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Advances in statistical learning theory have resulted in a multitude of
different designs of learning machines. But which ones are implemented
by brains and other biological information processors? We analyze how
various abstract Bayesian learners perform on different data and argue
that it is difficult to determine which learning–theoretic computation is
performed by a particular organism using just its performance in learning
a stationary target (learning curve). Based on the fluctuation–dissipation
relation in statistical physics, we then discuss a different experimental
setup that might be able to solve the problem.

1 Introduction

Learning based on experience (variously known as sensing, information
processing, or adaptation) is ubiquitous on all scales in biology. For ex-
ample, on the molecular scale, the Lac operon in Escherichia coli learns the
lactose concentration to produce β–galactosidase (the lactose–metabolizing
enzyme) in proper quantities (Cohn & Horibata, 1959). Similarly, in the sen-
sory system, the retinal phototransduction cascade uses the information in
the arrivals of photons to learn the instantaneous light intensity and thus
the current visual scene (Detwiler, Ramanathan, Sengupta, & Shraiman,
2000). Additionally, it also learns the ambient light level (to adapt to it) and
the temporal correlations (to estimate motion) (Reichardt, 1961; Bialek &
de Ruyter van Steveninck, 2005). On the scale of cellular (neuronal) net-
works, learning, memory, and adaptation in the neural code are textbook
knowledge see, e. g., Brenner, Bialek, & de Ruyter van Steveninck, 2000;
Fairhall, Lewen, Bialek, & de Ruyter van Steveninck, 2001). At yet larger
scales, experiments on rodents are revealing how they learn and respond
to changes in their environments (Gallistel, Mark, King, & Latham, 2001);
this is a simple, albeit quantifiable, example of the general phenomenon we
call “learning” in everyday life. Finally, we may also view evolution as an
example of learning, where entire species adapt to the world by means of
natural selection.
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The creativity of theorists matches that of nature, and the number of vari-
ous learning paradigms different in their goals, assumptions, methods, and
performance guarantees is astonishing—too large to enumerate here. Fortu-
nately, it is possible to build uniform foundations for many of these learning
machines (Vapnik, 1998; Nemenman, 2000; Bialek, Nemenman, & Tishby,
2001) and to find analogs among, say, structural risk minimization (Vapnik,
1998) and Bayesian (Press, 1989) models. However, while one might argue
that biological systems are (efficiently) implementing one of many abstract
learning–theoretic computations (Attneave, 1954; Barlow, 1959, 1961; Atick,
1992; Bialek et al., 2001), it is often unclear which exact computation is
performed in a particular case. For example, what is a learning–theoretic
model equivalent to a rat (Gallistel et al., 2001) or to a simple neural network
that tries to maximize its reward (Seung, 2003)? Answering such questions
may explain some of animal behaviors, uncover which assumptions they
make about the surrounding world, and establish quantitative limits on
their learning performance.

To attack the problem, one can construct a biologically plausible com-
puting machine with a known learning–theoretic equivalent (Rao, 2004)
and then search for a structural similarity with a real living organism.
We do not pursue this approach, but choose a more traditional route to
establish the equivalence: comparison of the performance of real crea-
tures to that of abstract learning machines. As we will argue, analysis
of paradigmatic learning curves is not always easy. Thus, one of the
most important results of the article is a suggestion of a new proto-
col for making such comparisons. The intuition behind the suggestion
comes from the famous fluctuation–dissipation theorem (Ma, 1985). Based
on this analysis and on plausible assumptions about statistics of natu-
ral stimuli, we also suggest that a particular learning–theoretic model
might be better suited for biological learning than the alternatives, and
thus it should be realized often in reality if optimization of learning is de-
sired.

To follow this route, we need to understand characteristics of learning
within different mathematical models fairly well, and a large part of the
article is devoted to this. Analysis is done in the framework of unsupervised
Bayesian learning of probability distributions since (1) evidently, Bayesian
paradigm is relevant in neuroscience (Kording & Wolpert, 2004), (2) different
learning frameworks are often equivalent, and (3) according to Bialek et al.
(2001), other learning problems usually can be reduced to unsupervised
learning of distributions. Much of this first part of the article is an abridged
review, which follows the spirit and the notation of Bialek et al. (2001) and
often prefers clarity to mathematical rigor. We do not try to make the review
self-contained, but instead want to elucidate and emphasize some important
points that might have been of lesser interest in other contexts and also
to present some novel results, mostly developed in the appendixes. After
these developments, we return to the main question of this work: How
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can one realistically determine an equivalent learning–theoretic model for
a biological organism?

2 The Basics of Learning

Learning machines should be powerful enough to explain complex phe-
nomena. However, when data are scarce, this power leads to overfitting
and poor generalization. Thus, a balance must be struck between the abili-
ties to explain and to overfit, and this balance will depend on the number of
data available. In accord, much of statistical learning theory (Jeffreys, 1936;
Schwartz, 1978; Janes, 1979; Rissanen, 1989; Clarke & Barron, 1990; MacKay,
1992; Balasubramanian, 1997; Vapnik, 1998; Nemenman, 2000; Bialek et al.,
2001) has been devoted to putting the famous paradigm of William of
Ockham, Pluralitas non est ponenda sine neccesitate, on firm mathematical
footing in various theoretical frameworks. In particular, in Bayesian formu-
lation (Press, 1989; Bernardo, 2003), we know now how proper Bayesian
averaging creates Occam factors that punish for complexity and weigh pos-
terior probabilities toward those estimates among a finite set of parametric
model families that have the best overall predictive power (Bialek et al.,
2001) but do not necessarily produce the best fit to the observed data. This
has been called Bayesian model selection.1

The waters get murkier in a nonparametric or infinite parameter setting
when the whole functional form of an unknown object is to be inferred.
Bayesian nonparametric developments generally parallel parametric ones,
and techniques of quantum field theory (QFT) help in computations (Bialek,
Callan, & Strong, 1996; Holy, 1997; Bialek et al., 2001; Cucker & Smale, 2001;
Nemenman & Bialek, 2002; Lemm, 2002). However, the exact relationship
between the two settings is unknown, and some results suggest subtle log-
arithmic differences between the cases (Hall & Hannan, 1988; Rissanen,
Speed, & Yu, 1992; Bialek et al., 2001).

We now review these and other Bayesian learning machines. We start
with an introduction of some important and useful quantities.

Suppose we observe independently and identically distributed (i.i.d.)
samples xi , i = 1, . . . , N. For simplicity, we assume that x is a scalar, but this
does not affect most of the discussion. We need to estimate the probability
density that generates the samples. A priori we know that this density,
Q(x|α), can be indexed by some (possibly infinite-dimensional) vector of
parameters α, and the probability of each parameter value is P(α). Then we

1 With the creationism–evolution tension mounting in teaching of biology in U.S.
schools, it is amusing to see how two friars, William of Ockham and Thomas Bayes,
teamed up with modern mathematicians to produce, in my view, the clearest formula-
tion of the theory of learning from past experiences. If this approach results in a better
understanding of biological designs, the situation will be even more peculiar.
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define the density of models (solutions) at a given distance (dissimilarity,
or divergence) D(ᾱ,α) = ε away from the unknown true target ᾱ, which
is being learned:

ρ(ε; ᾱ) =
∫

dαP(α) δ [D(ᾱ,α) − ε] . (2.1)

For Bayesian inference of probability densities, the correct measure
of dissimilarity is the Kullback–Leibler (KL) divergence, DKL(ᾱ||α) =∫

dx Q(x|ᾱ) log Q(x|ᾱ)
Q(x|α) (Bialek et al., 2001), which has an important

information–theoretic interpretation (Cover & Thomas, 1991). However, in
other situations, different choices of D can and should be made.

