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Pumped Biochemical Reactions, Nonequilibrium Circulation, and Stochastic Resonance
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Based on a master equation formalism for mesoscopic, unimolecular biochemical reactions, we show
the periodic oscillation arising from severe nonequilibrium pumping is intimately related to the periodic
motion in recently studied stochastic resonance (SR). The white noise in SR is naturally identified with
the temperature in the biochemical reactions; the drift in the SR is associated with the circular flux in
nonequilibrium steady state (NESS). As in SR, an optimal temperature for biochemical oscillation is
shown to exist. A unifying framework for Hill’s theory of NESS and the SR without periodic forcing is
presented. The new formalism provides an analytically solvable model for SR.

PACS numbers: 82.40.Bj, 05.40.Ca, 05.70.Ln, 87.16.Nn
Chemical reactions under nonequilibrium steady state
(NESS) are fundamental to living organisms [1–4].
Biochemical reactions are often on the level of a few
molecules. Hence a stochastic description is required.
The continuous-time discrete-state master equation with
Q matrix is well established as a cogent model for
reactions on the mesoscopic level [5]. A Q matrix has
all nondiagonal elements qij $ 0 and summation of each
row being 0. It can be classified either as reversible or
irreversible [6,7], corresponding to the physical system
being detail balanced or under pumping [2,4]. The respec-
tive long time behaviors are equilibrium and NESS [8]. A
reversible Q matrix has only nonpositive real eigenvalues
[9]. Hence, the time-correlation functions of equilibrium
fluctuations are multiexponential and monotonic. When
a reaction is pumped, the eigenvalues of the irreversible
Q can be complex (but never purely imaginary [10]),
known as power spectrum “peaking” [9]. It has also
been shown that a sufficient and necessary condition for
NESS is the existence of circulation (probabilistic flux)
in a system [1,4], and the stationarity is maintained via
circular balance rather than detail balance [7]. Circulation
leads to positive entropy production [11].

Periodic motion in a stochastic (noisy) system is stud-
ied as stochastic resonance without periodic forcing (SR-
WOF) [12]. Different from the conventional stochastic
resonance in which a periodic force is present [13,14], SR-
WOF focuses on the intrinsic periodic motion in a system
under a constant drift. It has been noted that the constant
drift term is essential in stochastic resonance (SR) behav-
ior. While all studies on SRWOF up to date are based on
continuous-time continuous-state stochastic models with
Fokker-Planck equations (FPE), it is easy to show that the
constant drift term is equivalent to the circulation in the
Q-matrix models [15]. In fact, the FPE on a circle shares
much of the essential features of a master equation for a
cyclic reaction.

This Letter seeks a unifying nonequilibrium frame-
work for SRWOF and its relation to the circulation of
NESS [1,7]. We use cyclic reactions and their master
0031-9007�00�84(10)�2271(4)$15.00
equations to demonstrate our results. Such reactions
are found in biophysics, e.g., the ATP-hydrolysis driven
biosynthesis [2] and motor protein movement [4]. The
strength of white noise in SR is identified with the
temperature in the chemical reaction. According to
Kramers’ theory [16], each element in a Q matrix
qij � q0

ijTe2Uij�T , where T is the temperature. T in the
prefactor comes from the diffusion coefficient and the
exponential term is due to activation energy barrier Uij .
We show that a necessary, but not sufficient, condition for
SRWOF is the system being in NESS with circulation;
furthermore, the periodic motion in SRWOF corresponds
to the oscillation in nonequilibrium reactions far from
equilibrium. The insight from SRWOF, on the other
hand, is that an optimal temperature exists for observing
a biochemical oscillation. Having established the cor-
respondence above, the problem of SR is shown to be
analytically solvable.

