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Abstract: Enzyme-mediated reactions may proceed through multiple intermediate conformational states before
creating a final product molecule, and one often wishes to identify such intermediate structures from observations
of the product creation. In this study, the authors address this problem by solving the chemical master equations
for various enzymatic reactions. A perturbation theory analogous to that used in quantum mechanics allows the
determination of the first (knl) and the second (s2) cumulants of the distribution of created product molecules as a
function of the substrate concentration and the kinetic rates of the intermediate processes. The mean product flux
V ¼ dknl/dt (or ‘dose – response’ curve) and the Fano factor F ¼ s2/knl are both realistically measurable
quantities, and whereas the mean flux can often appear the same for different reaction types, the Fano factor can
be quite different. This suggests both qualitative and quantitative ways to discriminate between different reaction
schemes, and the authors explore this possibility in the context of four sample multistep enzymatic reactions.
Measuring both the mean flux and the Fano factor can not only discriminate between reaction types, but can also
provide some detailed information about the internal, unobserved kinetic rates, and this can be done without
measuring single-molecule transition events.
i

Enzyme-mediated reactions are ubiquitous in biology.
Traditionally, they have been described as a two-step
Michaelis–Menten (MM) process [1], in which the enzyme
and the substrate form a complex that can decay either back
into the enzyme and the substrate, or forward into the
enzyme and the product (see Fig. 1a). The latter step is
usually assumed to be irreversible, leaving three kinetic rates
that specify the reaction. To determine these kinetic rates, a
typical experiment measures the average rate of product
formation (or product ‘flux’) V as a function of substrate
concentration S (also called a ‘dose–response’ curve),
producing a plot as in Fig. 2a. Two pieces of information can
be extracted from this plot: the saturating reaction rate Vmax

and the Michaelis constant K (the substrate concentration at
Syst. Biol., 2009, Vol. 3, Iss. 5, pp. 429–437
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half of the maximum rate). Importantly, these two
measurements do not specify the three underlying kinetic
rates; thus they do not allow for a full identification of the
reaction processes.

The MM mechanism is not entirely general: many
enzyme-mediated reactions consist of multiple intermediate
internal steps (such as conformational changes of either the
enzyme or the substrate, enzymes that occur in active and
inactive states etc.), each with its own forward and
backward reaction rates. While measurements of substrate–
enzyme complex formation and product releases are
possible even on a single-molecule level in enzymatic
kinetics [2] and in ion channel transport [3, 4], typical
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Figure 1 Potential schemes for an enzyme-mediated reaction, in which substrate S is converted to product P

a A simple Michaelis-Menten (MM) reaction
b A MM reaction with an additional intermediate state (e.g. if the complex undergoes a conformational change before creating the
product)
c A scheme in which the enzyme must become active (e.g. through phosphorylation) before mediating the reaction
d A scheme in which the enzyme must become active before mediating the reaction, and the reaction leaves the enzyme inactive
experiments cannot resolve intermediate steps when
measuring only the average reaction rate since they produce
qualitatively similar curves for V (S). For example, the mean
flux through an arbitrary complex ion channel that holds at
most one large transported molecule at a time is
indistinguishable from that through a simple channel with
just two internal states [5].

An interesting problem then is to determine which
experimental measurements could identify the multistep
nature of an enzyme-mediated reaction. One can consider
three different types of experiments for which this could be
done: single-molecule experiments, which measure single
reaction events; mesoscopic experiments, where single events
are unobservable, and yet the product flux can be measured
repeatedly and precisely, allowing estimation of the mean
flux and its fluctuations; and macroscopic experiments,
where fluctuations of such fluxes (with a typical relative
magnitude of one over the square root of the number of
molecules) are not empirically observable. The theory for
reconstruction of enzymatic kinetic schemes for the first type
of experiments has been worked out quite well, and has been
applied experimentally [2, 6]. However, not much has been
he Institution of Engineering and Technology 2009
said about mesoscopic experiments. The main goal of this
paper, therefore, is to develop a simple computational
technique that could be used to reconstruct kinetic diagrams
based on such data, and to apply it to a few toy model
examples to argue its experimental applicability. The third
type of experiments, the macroscopic ones, will be discussed
in a subsequent publication.