Performance of a Bayesian learner is usually measured by the speed
with which the posterior probability concentrates for N → ∞ (the learning
curve) and by whether the point of concentration is the true unknown target
(consistency). These characteristics illuminate the importance of ρ as it re-
lates to both of them. First, it has been proven that if for ε → +0, the density,
ρ(ε; ᾱ), is not zero, then the Bayesian problem is consistent (Nemenman,
2000; Bialek et al., 2001). Intuitively this is because, for large density, statis-
tical fluctuations of the sample and of the estimated parameters result in
small DKL(ᾱ||estimate), making convergence to the target almost certain.

Relation of ρ to the learning curve is more complicated. We can calculate
the average (over samples) Occam factor for a given target (the generaliza-
tion error, or the fluctuation determinant) to the leading order in 1/N:

D(ᾱ; N) ≈ − log
∫

dε ρ(ε; ᾱ)e−Nε . (2.2)

This is the term that emerges as the penalty for complexity in Bayesian model
selection (Balasubramanian, 1997; Bialek et al., 2001). If averaged over ᾱ,
the Occam factor becomes predictive information (Bialek et al., 2001), which
is the average number of bits that N samples provide about the unknown
parameters,

Ipred(N) =
∫

dᾱP(ᾱ)D(ᾱ; N). (2.3)

Finally, one can define the universal learning curve, which measures the
expected DKL between the target and the estimate after N observations
(Bialek et al., 2001). Up to the first order in the large parameter N, this is

�(ᾱ; N) ≈ dD(ᾱ; N)
d N

, (2.4)
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�(N) =
∫

dᾱP(ᾱ)�(ᾱ; N) ≈ d Ipred

d N
. (2.5)

Many of these quantities, especially Ipred, are also natural objects when
analyzing the complexity of a time series (Bialek et al., 2001).

3 Different Models of Learning

Since one of the goals of this work is to investigate if learning machines can
be discriminated by means of their learning performance, specifically �(N),
here we discuss how � depends on N for different scenarios.

3.1 Learning in a Finite Set of Parameters. Consider a setup where
α can take M discrete values a1, a2, . . . , aM with a priori probabilities
P1,P2, . . . ,PM, and their divergences from the target a1 are 0 = d1 <

d2 < · · · < dM. The density is ρ(ε; a1) = ∑M
i=1 Piδ(di − ε). For N → ∞, we

have

D(a1; N) = − log
M∑

i=1

Pi exp[−Ndi ] ≈ − logP1 − P2/P1 exp[−Nd2], (3.1)

�(a1; N) ≈ d2P2/P1 exp[−Nd2]. (3.2)

So exponential learning curves (and asymptotically finite D and Ipred) cor-
respond to learning a possibility in a finite set. Similarly, we can construct
models with �(N) ∝ 1/Nν, ν > 1, and they will also have asymptotically
finite Ipred.

3.2 Finite Parameter Learning. Now let the target probability density
Q(x|ᾱ), or a model, belong to a set of densities A, a model family, that can
be indexed by a vector of parameters α ∈ A, dimα = K < ∞, and ∀α ∈
A, P(α) > 0. Then if A is not compact, or if the KL divergence between ᾱ
and the boundary of A is larger than ε, then the density of solutions for such
K –parametric family is (Bialek et al., 2001)2

ρ(ε; ᾱ) ≈ P(ᾱ|r )
2π K/2

�(K/2)
ε(K−2)/2

√
detFK

, (3.3)

2 A different scaling dimension dK may appear in these formulas instead of K , the
number of parameters. For example, for a redundant parameterization, dK < K . Opposite
situations, dK > K and even dK → ∞, are also possible (Bialek et al., 2001).
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where

Fµν

K (ᾱ) = ∂2 DKL(ᾱ||α)
∂αµ∂αν

∣∣∣∣
α=ᾱ

. (3.4)

NFK is the Fisher information matrix (Cover & Thomas, 1991); its eigenvec-
tors are the principal axes of the error ellipsoid in the parameter space, and
the (inverse) eigenvalues are variances of parameter estimates along each
of these directions. The prefactor 2π K/2/�(K/2) is the area of the K-sphere,
and it has to be multiplied by the fraction of the sphere that is inside A if
the latter is (semi)compact. Equation 3.3 now gives

Ipred(N) ≈D(ᾱ, N) ≈ K/2 log N, (3.5)

�(N) ≈ �(ᾱ, N) ≈ K/(2N). (3.6)

The situation changes slightly if Q̄ �∈ A (here Q̄ is the target density),
and the prior assumptions about the world are wrong. Then we find the
best approximation to the target within A, α̂ = arg minα∈A DKL(Q̄||α), and
define the distance between Q̄ and A, DA(Q̄) ≡ DKL(Q̄||α̂) (this is similar
to the I-projection—Csiszar, 1975—but the order of arguments in DKL is
different). In this case, the model density is zero for ε ≤ DA(Q̄), and the
estimate concentrates near α̂ as N → ∞. Thus, if the radius of curvature of
A is much larger than ε and DA(Q̄) is also small, then equations 3.3 and 3.6
generalize to

ρ(ε; ᾱ) ≈
{
P(α̂) 2π K/2

�[K/2]
[ε−DA(Q̄)](K−2)/2√

detFK
, ε > DA(Q̄),

0, ε ≤ DA,
(3.7)

�(Q̄, N) ≈ DA(Q̄) + K/(2N). (3.8)

3.3 Nested Finite Parameter Models. Suppose now the target Q̄(x) that
generates the observations belongs to one of R model families, Ar , r =
1 . . . R, with Prob(Q̄ ∈ Ar ) = P(r ). Models in each of the families are indexed
by parameters α(r ), dimα(r ) = K (r ) < ∞, so that the density of observing
x in a given model is Qr (x|α(r )). Within each family, the parameters are a
priori distributed according to P(α(r )|r ).

We will assume that the families are nested. That is, Qr (x|α(r )) ≡ Q(x|α)
are independent of r , and in each family the values of αµ, µ > K (r ) are
identically zero. Further, the nonzero parameters have the same a priori
distributions in all families:

P(αµ|r ) =
{

p(αµ) , µ ≤ K (r )

δ(αµ) , µ > K (r )
(3.9)
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P(α|r ) =
R∏

µ=1

P(αµ|r ). (3.10)

Thus, a parameter αµ is switched on (or activated) when r reaches rµ ≡
minr {r : K (r ) ≥ µ}. Discussion of such nested models has been current in
Bayesian (Bernardo, 2003; Raftery & Zheng, 2003) and frequentist (Neter,
Kutner, Nachtsheim, & Wasserman, 1996) literature for many years. How-
ever, we are unaware of any comprehensive analysis relevant to the ques-
tions analyzed in our current presentation, such as those in appendixes A
to C.

If R → ∞, then we require that the union of all families forms a com-
plete set, so that every sufficiently smooth probability density can be ap-
proximated arbitrarily closely by some member of the union (if needed, this
definition can be made more precise).