The simplest model capable of capturing the essence of

NESS is a 3-state kinetic cycle 1
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1. If r �
q12q23q31

q21q32q13
� 1, the Q matrix is reversible, and in general the

two nonzero, real eigenvalues are not equal. Therefore,
when the r is slightly greater (or less) than 1, Q still has
two real eigenvalues: NESS does not necessarily lead to
oscillation. When the pumping is severe, i.e., r ¿ 1 (or
ø1), complex eigenvalues are possible. One particular
example is the 3-state one-way cycle
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with nonzero eigenvalues 2�3 6 i
p

3 ��2 and a NESS
� 1

3 , 1
3 , 1

3 �. Figure 1 shows the autocorrelation function
C�t� and corresponding power spectrum S�v� of the
NESS of this system, obtained from both stochastic
simulation and analytical calculation. It is seen that even
though there is a cosine term in the correlation function,
both C�t� and S�v� are monotonic. The oscillation is not
© 2000 The American Physical Society 2271
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FIG. 1. NESS autocorrelation function C�t� and power spec-
trum S�v� of a 3-state cycle model: C�t� � 4 1

2
3 e2mt 3

cos�n0t�, S�v� � �m�2� ��m2 1 �v 1 n0�2�21 1 �m2 1 �v 2

n0�2�21� where m � 0.01 3
3
2 , n0 � 0.01 3

p
3

2 . Note the co-
sine term in C�t� and nonzero n0 in S�v�.

significant enough to be observed. Figure 2 shows that
the critical condition for observing an off-zero peak in a
power spectrum is when the ratio between imaginary to
real parts (IR ratio) m�n . 1�

p
3, where m 1 in � l is

a complex eigenvalue. For the 3-state kinetics, this ratio is
exactly 1�

p
3. Hence, no peak is observed.
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FIG. 2. For an oscillatory correlation function C�t� �
e2mjtj cos�nt�, its power spectrum S�v� � �m�2� ��m2 1 �v 1
n�2�21 1 �m2 1 �v 2 n�2�21�. It is shown how the n�m ratio
(indicated by the keys) are affecting the shape of the power
spectrum. A peak appears when the ratio is .1�

p
3. The shape

of the solid curve is known as Lorentzian.
2272
Observing a significant peak requires the IR ratio ¿1.
However, since all the l’s of a Q matrix are confined
in a closed disk of radius a centered at 2a [10], an
imaginary part can not be large while the real part is small.
There is a stringent constraint. We give an example which
escapes this dilemma. For an n-state one-way cycle, it
is easy to show that the n eigenvalues, eip��n 2 1 (� �
1, 2, . . . , n 2 1), are distributed on the unit circle centered
at 21. The largest possible IR ratio is tan��n 2 1�p�2n�.
Therefore the IR ratio can be large for systems with a large
n. Figure 3 shows the relationship between the IR ratio and
the NESS circulation (J) for an arbitrary 3 3 3 Q matrix.
A positive, though not precise, correlation is observed.

Periodicity and its probabilistic interpretation.—What
is the mechanistic origin of the periodicity in stochastic
motion? How is a chemical reaction system with expo-
nential kinetics giving rise to oscillation with frequency n?
Insight into this question is provided below by completely
solving the 3-state one-way cycle model [Eq. (1)]. This
approach can be generalized to more complex n-state
cyclic models. We use P�k, t j �� to denote the con-
ditional probability of the system being in state k at
time t given it was in state � at time 0. P�k, t j �� can
be solved from the master equation with initial condi-
tion P�m� � dm�. The autocorrelation function then
is C�t� �

P
�,m �mP�m, t j ��Pss���, where Pss is the

steady-state distribution. We have the respective forward,
backward, and dwell conditional probabilities,

P�2, t j 1� �
1
3

�1 2 �cosn0t 2
p

3 sinn0t�e23t�2� , (2)

P�1, t j 2� �
1
3

�1 2 �cosn0t 1
p

3 sinn0t�e23t�2� , (3)