Specifically, we present here a general perturbative approach
for calculating the cumulants of a product molecule flux for a
given enzymatic reaction scheme. We suggest that this
method could be used in experiments that measure not only
the mean rate but also the variance in the rate of the creation
of product molecules; modern experiments can clearly
perform this task in different experimental systems [2, 7].
Measurements of higher order product formation
cumulants, if experimentally possible, would allow one to
constrain properties of the reaction even more strongly.

To illustrate the method, we first apply it to the usual MM
reaction (Fig. 1a). In addition to recovering the well-known
result for the mean rate of product formation as a function
of substrate concentration, we derive the dependence on
IET Syst. Biol., 2009, Vol. 3, Iss. 5, pp. 429–437
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substrate of the Fano factor, the ratio of the variance in the
number of product molecules to the mean. Importantly, our
approach is extendible, at least in principle, to an arbitrary
enzyme-mediated reaction scheme, and we demonstrate
this by analysing three more complex reaction schemes,
shown in Figs. 1b–d. In the context of these reactions, we
show that the dependence of the Fano factor on the
substrate concentration can produce qualitatively different
results for different reaction types, allowing one to
distinguish them experimentally. In addition, we argue that
quantitative features of the Fano factor measurements can
constrain the values of the underlying kinetic rate constants
more tightly than the mean rate measurements alone.

1 Methods: the MM model
Going beyond a simple description of the mean production of
a particular molecule and making predictions about the
intrinsic noise requires a stochastic description, such as the
chemical master equation (CME) [8]. The CME describes

Figure 2 Mean product flux (also called dose – response
curve) V and the Fano factor F against substrate
concentration S for the four cases in Fig. 1. A: solid, B:
dashed, C: dotted and D: dot-dashed

Plots are of (20), (26), (32) and (38) for V and (21), (27), (33) and
(39) for F, with k1 ¼ 1, k21 ¼ 1, k2 ¼ 1, kþ ¼ 0.1 and k2 ¼ 0.01.
Note that while there are no qualitative differences in V (and in
fact all curves collapse when V is normalised by V max and S by K,
as seen in the inset), features can appear in F that signify that a
process is more complicated than the single-intermediate case A
Syst. Biol., 2009, Vol. 3, Iss. 5, pp. 429–437
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the evolution in time of the joint probability distribution for
the copy numbers of all species involved in a reaction
scheme. For the enzyme-mediated reactions we consider, we
make the assumption that each enzyme acts independently,
that is, the substrate concentration is much larger than the
enzyme concentration. This is equivalent to treating the
process as if only one enzyme was present at a time.
Furthermore, we assume that the concentration of the
substrate is constant during each experimental measurement,
and thus our master equation needs only to keep track of the
enzyme’s state and the number of created product molecules
n. In other words, we are still solving the master equation,
but treating, however, the substrate concentration as a
parameter in it. We note that both of these assumptions can
be relaxed using recently developed techniques [9, 10].
Finally, we only search for the distribution of the number of
product molecules at times much longer than a typical
enzymatic turnover time.

We begin by demonstrating our method on the simple
MM reaction in Fig. 1a. In the MM reaction, the enzyme
will be in either a free state E or a bound state ES.
Therefore we partition the joint probability distribution
into two parts: PE

n , the probability that n product molecules
have been created and the enzyme is free, and PES

n , the
probability that n product molecules have been created and
the enzyme is bound, yielding the CME [8]

dPE
n

dt
¼ �k1SPE

n þ k�1PES
n þ k2PES

n�1 (1)

dPES
n

dt
¼ k1SPE

n � (k�1 þ k2)PES
n (2)

where the rates are defined in Fig. 1a, and S is the number of
substrate molecules. (Note that S can equivalently be thought
of as the concentration of substrate as long as one
appropriately rescales the rates.) The total probability of
having n product molecules is then Pn ¼ PE

n þ PES
n .