For simplicity, in this letter we focus on3

p(αµ) =N
(
0, σ 2

µ

)
, (3.11)

σµ = cr−β
µ , β ≥ 0, c = const, (3.12)

where N (a , b) denotes a normal distribution with the mean of a and the
variance of b. In particular, β = 0 corresponds to the same in-family a pri-
ori variances for all active parameters. This is common when discussing
Bayesian model selection.

While these priors describe a set of parametric models, another view
is also possible. The joint distribution of r , α, and {x} is P({x},α, r ) =
Q({x}|α)P(α|r )P(r ), which results in

P({x},α) =
∑

r

Q({x}|α)P(α|r )P(r ) = Q({x}|α)
∑

r

P(α|r )P(r )

≡ Q({x}|α)P(α), (3.13)

where the last equation definesP(α), the overall prior overα. UnlikeP(α|r ),
P(α) is not factorizable and is not differentiable at zero for any αµ, µ >

K (1). Thus, the nested setup may be viewed as inference in a combined
model family with K (R) parameters. In particular, for R and K (R) → ∞,
the learning problem has a countable infinity of parameters leading to the
common assumption of equivalence with the nonparametric inference.

3 Nestedness, completeness, and normality of the priors are needed only for compari-
son with models discussed later; they are not essential for Bayesian learning.
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It is of interest to calculate the combined a priori mean and variance of
α. Integrating over all αν , ν �= µ, we get the combined prior for αµ:

P(αµ) = δ(αµ)
∑
r<rµ

P(r ) + p(αµ)
∑
r≥rµ

P(r ). (3.14)

By equation 3.11, the a priori means of all parameters are zero, and the
variances are

〈
δα2

µ

〉 = σ 2
µ

∑
r≥rµ

P(r ). (3.15)

Thus, the bare variance σ 2
µ is “renormalized” by the probability of being in

a family in which the parameter is nonzero. An interesting special case is

P(r ) ∝ r−γ , γ > 1, R → ∞, (3.16)

rµ = µ. (3.17)

Then the a priori variance gets a simple form:

〈
δα2

µ

〉 ∝ µ−β
∞∑

r=µ

r−γ ∼ µ−β−γ+1. (3.18)

Thus, 〈δα2
µ〉 depends as much on the bare variance as on the speed of decay

of P(rµ). This suggests that the learning properties of the nested setup will
depend equivalently on β and γ . In fact, as shown in appendix A, this is
not true: while behavior of p(αµ) is important, any reasonable choice of P(r )
does not affect success of the learning.

From equation 3.7, we can now evaluate the model density and the learn-
ing curve for the nested setup. For each value of ᾱ and r , we can find the
model α̂r = arg minα∈Ar DKL(ᾱ||α) that best approximates ᾱ in Ar , and de-
fine Dr (ᾱ) ≡ DKL(ᾱ||α̂r ), the distance between ᾱ and Ar . If ᾱ ∈ Ar , then
ᾱ = α̂r , and Dr (ᾱ) = 0. However, if ᾱ �∈ Ar , then Dr (ᾱ) > 0. We then have

ρ(ε; ᾱ) =
∑

r : Dr (ᾱ)≤ε

P(r )P(α̂r |r )
2π K (r )/2

�[K (r )/2]
[ε − Dr (ᾱ)][K (r )−2]/2√

detFK (r )
. (3.19)

The learning curve in this scenario strongly depends on the target. Let
ᾱ have r̄ active modes (with r̄ determined according to P(r̄ )), and let each
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of these modes have an amplitude ∼σ (that is, β = 0). Then Dr (ᾱ) is either
exactly zero (for r ≥ r̄ ) or large (for r < r̄ ). So equation 3.19 becomes

ρ(ε → 0; ᾱtyp;r̄ ) ∼
∑
r≥r̄

P(r )P(α̂r |r )
2π K (r )/2

�[K (r )/2]
ε[K (r )−2]/2√

detFK (r )
, (3.20)

where ᾱtyp;r̄ is a distribution typical in Ar̄ . This is dominated by r = r̄ , and
for N � K (r̄ ), the learning curve is

�(N) ≈ K (r̄ )
2N

. (3.21)

It is now clear that averaging over P(r̄ ) is not informative. Note also that
for N � r̄ , the learning curve goes through a cascade of K (r )/N behaviors,
1 ≤ r ≤ r̄ , and changes of the prefactor of the N−1 scaling correspond to acti-
vations of new parameters, which happen rather abruptly (see appendix A).

3.4 Nonparametric Learning. Nonparametric learning usually refers
to inferring a functional form of a probability density Q(x), or rather of
φ(x) ≡ − log Q(x), with some smoothness constraints on it. The constraints
may be in the form of bounding some derivatives of Q or φ, which was the
choice of Hall & Hannan (1988) and Rissanen et al. (1992).4 Alternatively, in
the Bayesian framework followed here, the constraints may be incorporated
into a functional prior that makes sense as a continuous theory, independent
of discretization of x on small scales. For x in one dimension, the minimal
and the most common choice is (Bialek et al., 1996; Aida, 1999; Nemenman
& Bialek, 2002; Lemm, 2002)

P[φ(x)] = 1
Z exp

[
−�2η−1

2

∫
dx

(
∂ηφ

∂xη

)2
]

× δ

[
1
l0

∫
dx e−φ(x) − 1

]
, (3.22)

where η > 1/2, Z is the normalization constant, and the δ-function enforces
normalization of Q. The hyperparameters � and η are called the smooth-
ness scale and the smoothness exponent, respectively. Fractional-order

4 These authors used histogramming density estimators, which have no hierarchy of
model families; this is especially true for Rissanen et al. (1992), who allowed locally vary-
ing bin widths. Therefore, these techniques cannot be referred to as nested parametric
methods. On the other hand, they allow an arbitrarily precise fit to any probability den-
sity and may require an arbitrarily large number of break points and density values for
complete specification. This is the reason for treating them as nonparametric.
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derivatives are defined by multiplying by the wave number to the appro-
priate power in the Fourier representation of φ (we assume periodicity on
[0, 1)).

This prior is equivalent to specifying a one-dimensional quantum field
theory (Bialek et al., 1996; Holy, 1997; Nemenman & Bialek, 2002; Lemm,
2002), and QFT methods have been successful in the analysis. In particular,
the maximum likelihood estimate of the distribution Q∗(x) ≡ exp[−φ∗(x)]
is given by the following differential equation,

�2η−1
R−2η

∂2ηφ∗(x)
∂x2η

− NQ∗(x) +
∑

i

δ(x − xi ) = 0, (3.23)

where the operator Rθ shifts the phase of each Fourier component of its ar-
gument by πθ/2.5 The equation shows that derivatives of φ∗ and Q∗ of order
2η − 1 have step discontinuities. Thus, for 2η = 1, the maximum likelihood
solution itself, φ∗(x), is discontinuous, and for 2η < 1, the singularities are
even more severe. We may characterize sample-dependent fluctuations in
Q∗ by DKL = ∫

dxQ∗
1(x) log Q∗

1(x)/Q∗
2(x), where Q∗

1 and Q∗
2 are maximum

likelihood solutions for different sample realizations. If Q∗ has at least step
discontinuities at the sample points and these points are random, then DKL

does not fall to zero as N grows. Therefore, the QFT setup becomes inconsis-
tent at η = 1/2, even though Bayesian formulation is proper, and the prior
can still be normalized by, for example, going to the Fourier representation.
This is in contrast to the nested setup, where normalizable priors guarantee
consistency.

