural StimUIUS Corl’e|ati0ns.

velocity (°/s)

Need to estimate entropies of

trial

words of length ~ 40 from

=
1500 1600

1700 1800 1900 2000

time (ms) < 200 samples.

,,,,,,,,,,, oo oooo:ooo::;oono

[lya Nemenman, CompBio seminar, Columbia U, February 13, 2004 back to start



[lya Nemenman, CompBio seminar, Columbia U, February 13, 2004 back to start



Estimate mutual information I(M, N; D).
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Estimate mutual information I(M, N; D).
Study predictability properties.
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Estimate mutual information I(M, N; D).
Study predictability properties.
Search for motifs.
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Estimate mutual information I(M, N; D).
Study predictability properties.
Search for motifs.
Run IB and extract predictive features.
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{leQQ} — {Tbl,’ng}
E— {Q1+57Q2_5}—> S_Strue <0

Last step due to nonlinearity of log, P.
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{Ql)QZ} — {n17n2}
E— {Q1+57Q2_5}—> S_Strue <0

Last step due to nonlinearity of log, P.

More in Paninski, 2003, Grassberger 2003.
There is no unbiased finite variance estimator of entropy.
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served data Ty b=

Undersampled regime always

Smoothness 0"Q) /0x" is small
Regularization of learning  local: punish for 37Q/0x" > 1
Model selection phase space volume, self-consistent
Prior-insensitive learning probably possible
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served bin occupancy n;
Undersampled regime Y =N< K
Smoothness undefined

Regularization of learning ultralocal: P({q;}) = [1P:i(¢:)

global: P({¢:}) = F(entropy)
Model selection unknown

Prior-insensitive learning  probably impossible for N < K
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INformation distributions.
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iInformation distributions.

2. Prior-insensitive learning of useful functionals (like
entropy) may be possible for N < K even if it's
impossible for {¢;} (these are just a few numbers).
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Some common choices:

Maximum likelihood 8 —0
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Some common choices:

Maximum likelihood 8 —0
Laplace’s successor rule g=1
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Some common choices:

Maximum likelihood 8 —0
Laplace’s successor rule g=1

Krichevsky—Trofimov (Jeffreys) estimator (3 =1/2
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Some common choices:

Maximum likelihood 8 —0
Laplace’s successor rule g=1
Krichevsky—Trofimov (Jeffreys) estimator (3 =1/2
Schurmann—Grassberger estimator B=1/K
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Typical distributions (K = 1000).
Note that the 5 = 1 distribution is

very non—uniform, but has almost

the maximum entropy (maybe

reorder bins?)
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Equal pseudocounts added to each bin.
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Equal pseudocounts added to each bin.

Larger 5 means less sensitivity to data, thus more smoothing.
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= Yo(KB+1) —1o(B+1),

o*(B) = ((65)%[ns = 0])s
6+1

= T B+ KB+ 1)

Ym(x) = (d/dz)™"log, '(x) —the polygamma function
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o(fB) x 1/v/KB for KB > 1,
o(B) x VK for K < 1.

0 0.5

1
B
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© o o
N

() / log K

o(fB) x 1/v/KB for KB > 1,
o(B) x VK for K < 1.

3. As (3 varies from 0 to oo, the peak
smoothly moves from £(8) = 0 to
log, K. For any finite 3, &£(3) =
log, K — O(K").

0 0.5
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B
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e a priori expectation of entropy.
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defines the a priori expectation of entropy.

3. Since, for large K3, o(3) ~ 1// K[ it takes N ~ K
data to influence entropy estimation.
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defines the a priori expectation of entropy.

3. Since, for large K3, o(3) ~ 1// K[ it takes N ~ K
data to influence entropy estimation.

4. All common estimators are, therefore, bad for learning
entropies.
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Laplace and KT
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Laplace and KT
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Laplace and KT

)
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00000

o(1/K) ~ 0.61 bit
Schurmann—Grassberger (least biased)

Still strongly biased towards
S =1/In2 bits.
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g I Pa(Slai])
2. P(S) ~ 1= [6(S — &)dE. Easy: Py(S) is almost a

o-function!
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averaging over 3 is Bayesian model selection.
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3. Smaller B means larger allowed volume in the space of {g;}. Thus
averaging over 3 is Bayesian model selection.