We note that the situation where the product molecules are
created and never destroyed or transformed back into the
substrate is not physical, and additional reactions that
degrade the product in some way are needed. However, as
long as we are interested in how many product molecules
have been created, rather than are present at a given time,
the creation, (1) and (2), and the decay reactions can be
considered independently.

Similar to [9–13] and others, we begin our solution of (1)
and (2) by defining the generating function

Gz(x) ¼
X1
n¼0

Pz
neixn (3)

with z [ fE, ESg. Defining the vector jGl ¼ (GE, GES)T,
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we may write the total generating function as

G(x) ¼ k1jGl ¼ GE
þ GES (4)

where k1j ¼ (1, 1) (note that we are adopting “bra-ket” vector
notation commonly used in quantum mechanics literature).
The advantage of this formalism is that the mean knl and
variance s2 of the distribution of product molecules Pn can
be calculated from G(x) via

knl ¼
d( ln G)

d(ix)

����
x¼0

, s2
¼

d2( ln G)

d(ix)2

�����
x¼0

(5)

Furthermore, we note that having N (independently acting)
enzymes is equivalent to taking G to GN, so that extension
to larger number of enzymes is straightforward.

Now multiplying (1) and (2) by eixn and summing over n
produces

djGl
dt
¼ Ĥ jGl (6)

where, for the MM reaction,

Ĥ ¼ Ĥ A ¼
�k1S k�1 þ k2eix

k1S �(k�1 þ k2)

� �
(7)

Equation (6) is formally solved by

jG(t)l ¼ eĤ t
jG0l (8)

with an initial condition jG0l. If we write the matrix exponential
in terms of the eigenvalues lj and eigenvectors jujl of Ĥ as

eĤ t
¼
X

j

elj t
jujlkuj j (9)

(note that since Ĥ is not symmetric, the eigenvectors do
not satisfy jujl ¼ kuj j

T, but rather they solve Ĥ jujl ¼ lj jujl
and kuj jĤ ¼ ljkuj j, respectively) then, at t much larger than
the typical enzyme turnover time, G(x) becomes

G(x) ¼
X

j

elj tk1jujlkuj jG0l ’ el0tk1ju0lku0jG0l (10)

where l0 is the eigenvalue with the least negative real part.
Taking the log, we obtain

ln G(x) ¼ l0t þ ln(k1ju0lku0jG0l) ’ l0t (11)

since again, in the long-time limit, the first term dominates the
second (for any bounded G0), and the initial number of product
molecules is forgotten. Recalling (5), it is clear now that one
only needs to find the x-dependence of the least negative
eigenvalue l0 of the matrix Ĥ A in order to compute the
cumulants of the product molecule distribution. In fact,
The Institution of Engineering and Technology 2009
writing l0 as a power series,

l0 ¼
X1
m¼0

l(m)
0

(ix)m

m!
(12)

it is clear that one only needs to know the coefficients up to
m ¼ 2 in order to compute the mean and variance of the
distribution. Specifically

knl ¼ l
(1)
0 t (13)

s2
¼ l

(2)
0 t (14)

and higher order terms are needed for higher cumulants only.
Since (5) takes x! 0, this permits a perturbative approach
similar to that used in quantum mechanics [14], with x

treated as a small parameter.