Bialek et al. (1996, 2001) have calculated the ε → 0 model density and the
fluctuation determinant for different η’s. By noticing from equation 3.23 that
N and � can enter the solutions only in a combination N/�2η−1, we extend
their results and recover correct dependence not only on η (for η > 1/2) but
also on �:

ρ(ε; φ̄) ≈ A[φ̄] εξ exp
[
− B[φ̄]

�ε1/(2η−1)

]
, (3.24)

D(φ̄; N) ≈ C[φ̄]
(

N
�2η−1

)1/2η

, (3.25)

�(φ̄, N) ≈ C[φ̄]
2η �2η−1

(
N

�2η−1

)1/2η−1

. (3.26)

Here, ξ depends only on η, and A, B, and C are some known related func-
tionals that do not depend on �. These asymptotics kick in when N � 1/�.

5 For a comprehensive treatment of fractional differentiation, see Samko, Kilbas, and
Marichev (1987).
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In particular, for smaller N, � ∼ 1 and is barely decreasing. The dependence
of C[φ̄] on φ̄ may be significant (and, possibly, diverging for ill-behaved tar-
gets). However, from equation 3.24, the dependence on η near 2η − 1 → +0
is easier to analyze,

C[φ̄] ∼ (2η − 1)1/2η−1, (3.27)

with an undetermined value at 2η = 1. So for η → 1/2, D approaches ex-
tensivity in N and then becomes ill defined, again signaling inconsistency.
As discussed by Bialek et al. (2001), problems with D(N)/N → const are the
most complicated correctly posed learning problems that exist, and they
can be studied in the Bayesian QFT setting.

For comparison with the nested case (see appendix B), we may replace
φ by its Fourier series,

φ(x|α) ≡ − log Q(x|α) = α0 +
r∑

µ=1

(
α+

µ cos 2πµx + α−
µ sin 2πµx

)
, (3.28)

α0 = log
∫

dx exp

[
−

r∑
µ=1

(
α+

µ cos 2πµx + α−
µ sin 2πµx

)]
, (3.29)

with r → ∞ (finite r results in a finite parameter model). The last
equation enforces normalization,

∫
dx Q(x|α) = 1, and it is equivalent to

the constraint δ
( ∫

exp[−φ(x|α)]dx − 1
)

in the prior P(α|r ) or P[φ(x)].
Since the Jacobian of the transformation φ(x) → {α±

µ } is a constant, equa-
tion 3.22 amounts to zero-mean gaussian priors over α±

µ with the variance
(Nemenman & Bialek, 2002),

〈(
δα±

µ

)2〉 = 2
�2η−1

1

(2πµ)2η
, µ > 0. (3.30)

Equations 3.18 and 3.30 suggest that the nested and nonparameteric case
are similar: the a priori means of the amplitudes are zero, and the variances
fall off as power laws in µ. However, the field theory model requires the
variance to decrease at least as fast as 1/µ (recall that η > 1/2), while the
finite parameter case does not impose such constraints. This is an indication
of an essential difference between the models: in the nested case, the priors,
specifically the a priori variances of parameters, have less of an influence on
learning. This can be easily explained. QFT nonparametric models do not
have a sharp separation between active and passive modes. The modes with
low µ are determined by the data, but fluctuations for larger µ are inhibited
only due to the small a priori variances, equation 3.30. The exact attenua-
tion of the fluctuation depends on the values of η and �, and the cumulative
contribution to posterior variance of the estimator may be substantial. In
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contrast, for the finite parameter nested case, once the most probable model
family is determined, fluctuations of the higher-order parameters are inhib-
ited exponentially (see appendix A). The cumulative fluctuations are then
small and almost independent of the a priori parameter variances, and the
learning may succeed even for P(r ) with a long tail.

The dependence of the QFT model on the prior can be weakened by
treating � as an unknown random variable and averaging over it (Bialek
et al., 1996; Nemenman & Bialek, 2002) (similar averaging over η has not
yet been performed). This is akin to nesting of finite-dimensional models
and improves learning curves for a wide range of targets. On the other
hand, integration over � produces the theory that is not necessarily local in
φ(x), couples all of the Fourier amplitudes, and is difficult to compare to
the nested finite parameter setup directly. Therefore, we do not discuss the
averaging in what follows, but assume that the values of η and � used for
learning are the best for a particular target being learned.

3.5 Comparing the Performance. One of the goals of the letter is to
decide if learning curves can be used to distinguish which learning machine
is a good description of a particular biological system. To this extent, we need
to analyze responses of various learners to data that they are not expecting.
Thus, in this section, we derive learning curves for a finite parameter, a
nested (β = 0), and a QFT machine on data that is typical in the prior of
one of the two others. With mismatched data and expectations, the learning
curve cannot be optimal but may come quite close.

First, consider Q̄ taken from the QFT prior. The learning curve for the
finite parameter model is given by equation 3.8—a N−1 decay toward
some approximate target. Further, as shown in appendix C, the learning
curves for complete nested models, equation C.4, and for the QFT machine,
equation 3.26, which is the best possible machine for such data, differ only
logarithmically.

If instead we study a distribution that is typical in the nested case for some
r̄ (equivalently, a finite parameter distribution with K (r̄ ) parameters), then
a finite parameter model again gives equation 3.8. On the other hand, for
N � K (r̄ ), no complete learning machine can estimate all required unknown
parameters, and � does not have a well-defined scaling (Nemenman &
Bialek, 2002). The differences between the machines emerge for N � r̄ . The
nested machine eventually asymptotes to equation 3.21, and starts learning
at the rate of 1/N. However, the QFT setup performs differently: when
� → 0 and all r̄ modes are well approximated, the machine continues trying
to fit higher-order modes, which it expects to be present even though they are
not. This will result in the same fluctuation determinant as in equation 3.25,
switching to the usual asymptotic � ∝ (N�)1/2η−1 instead of the optimal
N−1.

So, surprisingly, when the target has a finite number of degrees of free-
dom, the nested setup is qualitatively faster than the QFT learning machine.
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4 Learning a Changing Target

One never needs to know the distribution that generated the data to an
infinite precision, and some ε > 0 approximation is usually enough. Further,
if learning in biological systems is stochastic, as argued, for example, by
Seung (2003), then ε is bounded from below by the noise variance. As shown
by Fairhall et al. (2001) and especially by Gallistel et al. (2001), convergence to
the “good enough” estimate happens so quickly that the transient learning
curves are difficult to resolve. Is the performance difference between the
nested and the QFT scenarios seen in the previous section important? And
can it be used to discriminate between the models?

4.1 Model Density and Variable Stimuli. Notice that often the target
itself changes while being learned. The ambient light intensity may be fluc-
tuating while our eye estimates it, or the variance of angular velocities mea-
sured by a fly motion-sensitive neuron can be varied by an experimenter
while the fly tries to adapt to it (Fairhall et al., 2001). In these cases, one has
to learn constantly to stay at the allowed ε–error, and then a faster learning
machine may be truly advantageous. However, even for a variable target,
the nested learner will not be helpful if a small change of the target pa-
rameters throws it back to a very large �, or the changing target may drift
to a region where r̄ is so large that the nested setup is not better than the
nonparametric one anymore.