4. 1f p(&) is peaked, then some 3(&) (model) dominates (is
“selected” ), and the variance of the estimator is small.
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B(8,x — B)(K —i+1)]""
q = BB(B, k=P i+1) , K—i+1< K

K
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B(8,x — B)(K —i+1)]""
q = BB(B, k=P i+1) , K—i+1< K

K

Faster decaying — too rough.
Slower decaying — too smooth.

[lya Nemenman, CompBio seminar, Columbia U, February 13, 2004 back to start



B(8,x — B)(K —i+1)]""
G~ ﬁ (ﬂa’i ﬂ)( LT ) : K—1+41<x K

K

Faster decaying — too rough.
Slower decaying — too smooth.

Usually only the first regime is observed.
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4. Key point: learn entropies directly without finding {q;}!
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3. Little bias, as it should be. Exception: too smooth distributions.

4. Key point: learn entropies directly without finding {q;}!

5. The dominant [ stabilizes for typical distributions; drifts down (to
complex models) for rough ones and up (to simpler models) for
too smooth cases.
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b_
Ko = N(Tl+b0—|—b15—|—>

other k; and b; are O(1)
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other k; and b; are O(1)
2(_
[a (logp) 1 ] = A+ NO(8?)
/8*

0°(—log p)
OE?

|g(5*) 0p*  (d§/dB)?
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3. Expansion parameter for saddle point analysis is A.
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3. Expansion parameter for saddle point analysis is A.

4. Selection of K by Bayesian integration not an option: small K
means smaller phase space and better approximation.
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atypically smoo
3. Expansion parameter for saddle point analysis is A.

4. Selection of K by Bayesian integration not an option: small K
means smaller phase space and better approximation.

5. The estimator is consistent.
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atypically smooth.

3. Expansion parameter for saddle point analysis is A.

4. Selection of K by Bayesian integration not an option: small K
means smaller phase space and better approximation.

5. The estimator is consistent.

6. The estimator should work (in some cases) for N < K, N < 2°,
and N ~ 25/2 (cf. Ma, 1981).
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0 0.04 0.08 0.12 0.16 0.2
UN

ML estimator converges with ~ 1/N

corrections.
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0 0.04 0.08 0.12 0.16 0.2
UN

ML estimator converges with ~ 1/N
corrections.
NSB estimator is always within error

bars.
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UN

ML estimator converges with ~ 1/N
corrections.
NSB estimator is always within error

bars.
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0 0.04 0.08 0.12 0.16 0.2 0 0.04 0.08 0.12 0.16 0.2
UN UN

ML estimator converges with ~ 1/N ML estimator cannot be extrapolated.
corrections.
NSB estimator is always within error

bars.
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0 0.04 0.08 0.12 0.16 0.2 0 0.04 0.08 0.12 0.16 0.2
UN UN

ML estimator converges with ~ 1/N ML estimator cannot be extrapolated.
corrections. NSB estimator is always within error
NSB estimator is always within error  bars.

bars.
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0 0.04 0.08 0.12 0.16 0.2 0 0.04 0.08 0.12 0.16 0.2
UN UN

ML estimator converges with ~ 1/N ML estimator cannot be extrapolated.
corrections. NSB estimator is always within error
NSB estimator is always within error  bars.

bars.
(STNSB — S\, ) /0SNSB has zero mean if SMY s reliable.
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Almost no bias.
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Almost no bias.

Empirical variance < 1 due to long tails in posterior.
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1
w 0 w 0
-1
-2 -1
-3
0 5 SNSB 10 15 20 5 SNSB 10 15

Almost no bias.

Empirical variance < 1 due to long tails in posterior.

Bands are due to discrete nature of A.
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3. Neural data seems to be well matched to the estimator.
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