Specifically, we write Ĥ ¼ Ĥ
(0)
þ Ĥ

(1)P1
m¼1 (ix)m=m!

where (for the MM case)

Ĥ
(0)

A ¼
�k1S k�1 þ k2

k1S �(k�1 þ k2)

� �
, Ĥ

(1)

A ¼ k2

0 1

0 0

� �

(15)

and we truncate at m ¼ 2. We emphasise that this truncation
does not introduce any further approximation if one is
interested only in the first and second moments of the
product molecule distribution. The least negative eigenvalue

of Ĥ
(0)

is l
(0)
0 ¼ 0 (more precisely, Ĥ 0 is a propensity

matrix whose columns sum to zero, which means one of its
eigenvalues is zero and the rest are negative [8]), and the
higher order corrections are given by [14]

l(1)
0 ¼ ku(0)

0 jĤ
(1)
ju(0)

0 l (16)

l(2)
0 ¼ l(1)

0 � 2
X
j=0

1

l(0)
j

jku(0)
j jĤ

(1)
ju(0)

0 lj2 (17)

Noting (13) and (14), the rate of product formation V ¼ dknl/
dt and the Fano factor F ¼ s2/knl can now be written as

V ¼ l
(1)
0 (18)

F ¼ l(2)
0 =l

(1)
0 (19)

For the MM case (Fig. 1a), this gives

VA ¼ V max
A

S

S þ KA

(20)

FA ¼ 1� aA

S

(S þ KA)2
(21)

where V max
A ¼ k2, KA ¼ (k2 þ k�1)=k1 and aA ¼ 2k2=k1.

The expression for mean flux VA is well known [1], and KA
IET Syst. Biol., 2009, Vol. 3, Iss. 5, pp. 429–437
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is called the Michaelis constant; the expression for the Fano
factor FA is less familiar.

This procedure is fully extendible to other more complicated
enzyme-mediated reactions. The reaction scheme determines

the master equation and thus Ĥ
(0)

and Ĥ
(1)

. Specifically,

Ĥ
(0)

is given by the Markov transition matrix for the

enzymatic states (disregarding the n variable), and Ĥ
(1)

has a
1 marking every rate where the product gets created, and a
21 where it is destroyed. Then (18) and (19) give the
product formation rate and the Fano factor, and higher orders
in perturbation theory would provide more cumulants. To
illustrate the breadth of the method, in the next section, we
apply this procedure to three reaction schemes that include
multiple intermediate reaction steps.

2 Results: complex enzymatic
reactions
2.1 Product distribution statistics

Many enzyme-mediated reactions involve intermediate steps,
and it is instructive to illustrate our approach with three
prototypical examples, shown in Figs. 1b–d.

2.1.1 Reaction scheme B: Fig. 1b depicts a case in
which the complex undergoes an intermediate step, such as
a conformational change, before creating the product [15].
This kinetic scheme is also equivalent to certain ion
channels [5]. Such multistep enzymatic reactions have been
shown (including via our method here) to reduce noise in
chemical reactions [16]. The master equation describing
this system is

dPE
n

dt
¼ �k1SPE

n þ k�1PES
n þ k2PEP

n�1 (22)

dPES
n

dt
¼ k1SPE

n � (k�1 þ kþ)PES
n þ k�PEP

n (23)

dPEP
n

dt
¼ kþPES

n � (k� þ k2)PEP
n (24)

which yields

Ĥ
(0)

B ¼

�k1S k�1 k2

k1S �(k�1 þ kþ) k�

0 kþ �(k� þ k2)

0
B@

1
CA,

Ĥ
(1)

B ¼ k2

0 0 1

0 0 0

0 0 0

0
B@

1
CA (25)
Syst. Biol., 2009, Vol. 3, Iss. 5, pp. 429–437
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The product flux and Fano factor are then

VB ¼ V max
B

S

S þ KB

FB ¼ 1� aB

S(S þ K 0B)

(S þ KB)2

where V max
B ¼ k2kþ=(k2 þ kþ þ k�), KB ¼ (k2kþ þ

k�1 k�)=(k1(k2 þ kþ þ k�)), aB ¼ 2k2 kþ=(k2 þ kþ
and K 0B ¼ (k2 þ kþ þ k� þ k�1)=k1.