To answer these concerns, instead of focusing on the density of solutions
as a function of the allowed error ε, we will keep ε fixed and vary ᾱ. For some
small ε, a schematic drawing of dependence of ρ on ᾱ+

1 and ᾱ+
2 with the other

parameters fixed at 0 is shown in Figure 1. In the nested case, there is a ridge
along α+

2 ≈ 0, where the density is, at least, ∼ 1/
√

ε larger than anywhere
else (cf. equation 3.19). The ridge comes from the prior, equation 3.13, for
ᾱ+

2 = 0 being singularly larger than for ᾱ+
2 �= 0, and the singularity is then

smoothed out by ε–approximation. In comparison, the nonparametric prior
has a bivariate normal shape, which, after ε–smearing, results in a weak
target dependency of ε–independent prefactors in equation 3.24; thus, ρ(ᾱ)
varies slowly.6

Figure 1 answers both of the concerns mentioned above. For a QFT ma-
chine, densities everywhere are comparatively small. So a small change of
the target means vast and slow relearning. In contrast, if, for a nested case,

6 The plots of P(ᾱ) and ρ(ε; ᾱ) have very different meanings. The volume under the
P(ᾱ) surface is fixed by normalization,

∫
dᾱP(ᾱ) = 1. Thus, high a priori probability on

any singular line, for example, α+
2 = 0, necessarily means a lower prior elsewhere. Such

considerations are the reason for no-free-lunch theorems (Wolpert, 1995). In the language
of the model density, the normalization condition is

∫
dε ρ(ᾱ; ε) = 1. However, there are

no constraints on the density integrated over ᾱ, and a large density for some target does
not necessarily result in a lower density elsewhere.
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Figure 1: Schematic density of models as a function of the target location.

ᾱ is in the large-density region, then there are many other models in the
vicinity. Small parameter changes likely leave the target close, and not much
needs to be relearned. Further, since the ridge drops off smoothly, models
in the vicinity of a large-density target also have large densities, and thus
are learned fast as well. Of course, this holds only when the target varies
mostly along a small set of directions, and density ridges are aligned with
those. Importantly, since at a finite ε, the ridge has a finite width, a perfect
alignment is not necessary.

We believe that many natural signals have such structure. For example,
in phototransduction, instantaneous intensity is determined by the statistics
of reflectivities of objects that come in the view and by the mean ambient
light intensity. The statistics barely change over long timescales, while the
mean intensity depends on, for example, clouds shading the sun and varies
a lot and rapidly. The photoreceptor may want to adapt to intricate details
of the distribution of reflectivities, but only after it accurately learns the
mean light level. A similar separation of timescales is observed in transcrip-
tional regulation, where, for example, changes in the lactose concentration
happen on the scale of minutes, while statistics of lactose bursts depend
on the environment and is constant for generations. In neuroscience, when



2020 I. Nemenman

estimating an angular velocity, a fly takes into the account the preceding
velocity variance (Fairhall et al., 2001), but it may not have time for reaction
to higher-order moments. Thus, we believe that many natural learners that
have a need to learn fast, but also to be able to learn a very wide class of
models accurately on longer timescales, will be organized as nested learning
machines with the density ridges approximately adjusted to fast variable
directions.

4.2 Fluctuation-Dissipation and Determining the Model. The predic-
tion in the last section brings us back to the main question of this work: How
can an underlying learning–theoretic computation be inferred? For many
reasons, analysis of learning curves is not always a good idea. First, learning
may happen so fast that resolving it might present a problem (Gallistel et al.,
2001). Second, to estimate �(N) reliably, we need to average, and a com-
plete instance of the learning curve is just one sample. Such averaging may
require prohibitively long experiments. Third, it is well known that animals
adapt. Thus, eliciting the same response to the same target requires large
intertrial time delays, further increasing the experimental duration. These
problems can be traced to learning being an inherently transient behavior,
and they might become less severe if we can characterize learning machines
by some stationary response properties. A hint comes from the fluctuation–
dissipation theorem in statistical physics (Ma, 1985), which states that if
a system fluctuates in the presence of a linear dissipative restoring force,
then the variance of fluctuations (a stationary property) is linearly related
to the dissipation coefficient (a feature of the transient response). In our
case, we may hope that response to a variable target (fluctuations) reveals
information about the learning curve (dissipation).

In view of this suggestion, let us now analyze a few examples of a variable
target learning.7 We now denote by α an estimate of ᾱ averaged over many
presentations of the same data. We keep almost all parameters fixed (or
changing very slowly), while ᾱ1(t), which is approximately the direction of
the ridge in the density of solutions, is allowed to vary. If data are observed
for a long time, then ᾱµ ≈ αµ for µ �= 1 (provided ᾱ = α̂). Now remember
that � is the expected KL divergence between ᾱ and α, which converges to
the χ2 distance when it is small. Thus, if ᾱ1 − α1 is not large,

� ∝ (α1 − ᾱ1)2. (4.1)

7 It is clear that stretching the theory of learning a fixed target to the fluctuating case may
hide many potential pitfalls. We do this because we are unaware of any comprehensive
treatments of the latter problem, though some progress is being made (cf. DeWeese &
Zador (1998); Atwal & Bialek (2004).
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For a fixed target and � → 0 (that is, for N → ∞, α̂ = ᾱ), all learning
curves we studied can be summarized as

∂�

∂ N
= −ζN�ν. (4.2)

Here, in particular, ν = 1 corresponds to a finite set of solutions along the
direction of α1, ν = 2 is the finite–parameter or nested case, and ν = 3 is
the η = 1 QFT model. In principle, other values of ν ∈ (0; ∞) are possible.
The constant ζN ∼ 1 depends on the details of the learning setup. For exam-
ple, for parametric cases, ζN = 2/K (r̄ ).

For equation 4.2, which is manifestly true for a fixed ᾱ, to also hold
in the fluctuating target case, the learning machine must quickly notice
the target’s variation and disregard old samples as soon as they become
outdated. Gallistel et al. (2001) show that a rat reacts to changes in the
reward rates as fast an ideal detector would. Therefore, this assumption is
reasonable for biological systems.8

If measurements are taken at a fixed rate, so that d N/dt = const, we can
combine equations 4.1 and 4.2 to get

d�

dt
= −ζ sign(�) |�|2ν−1 − vᾱ , (4.3)

where � = α1 − ᾱ1 is the average error of the estimation, ζ is some un-
known constant with the dimensionality of 1/t and is basically the scaled
sampling rate, and vᾱ is the drift velocity of the target. Equation 4.3 is a clear
example of a dissipative system, and it has many analogs in the theories of
classical and quantum dissipation (Weiss, 1995). Note also that unlike in
the fluctuation-dissipation analysis in statistical physics, the spectrum of
fluctuations, vᾱ , is not necessarily white and can be controlled by an ex-
perimentalist, potentially providing more ways to probe the underlying
dissipative dynamics.

If the target’s variation cannot be learned (incomplete or mismatched
machine), then equation 4.3 still holds. However, because of equation 3.8,
we now have � = α1 − α̂1 (recall that α̂ is the best approximation to the
target by a particular learning machine). Thus, to trace the evolution of α1

using equation 4.3, one would need to evaluate α̂(ᾱ), which can be done
from the stationary target analysis. Further, if the target varies along many
learnable directions, then for each such direction, we have an analog of
equation 4.3, possibly with different ξ . So the dynamics of � is still given

8 We leave aside important comments by DeWeese and Zador (1998), who argued that
time needed to notice a change may be not invariant with respect to the direction of the
change.
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by equation 4.2 with forcing, but the dissipation constant depends on the
number of varying parameters.

Let us now consider a few different examples of vᾱ . If vᾱ = A is a constant,
then asymptotically for t → ∞, setting d�/dt = 0, we find

� → �∞ = −
(A

ζ

)1/(2ν−1)

. (4.4)

The ratio vᾱ/ζ must be � 1; otherwise, � is outside the � → 0 asymptotic,
for which equation 4.2 is valid. Thus, for small drifts, setups with smaller ν

win qualitatively.
It is also of interest to consider the situation when ᾱ1 undergoes a Brow-

nian motion, 〈vᾱ(t)vᾱ(t′)〉 = � δ(t − t′). Writing the Fokker-Planck equation
for this Langevin dynamics, we easily find the stationary distribution of �,

P(�) = ν

�
( 1

2ν

) (
ζ

ν�

)1/(2ν)

exp
{
−ζ |�|2ν

ν�

}
, (4.5)

which results in the root mean square (rms) fluctuations

�rms =
{

ν1/ν
�

( 3
2ν

)
�

( 1
2ν

)
}1/2 (

�

ζ

)1/(2ν)

. (4.6)

Again, these results are true only if �rms � 1, and again smaller ν provides
for better trailing of the target.

Finally, inspired by Fairhall et al. (2001), let us examine the case of a peri-
odic motion of ᾱ1 and take, for simplicity, ᾱ1 = A sin ωt and vᾱ = Aω cos ωt.
Now equation 4.3 does not have a simple solution. However, we search
for an asymptotically periodic �(t) with the same angular frequency of ω.
Therefore, if we multiply equation 4.3 by cos ωt, integrate over a full period,
and exchange the order of the differentiation and the integration, we get

d〈� cos ωt〉
dt

= −ζ 〈sign(�) |�|2ν−1 cos ωt〉 − Aω〈cos2 ωt〉, (4.7)

where 〈. . .〉 denotes averaging over the period. Since we are looking for
stationary oscillations, time derivative applied to any average is zero. This
gives

〈sign(�) |�|2ν−1 cos ωt〉 = −Aω

2ζ
. (4.8)
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Now multiplying equation 4.3 by sign(�) �2ν−1 and averaging again results
in

〈|�|4ν−2〉 = (Aω)2

2ζ 2 , (4.9)

which is the same scaling as in equation 4.4. However, now we also have a
dependence on ω.

There are other cases that can be analyzed, such as a step jump in the tar-
get, ᾱ1, its square wave modulation, or its diffusion in a potential (Ornstein-
Uhlenbeck process). Interestingly, the last two of these cases were used
experimentally by Fairhall et al. (2001). However, we leave the analysis
for the future, when it will be answering some specific question and will
not be just a mathematical exercise. Even with the three examples already
discussed, it is clear that letting the target move maps the scaling of the
learning curve into a stationary property (e.g., variance of the estimation
error), which might be easier to analyze experimentally.

5 Discussion

We have shown that with a moving target, transient learning curves are
replaced by different scaling dependences of the estimation errors on the
amplitude of the target’s motion. This effect is stationary and may be easier
to observe experimentally. However, since we do not have a comprehensive
theory of variable target learning yet, a few precautions are in order when
designing and analyzing experiments along these lines:

1. Target velocities must be kept small so that the asymptotic analysis
presented in this work holds.

2. The analysis is valid only when the learner forgets past observations as
soon as the target changes appreciably. Learning will be much slower
if such outdated samples are kept.

3. When varying the stimulus, we have to be reasonably sure that the
animal only tracks it, and does not predict it. White noise vᾱ or a
multiparameter representation of the target in terms of the position,
velocity, or acceleration, for example, might be a solution.

4. Finally, we have to keep in mind that in a behaving animal, learning a
change in a signal and reacting to it may be separated by a long delay,
and special care is needed to observe the former, but not the latter.

This being said, it nevertheless is possible that all these and other disad-
vantages will be outweighed by the ability to determine the correct learning–
theoretic model of the organism by varying the amplitude and the nature
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(say, stochastic or periodic) of the target’s motion and studying typical re-
sponses as functions of these parameters.

Consider, for example, the experiment described in Figure 4 of Fairhall
et al. (2001). There, the input signal (the standard deviation of the angular
velocity, σ (t)) undergoes a finite variance �2 and a finite correlation time τ

random motion. The instantaneous neuron firing rate r (t) is the estimate of
σ (t). Repeating exactly the same randomly generated stimulus many times
and averaging over spike trains, one may estimate r (t) and, consequently,
the rms estimation error �rms = 〈(σ (t) − r (t)2〉1/2

t . Studying dependence of
�rms on � and τ along the lines of equation 4.6, one can estimate ν. Any
ν �= 2 uniquely determines the underlying computational model. For ν = 2,
to distinguish a usual finite parameter model from the one that is nested,
one makes the signal multidimensional (other parameters of the angular ve-
locity, such as the mean and the skewness, vary together with σ ). For at least
some signal extensions, the nested model will change the magnitude (but
not the scaling) of �rms since ζ ∝ 1/K (r̄ ). In contrast, the simpler model will
keep the same prefactor but will be converging only to an approximation
of the target.

In the cognitive experiments of Gallistel et al. (2001), a rat was trying
to learn reward rates on different terminals and match its foraging habits
correspondingly. It was determined to be an ideal change detector. To build
a more detailed model of the animal, one can vary the reward rates con-
tinuously, repeat experiments many times, and then look at the average
mismatch between the stimulus and the response. Then dependence of the
mismatch on the parameters of the rate changes will point to a proper class
of learning–theoretic models to compare the rat to. Similarly, one can do
this type of analysis on artificial neural networks designed explicitly to
model particular animal behavior (Seung, 2003); this will build connections
between network architectures and types of inference tasks performed by
them.

Another conclusion of our work is that the nested setup may learn faster
than the QFT one under some conditions. Thus, if one desires a complete
learning machine, a nested machine should be built unless there is some
specific reason to do the opposite (such as knowing that the world is un-
likely to have sharp cutoffs). With experiments along the lines suggested
above, this prediction should be testable. We should be able to see if our
intuitive beliefs about appropriate complexities of learners for particular
tasks match nature’s choices. It would also be interesting to study if struc-
tural characteristics of a learner are correlated with its learning-theoretic
description. That is, could it be that modular, irregular networks, like those
seen in biochemistry, often compute like parametric or nested machines?
And could layered, regular networks in our brains, which are believed to
be able to solve the most complicated learning problems, be realizing QFT
machines instead?
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Appendix A: Model Family Selection in the Nested Setup

Inference in Bayesian i.i.d. setup is quite standard (Press, 1989; Bialek et al.,
1996; Balasubramanian, 1997; Bernardo, 2003; Raftery & Zheng, 2003), and
the nested case is not very different. For example, a posteriori expectations
of parameter values are given by a derivative of the posterior moment gen-
erating function (or the partition function), Z(J):

〈αµ〉 = ∂

∂ Jµ

∣∣∣∣
J=0

log Z(J) , (A.1)

Z(J) ≡
∫

dαP(α) e−L(α)+J·α (A.2)

=
∑

r

P(r )Zr (J)r , (A.3)

Zr (J)r ≡
∫

d K (r )α e−Lr (α)+∑K (r )
µ=1 Jµαµ , (A.4)

L(α) ≡
N∑

i=1

φ(xi |α), (A.5)

Lr (α) ≡ −
K (r )∑
µ=1

log p(αµ) +
N∑

i=1

φ(xi |α), (A.6)

φ(x|α) ≡ − log Q(x|α). (A.7)

The posterior expectations are thus determined by the properties of the Z(J),
which can be calculated using the saddle point analysis for N � 1. This is
difficult for the first form of Z(J), equation A.2, due to the singularity at
αµ = 0 (the singularity was also the reason that we left P(α) out of the com-
bined Lagrangian, equation A.5). Hence, we return to the nested form, equa-
tions A.3 and A.4, but the equivalence between the representation should be
kept in mind. Exchanging the order of integration and summation in equa-
tions A.2 and A.3 and similar is possible if the priors decay sufficiently fast
at r → ∞, or are regularized with regularization lifted after averages are
calculated. Unless mentioned otherwise, this is always assumed.