2.1.2 Reaction scheme C: Fig. 1c depicts a
which the enzyme exists in an inactive and an acti
The enzyme switches autonomously between thes
but can only react with the substrate in its activ
Note that in this case we have two isolated reaction
the enzyme remains in the active state when a pr
produced. This scheme can be interpreted as a to
for a voltage-gated ion channel that can only tra
single molecule at a time [17]. Alternatively, this
could be a model for the production–degradati
subsequent translation of mRNA (E�) by riboso
into protein (P). Finally, this is also an extreme m
an enzyme that has internal states with different
product formation, such as studied in [2]. For this
we can write the following master equation

dPE
n

dt
¼ �kþPE

n þ k�PE�

n

dPE�

n

dt
¼ kþPE

n � k�PE�

n þ k2PE�S
n�1 � k1SPE�

n þ k�1

dPE�S
n

dt
¼ �k2PE�S

n � k�1PE�S
n þ k1SPE�

n

which yields

Ĥ
(0)

C ¼

�kþ k� 0

kþ �(k� þ k1S) k�1 þ k2

0 k1S �(k�1 þ k2)

0
B@

1
CA,

Ĥ
(1)

C ¼ k2

0 0 0

0 0 1

0 0 0

0
B@

1
CA

The product flux and Fano factor are then

VC ¼ V max
C

S

S þ KC

FC ¼ 1� aC

S

(S þ KC)2

where V max
C ¼ k2, KC ¼ (kþþk�)(k2 þ k�1)=(kþk1

aC ¼ 2k2[1þ k�(kþ � k2 � k�1)=k2
þ]=k1. Note tha
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expressions reduce to those for the MM reaction [(20) and
(21)] for k� ! 0, since this limit corresponds to the
enzyme always being in the active state. Note also that
since aC can be negative, FC can be greater than 1 (and in
fact it is infinite in the limit of rare activation kþ ! 0)
because of the compounded noise from the independent
stochastic processes of enzyme activation and complex
formation. Under the interpretation of this scheme as
protein translation, F � 1 corresponds to many proteins in
a translation burst from a single rare mRNA.

2.1.3 Reaction scheme D: Fig. 1d shows a third
example of a more complex reaction scheme, in which an
active enzyme transforms a substrate into a product and, in
contrast to scheme C, returns to its inactive state in the
process. The enzyme must switch back to its active state for
a new reaction to occur. Similar dynamics have been found
for the b-galactosidase enzyme [2]. Alternatively, this can
be a model for an enzyme that transfers a phosphate group
to a substrate, and needs to reacquire a new phosphate
group before continuing to function as an enzyme. For this
scheme, we can write the following master equation

dPE
n

dt
¼ �kþPE

n þ k2PE�S
n�1 (34)

dPE�

n

dt
¼ kþPE

n � k1SPE�

n þ k�1PE�S
n (35)

dPE�S
n

dt
¼ k1SPE�

n � k�1PE�S
n � k2PE�S

n (36)

which yields

Ĥ
(0)

D ¼

�kþ 0 k2

kþ �k1S k�1

0 k1S �(k�1 þ k2)

0
B@

1
CA,

Ĥ
(1)

D ¼ k2

0 0 1

0 0 0

0 0 0

0
B@

1
CA (37)
4
The Institution of Engineering and Technology 2009
The product flux and the Fano factor are then

VD ¼ V max
D

S

S þ KD

(38)

FD ¼ 1� aD

S(S þ K 0D)

(S þ KD)2
(39)

where V max
D ¼ k2kþ=(k2 þ kþ), KD ¼ kþ(k2 þ k�1)=(k1(k2þ

kþ)), aD ¼ 2k2kþ=(k2 þ kþ)2 and K 0D ¼ (k2 þ kþ þ k�1)=k1.