The expectation of αµ in the model families with K (r ) < µ is necessarily
zero, and a similar bias toward smaller magnitudes of parameters will be
present when we average over families. Therefore, the a priori decrease of
the variances with µ, equations 3.15 and 3.18, will persist a posteriori for
finite N. This is the famous James and Stein (1961) shrinkage.

The saddle point, also called classical or maximum likelihood, values of
parameters in each family, α∗

r ≡ {α∗
µ;r }, and the second derivatives matrix
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at the saddle, Fr , are determined by (remember that α∗
µ;r ≡ 0 for µ > K (r ))9

∂Lr (α)
∂αµ

∣∣∣∣
α=α∗

r

= 0 , µ ≤ K (r ) , (A.8)

∂2Lr (α)
∂αµ∂αν

∣∣∣∣
α=α∗

r

= F
µν
r , µ, ν ≤ K (r ). (A.9)

To the first order in 1/N, this gives

Z(J) =
∑

r

P(r )
P(α∗

r |r )(2π )K (r )/2

NK (r )/2 det1/2 Fr
N

Q({x}|α∗
r ) e

1
2 Jr F

−1
r Jr +Jr ·α∗

r , (A.10)

where µ ≤ K (r ) components of Jr are the same as those of J, and all higher-
order components are zero. Differentiating, we get:

〈αµ〉 =
∑R

r=1 α∗
µ;r e−L(r )∑R

r=1 e−L(r )
, (A.11)

L(r ) ≡ − logP(r ) −
K (r )∑
µ=1

log p(α∗
µ;r )

+
N∑

i=1

φ(xi |α∗
r ) + K (r )

2
log

N
2π

+ Tr log
Fr

N
. (A.12)

For finite R and β = 0, this is the usual Bayesian model family selection:
a posteriori expectations are weighted sums over posterior probabilities of
families defined by e−L(r ). This posterior includes the negative maximum
likelihood term,

∑N
i=1 φ(xi |α∗

r ), which grows in magnitude linearly with N
but decreases as r grows due to nestedness. It also incorporates the fluctua-
tion determinant K (r )

2 log N
2π

+ Tr log Fr
N , which grows logarithmically in N

but increases with r . Depending on the value of N, there will be some r∗, for
which L(r ) is minimal. For large N, as a discrete analog of the saddle point
argument, this value will dominate the sums in equation A.11, and hence
some model family will be “selected.”

However, equations A.11 and A.12 become more interesting if one lets
R → ∞. The completeness condition ensures that for large enough r , one
will be overfitting the data, and Q(x|α∗

r ) → 1/N
∑

δ(x − xi ). Therefore, if

9 There are possibilities of more than one saddle point and of other anomalies. This
was analyzed by Bialek et al. (2001). The conditions to prevent such problems are mild,
and we assume them to hold in what follows.
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the sums are dominated by r → ∞, then consistency breaks and the learn-
ing fails. One would thus expect two features to influence the success of
the learning. First, it is the prior P(r ), which switches on extra degrees of
freedom: for slowly decaying priors, one would expect r → ∞ terms to win.
Second, it is the dependence of the likelihood term on r , which measures
how capable are the newly activated degrees of freedom of overfitting, or,
equivalently, how fast maxi Q(xi |α∗

r ) grows.
From equation A.12 it is easy to see that large r will have an exponentially

small weight in the posterior probability if

lim
r→∞

N maxi log Q(xi |α∗
r ) + logP(r )

K (r ) log N
= 0. (A.13)

Under this condition, Q(x|α∗) will eventually approach the correct distri-
bution but not the sum of δ–functions. Colloquially, equation A.13 requires
the explanatory capacity of the new, high-order degrees of freedom to be
small enough so that keeping them always “on” does not make sense. This
criterion, which we have not seen explicitly presented anywhere before,
is similar to the consistency condition of the structural risk minimization
(SRM) theory, which requires that the Vapnik–Chervonenkis dimension, the
SRM capacity measure of the selected model, grows more slowly than the
number of samples to be explained (Vapnik, 1998; Nemenman, 2000).

As an example, let us analyze how the condition in equation A.13 may be
violated for K (r ) ∼ r . In this case, P(r ) must be superexponential to be rele-
vant for finding r∗. Thus, it is not required to decay at some minimal speed
as might have been expected, though a need to exchange the order of inte-
grations and summations in arriving at equation A.12 may still force that.
Due to light tails and small effective support, exponentially decaying priors
are not very interesting, so we disregard the prior term in equation A.13.
Then for a fixed large N, a finite r∗ will be dominant if log Q(xi |α∗

r )/r → 0.
That is, the growth of the δ function-like peaks of the maximum likelihood
distribution should be superlinear in K , the number of parameters in the
model family, in order for r∗ → ∞ and Bayesian setup to be inconsistent.

Appendix B: Fourier Polynomials Nested Model

To compare nonparametric and finite parameter nested scenarios directly,
we analyze the following example. Consider families of probability distri-
butions periodic on [0, 1) and with the logarithms of the distributions given
by Fourier polynomials of degree r < ∞, as in equation 3.28. Due to the
normalization condition, equation 3.29, the number of parameters in the
r th model family is K (r ) = 2r . With an appropriate choice of priors, equa-
tions 3.9 and 3.10, these families form a nested set, and the completeness
for R → ∞ follows from the Fourier theorem.
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The classical solution for this parameterization is (1 < µ ≤ r )

α∗±
µ

σ 2
µ

+
∑

i

(
cos
sin

)
2πµxi − N

∫
dx Q(x|α∗)

(
cos
sin

)
2πµx ≡

α∗±
µ

σ 2
µ

+ N
2

�±
µ − N

2
Q∗±

µ = 0 . (B.1)

Here, Q±
µ are the cosine (sine) amplitudes of the µth mode in the Fourier

expansion of Q(x|α), and �±
µ are the same for the empirical probability

density, 1/N
∑

δ(x − xi ). �±
µ are also the stochastic Fourier transform of

Q(x). The cosine–cosine components of the second derivative matrix at the
saddle point are

∂2L
∂α+

µ ∂α+
ν

∣∣∣∣∣
α=α∗

= δµν

σ 2
µ

+ N
∫

dx Q(x|α∗) cos 2πµx cos 2πνx

−N
∫

dx Q(x|α∗) cos 2πµx
∫

dy Q(y|α∗) cos 2πνy (B.2)

= δµν

σ 2
µ

+ N
4

(
Q∗+

µ+ν + Q∗+
µ−ν

) + N
2

Q∗+
µ Q∗+

ν , (B.3)

and the sine-sine and the sine-cosine components are written similarly. This
matrix is provably positive definite. Thus, for N → ∞, we can perform the
saddle point analysis.