Note that these expressions reduce to those for the MM
reaction [(20) and (21)] for kþ ! 1, since this limit
corresponds to the immediate reversion of the enzyme to
its active state following a product formation.

All four reactions in Fig. 1 use an enzyme to convert a
substrate into a product, but as we have derived using the
present method, the statistical properties of the product
molecule distributions differ among the cases.

2.2 Measurable differences between
reaction schemes

Since different reactions have different statistical properties, it
should be possible to use our methods and results to
differentiate among the underlying reactions based on
experimental observations. Here we demonstrate how basic
measurements can differentiate among the four reaction
schemes presented above.

The mean product formation rates V for all four reaction
schemes A, B, C and D shown in Fig. 1, (20), (26), (32)
and (38), are qualitatively similar functions of substrate
concentration S, and it would not be possible to
differentiate the schemes based on mean data alone (see
Fig. 2). Measurement of the Fano factor F [(21), (27), (33)
and (39)], however, can reveal qualitative and quantitative
features that can differentiate among these schemes, which
we outline here and summarise in Table 1.

First, a distinction is possible based on the asymptotic
value of F as the substrate concentration S saturates. For
Table 1 Bounds on experimentally measurable quantities that are useful in distinguishing among schemes for enzyme-
mediated reactions

A B C D

F(S! 1) 1 [1/2, 1] 1 [1/2, 1]

F� [1/2, 1] [1/3, 1] [1/2, 1) [1/3, 1]

S�/K 1 [1, 1) 1 [1, 1)

A, B, C and D refer to reaction schemes in Fig. 1. Star (�) denotes the extremum of the Fano factor, such that F� is the
minimum or maximum value and S� is the substrate concentration at which it occurs. K is the substrate concentration at
which product formation rate V is half-maximal. Generally speaking, minimum bounds on all three quantities occur when
forward reaction rates dominate backward rates, and maximum bounds occur when backward rates dominate forward rates;
see text for more details.
IET Syst. Biol., 2009, Vol. 3, Iss. 5, pp. 429–437
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reaction schemes A and C,

FA,C(S! 1) ¼ 1 (40)

whereas for reaction schemes B and D

FB,D(S! 1) ¼ 1� aB,D (41)

where aB and aD are defined following (27) and (39),
respectively. This expression has a minimum value 1/2 in
the limits k2 ¼ kþ � k� for B and k2 ¼ kþ for D. Thus a
saturation value of F that is significantly less than 1 offers
evidence for reaction scheme B or D over A or C (see Fig. 2).

Second, distinctions are possible based on the value F � at
the extremum of the Fano factor as a function of substrate
concentration S. For a MM reaction (case A), there is a
minimum

F �A ¼ 1�
aA

4KA

¼ 1�
1

2

k2

k2 þ k�1

(42)

which is always between 1/2 (for k2 � k�1) and 1 (for
k�1 � k2). Similarly, for reaction scheme C, we obtain

F �C ¼ 1�
aC

4KC

(43)

where aC and KC are defined following (33). This expression
also has a minimum value of 1/2 (for kþ � k� and
k2 � k�1), but, unlike in the MM case, it can become
larger than 1 if kþ(kþ þ k�) , k�(k2 þ k�1) (see Fig. 2).
Indeed, as mentioned, in the limit of rare activation
kþ ! 0, we find F � ! 1.

Depending on the kinetic rates, reaction schemes B and D
may or may not have a minimum of F for positive S (see
Fig. 2 for an example of each). When a minimum exists

F �B,D ¼ 1�
aB,D

4

K 0
2
B,D

KB,D(K 0B,D � KB,D)
(44)

where aB, KB and K 0B are defined following (27) and aD, KD,
and K 0D are defined following (39). This expression has the
minimum value 1/3 in the limit kþ ¼ k2 � k�1 for both
schemes (and additionally kþ � k� for B). In the reaction
scheme B, these limits reduce the system to a linear
irreversible three-step cascade; an L-step irreversible
cascade has minimum F� of 1/L in the analogous limits
[16]. Comparing with the MM minimum value of
F � ¼ 1/2, it is clear that a measured value of F � less than
1/2 is a strong indication that more than one intermediate
step is present. This is a commonly known result, and it
may be used by nature to suppress noise in natural
signalling systems such as phototransduction [16].

Lastly, distinctions can be made based on measurement of
S�, the substrate concentration at which an extremum in F
T Syst. Biol., 2009, Vol. 3, Iss. 5, pp. 429–437
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occurs. For cases A and C

S�A,C

KA,C

¼ 1 (45)

where KA and KC are defined following (21) and (33),
respectively, and, as in all four cases, K is the concentration
at which V is half-maximal. For cases B and D, on the
other hand (when there is a minimum)

S�B,D

KB,D

¼
K 0B,D

K 0B,D � 2KB,D

(46)

where KB and KB
0 are defined following (27) and KD and KD

0

are defined following (39). This expression is bounded from
below by 1 (e.g. for kþ � {k�, k2, k�1} for B, or for
kþ � {k2, k�1} for D), but can potentially be infinite (e.g.
for k� ¼ k�1 � {k2, kþ} for B, or for k�1 � k2 ¼ kþ for
D). This implies that if an extremum of the Fano factor
occurs at a substrate concentration significantly different
from that at which the mean product formation rate is
half-maximal, it is a strong indication that more than one
intermediate step is present.

Table 1 summarises these distinctions, and Fig. 2 showcases
the qualitative differences in the Fano factor curves among the
four reaction schemes caused by differences in the underlying
kinetics. For more complicated reaction schemes, such as
multiple substrate binding by the enzyme, modelled by a
high Hill coefficient, the Fano factor curve would gain even
more distinguishing features, such as additional extrema
and/or inflection points. We leave this as an exercise for
future q-bio Summer School students.

2.3 Extracting reaction rates from data

In addition to helping one distinguish among competing
reaction schemes, experimental measurement of the dose–
response curve V (S) and the Fano curve F(S) can be used to
determine the kinetic rates of the underlying biochemical
reactions. If the structure of the biochemical reaction is
known, analytical expressions for both curves in terms of the
kinetic rates and the substrate concentration can be obtained
using our method [see e.g. (20), (21), (26), (27), (32), (33),
(38), (39)] and can be fit to experimental data. Often times,
measurements of the qualitative features of both curves (such
as those highlighted in Table 1) are enough to extract the
kinetic rates; for more complex reactions a full fit to the data
would be necessary. Additionally, we note that performing
full fits of experimental data to the analytical expressions
may also help in the original task of distinguishing among
(or at least eliminating) different biochemical reaction
schemes.

The MM reaction is an example of a case in which
measurement of the qualitative features is enough to extract
all kinetic rates. However, it is important to note that in
order to do this, one needs both the dose–response curve
435
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and the Fano curve. In particular, one needs only to measure
the reaction rate at saturation V max

A , the substrate
concentration KA at which the rate is half maximal, and the
minimum value of the Fano curve F �A. Then, from (42)
and the expressions following (21), one obtains

k2 ¼ V max
A (47)

k�1 ¼
F �A � 1=2

1� F �A
V max

A (48)

k1 ¼
V max

A

2KA(1� F �A)
(49)

Instead of obtaining only k2 and a combination of k1 and k21

by measuring only the dose–response curve (as is
traditionally done for MM reactions), we now have
analytical expressions for all three rates.

For more complex reaction schemes, a similar analysis can
be performed to obtain analytical expressions for the kinetic
rates in terms of the experimental data. However, it can be
the case that not all rates can be determined unambiguously
from measurements of V and F (for the reaction scheme B,
for example, symmetries in the inverted expression imply
that measurements of V and F do not always uniquely
determine the five unknown kinetic rates). When
experimentally feasible, one may also compare higher
moments of the measured product molecule distributions
with those calculated via our method.