For β = 0, the variance σ 2
µ is constant, and we can neglect the first term

in equation B.1 in the limit of large N. This leads to the following solution
of the saddle point equations:

Q∗±
µ ≈ �±

µ, µ = 1, . . . , r. (B.4)

For β > 0, Q∗±
µ will be corrected by a systematic β-dependent bias, which

will tend to 0 for fixed µ as N grows. This will decrease the posterior variance
of the estimator Q∗.

Equation B.4 says that the first r pairs of coefficients α∗±
µ are such that the

corresponding Fourier amplitudes of the classical solution Q∗ match those of
the empirical one. By Nyquist theorem and the law of large numbers, for r <

N/2, �±
µ approach the Fourier amplitudes of the unknown target probability

density Q̄. Thus, the low-frequency modes will be learned well. However,
if r > N/2, the saddle point solution will start to overfit and develop δ-like
spikes at each observed data point. This is in accord with the observation we
have already mentioned: to guarantee consistency, the capacity of models,
as measured by either the VC dimension or the scaling dimension of Bialek



Fluctuation-Dissipation Theorem and Models of Learning 2029

et al. (2001), which in this case is equal to the number of free parameters,
must grow slower than N.

To avoid overfitting when averaging over r , we must make sure that the
contribution of r → ∞ to the posterior log probability, equation A.12, is neg-
ligible. In this regime, according to equation B.4, the r available modes will
create peaks of height ∼ r (recall the Fourier expansion of the δ–function)
at the observed sample points. With K (r ) = 2r , this ensures consistency by
satisfying equation A.13.

Further, we can prove that r∗ is not only finite, but actually grows sub-
linearly in N, again paralleling results for SRM (Vapnik, 1998) and their
Bayesian equivalent (Nemenman, 2000). Suppose r � N dominates the pos-
terior. Then, for a slowly decaying P(r ), equation A.12 can be rewritten as

L(r ) ∼ −N log r + r log N. (B.5)

This is minimized (and the posterior probability is maximized) for r∗ ∼ N
log N ,

and higher values of r are exponentially inhibited. Thus, the assumption of
r � N being dominant is incorrect, and the posterior probability is domi-
nated by r∗ ∼ N for all reasonable priors. This is, of course, the worst-case
estimation, and in many typical applications the value of r∗ is even lower.

Appendix C: Fourier Nested Model and QFT Targets

As shown above, r∗ that minimizes equation A.12 for a Fourier nested
setup is much smaller than N. This is true for any target, including QFT–
typical targets. For r of such magnitude, the first r modes of the target
are well approximated by the estimate, and they contribute O(r/N) to the
leading data-dependent term in equation A.12. The modes of the target
above the r th are not fitted by the estimate, and each of them contributes
its variance of about �−2η+1µ−2η to the data-dependent term, adding up
to

∑∞
µ=r+1 �−2η+1µ−2η ∝ (r�)−2η+1. Combined with the fluctuation determi-

nant, this gives

L(r ) ∼ −N(r�)−2η+1 + r log N (C.1)

for determining the most probable r . Thus, for N � 1 (or � � 1),

r∗ ∝
(

N
log N

)1/2η

�1/2η−1 , and (C.2)

D∝ N1/2η

(
log N

�

)1−1/2η

. (C.3)
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� ∼
(

log N
N�

)1−1/2η

. (C.4)

Due to the many simplifications made here, the exact form of the logarith-
mic terms in these expression is questionable,10 and, in practice, they are
impossible to observe for realistic N due to the target-dependent prefactors
in front of the universal scaling term and various statistical fluctuations.
However, the power law in equation C.4, which is definitely correct, sug-
gests that the performance of the nested model is comparable to that of
the true QFT one. In particular, the nested learning machine also can solve
arbitrarily complex inference problems.

A rigorous way to estimate performance of the nested learning on
a nonparametric target is to calculate 〈ρ(ε)〉 = ∫

dᾱP(ᾱ)ρ(ε; ᾱ), where
ρ is of the form equation 3.19, and the averaging is done over the
QFT prior, and then calculate D and � from this averaged ρ. This
is difficult, and instead we may choose to replace 〈ρ(ε)〉 by ρ(ε; ᾱtyp),
where ᾱtyp is a typical target in the nonparametric prior, equation 3.22.11

For such ᾱtyp, Dr (ᾱ) ∼ ∑
µ>r �−2η+1µ−2η ∝ (�r )−2η+1. Further, P(α̂±

µ;typ|r ) ∼
exp[−0.5 µ−2η�−2η+1/σ 2

µ]. In our case, σ 2
µ ∼ µ−2β . Therefore, for 2(η −

β) > 1, which is satisfied for η > 1/2 and β = 0, this gives P(α̂r |r ) ∼
exp

[
− ∑r

µ=1 µ−2η�−2η+1/σ 2
µ

]
∼ exp

[
C1 − C2r−2(η−β)+1

]
, where C1 and C2

are constants. For large enough r , this whole expression tends to a constant.
Thus, combining with equation 3.19, we get

ρ(ε; ᾱtyp) ∼
∑

r : r−2η+1≤ε

P(r )
2π r

�(r )
[ε − (�r )−2η+1](r−1)√

detFK (r )
. (C.5)

10 If a certain derivative of the target distribution satisfies some Lipschitz conditions,
then the Occam factor and the learning curve for histogramming density estimators prov-
ably have logarithmic contributions (Hall & Hannan, 1988; Rissanen et al., 1992). In con-
trast, logarithmic corrections for QFT models and for parametric learning of QFT–typical
targets have not yet been analyzed. However, the logarithmic differences between the
cases have been expected: in discrete case, β = 0, once we know K ∗ ∼ Nω , each of K ∗
parameters is free to vary with the same variance, giving familiar Nω log N fluctuations.
For the nonparametric case, σµ < σν for µ > ν. Thus, each next parameter varies less,
somewhat decreasing the total fluctuations (Bialek et al., 2001).

These logarithmic terms have the same roots as the difference between cross-
validation, bootstrap, and Akaike’s model selection criterion, on one hand, and Dawid’s
prequential statistics and Bayesian model selection, on the other (Stone, 1977; Dawid,
1984). There, the difference in the magnitude of the prediction error is also due to most of
the parameters that are active at a given N being latent for smaller sample sizes.

11 The benefit 〈ρ(ε)〉 provides over ρ(ε; ᾱtyp) is knowing the prefactors in D and �. We
do not believe that any of the priors studied in this work will be exactly realized in nature.
Therefore, calculation of 〈ρ(ε)〉 is not a priority.
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If P(r ) is subexponential as before, we get ρ to the leading order in small ε

by calculating the sum in equation C.5 using the saddle point analysis and
taking just the zeroth-order term. The saddle value for r is r∗ ∼ ε−1/(2η−1)�−1,
which gives

ρ(ε; ᾱtypical) ∼ εε−1/(2η−1)�−1
, (C.6)

with the first subleading term of O
(
exp

[−ε−1/(2η−1)�−1
])

. Doing the
leading-order evaluation of the integral in equation 2.2, we now get ε∗ ∼(
N�/ log N

)1/2η−1, which again results in equation C.3.
In summary, learning a distribution typical in the nonparametric model

by means of the nested setup results in, at most, a logarithmic performance
loss.
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