3 Discussion
In this paper, we have developed a novel, simple method for
calculating the first-order cumulants of the number of
complex chemical reactions that occur over a long time. We
have used this method to calculate these cumulants for a
handful of simple enzymatic schemes, providing results for
the reaction number averages and Fano factors that have
not, to our knowledge, appeared in the literature before.
Finally, we have argued that these results can be used by
experimentalists with access to measurements of
fluctuations of mesoscopic particle fluxes to disambiguate
different kinetic schemes, even if single-molecule
experiments, traditionally used for this type of work, are
impossible to perform.

To allow disambiguation of kinetic schemes by our
methods, one must be able to measure variances of product
fluxes. As our analysis shows, for simple schemes, the
variance is of the same order as the mean. That is, if n
product molecules are created on average, one would need
to measure fluctuations on the order of

ffiffiffi
n
p

, for a relative
measurement error of 1=

ffiffiffi
n
p

. For just 102 molecules, this
requires an experimental precision of better than 10%, and
this number falls quickly as the system size grows. Thus,
for disambiguation of kinetic schemes, we have tried to
6
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point out qualitative rather than quantitative distinctions,
which might be easier to measure experimentally.

Our method uses a perturbation theory approach analogous
to that encountered in quantum mechanics. Under this
approach, calculating cumulants of the distribution of
product molecules is equivalent to diagonalising a matrix
with dimensionality equal to the number of internal states in
the kinetic diagram of the reaction. Then obtaining the first
m cumulants of the reaction can be done by solving the
perturbation theory to mth order, which is straightforward.
In particular, the first two moments knl and s2 together
define the dose–response curve V ¼ dknl=dt and the Fano
factor F ¼ s2=knl. As both are currently measurable in a
variety of systems, comparing the calculated F to
experimental data can be used to identify the underlying
structure of molecular reactions.

We have applied this perturbation theory approach to four
different enzymatic reaction schemes, starting with the
simplest MM kinetics, and progressing to more complicated
kinetic schemes with internal states. We calculated the
dose–response curve and the Fano factor for each as
functions of the substrate concentration. Importantly, while
the dose–response curves for all of the considered reactions
are qualitatively similar, prominent qualitative features of the
Fano factor curve (such as its values at large substrate
concentrations, as well as the position and values at its
extremum) allow us to disambiguate the considered reaction
schemes. Performing detailed fits of the curves to
experimental data (when feasible) can be an ultimate test for
whether the underlying kinetic structure is known.

For the MM reaction, knowing just a handful of features of
the F(S) curve allows us to derive all three rates that
completely define the kinetic scheme, while the entire
dose–response curve is insufficient for this purpose. Similar
results hold for the reactions with intermediate steps, but
here the analytical treatment is more difficult, and often
qualitative properties of F alone do not define all of the
underlying kinetic parameters. Instead, a quantitative fit of
derived expressions for F(S) to experimental data would be
required.

We stress that the kinetic schemes analysed in this paper
are simple toy models only. However, extending our
analysis to more complicated schemes to derive the first few
cumulants of the product number distribution is not
difficult, and it can be automated with just a simple linear-
algebra solver. In particular, calculation of the Fano factor
for a signalling cascade as in [16] or for a complex network
of single protein confirmations [6] is straightforward. It
should be noted, however, that generating sufficient
experimental data to distinguish minute details of
competing kinetic schemes is not easy. Our approach
simplifies the problem somewhat since it does not require
single-molecule kinetic data, as in [2, 6], but it is based on
measuring a mesoscopic, fluctuating flux. Still, qualitative
IET Syst. Biol., 2009, Vol. 3, Iss. 5, pp. 429–437
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differences would ideally dominate the disambiguation task,
as emphasised with the toy models considered here.
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