P�1, t j 1� �
1
3

�1 1 2e23t�2 cosn0t� , (4)

where n0 �
p

3�2. Because of rotational symmetry,

FIG. 3. The relation between the IR ratio and NESS circulation
J for a 3 3 3 Q matrix. The six nondiagonal qij are uniformly
sampled with step 0.1 between �0, 1�. Each dot in the figure
is �J�m, n�m� for one matrix with eigenvalue m 6 in. Circu-
lation J � q12P

ss
1 2 q21P

ss
2 � q23P

ss
2 2 q32P

ss
3 , where Pss is

the steady state of the matrix. The largest IR ratio and the largest

circulation correspond to the matrix in (1) with m �
3
2 , n �

p
3

2 ,
and J �

1
3 . The dashed line represents n:m:J �

p
3:3: 2
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P�3, t j 2� � P�2, t j 1�, etc. All the conditional proba-
bilities have oscillatory terms, which contribute to the
oscillation in C�t�. These oscillatory terms have a clear
probabilistic origin from which Eqs. (2)–(4) can be
derived alternatively as follows without solving the master
equation. We note that the stochastic motion along the
one-way cycle is in complete accord with a Poisson
point process with rate 1 starting at 0. A mapping can
be established between the Poisson process along a line
and the cyclic motion among the three states. For the
Poisson process, the probability of reaching k at time t is
tke2t�k!. Therefore, the total probability of remaining in
0, and reaching 3n (n � 1, 2, . . .) should be equivalent to
the forward conditional probability along the cycle; this is
indeed the case [17]:

P
`
n�0

t3n

�3n�! e2t � P�1, t j 1�. Simi-

larly,
P`

n�1
t3n11

�3n11�! e2t � P�2, t j 1�;
P`

n�1
t3n12

�3n12�! e2t �
P�1, t j 2�. Therefore, in stochastic systems, the oscillatory
behavior is related to the residence-time distribution
function [12,14]. With an increasing number of cycles, the
variance in the distribution increases; thus the amplitude
of the distribution decays with time. Even though each
individual step in a chemical reaction is exponentially
distributed, the sum of two steps will be t2e2t�2! with
a peak at 2 (mean and variance both being 3). With n
steps, the gamma distribution tn21e2t��n 2 1�! peaks
at t � �n 2 1�, with mean and variance being n. The
relative width of the distribution �n21�2. The above
discussion is based on the simple Q matrix (1) which cor-
responds to a Poisson process. For a general Q the theory
of Markov renewal processes [18] has to be employed.

Stochastic resonance in biochemical reaction.—We
now turn to SR of the model. Since the periodicity in
a 3-state model is not sufficient for the manifestation of
SR, we consider the following most typical 5-state cyclic
reaction:
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%
q15

1 , (5)

where qij � q0
ijTe2Uij�T and T is the temperature (in

arbitrary units). In our calculation, U12 � U23 � 0.1,
U34 � U45 � U51 � 0.05, U21 � U32 � U43 � U54 �
U15 � 5.0. All q0

ij � 1. Therefore

r �
q12q23q34q45q51

q21q32q43q54q15
�

e2�U121U231U341U451U51��T

e2�U211U321U431U541U15��T

� e24.65�T . (6)

The exponent 24.65 in (6) is equivalent to the constant drift
in SRWOF [12] where white noise is added to a nonlinear
dynamical system with a limit cycle. The limit cycle is
eliminated when a constant drift term is below a critical
value [19]. This corresponds to the emerging of an acti-
vation barrier. With the presence of the noise, the noise
activated barrier crossing appears. The nonzero drift along
the circle corresponds to r fi 1 (see below).

Figure 4 shows the power spectra for three T ’s. With
increasing T the peak (corner) frequency shifts right, cor-
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FIG. 4. Stochastic resonance in a pumped cyclic biochemical
reaction with five states (lower panel in logarithmic scales).
An optimal temperature (in arbitrary unit T � 0.5) exists at
which the power spectrum of nonequilibrium steady state ex-
hibits pronounced off-zero peak, indicating oscillatory motion.
With increasing and decreasing T , the oscillation disappears.
(a) T � 0.025; (b) T � 0.5; (c) T � 10.

responding to an increase in time scale. For both large and
small T , the oscillation disappears. There is an optimal
temperature at which the reaction oscillates. This corre-
sponds to SRWOF [12]. The top panel should be compared
with model 1 of Hu et al. with drift ,1 [12]. The eigen-
values of the systems are particularly telling. In Table I
the IR ratio n�m is the largest for T � 0.5. With increas-
ing and decreasing T , complex eigenvalues turn to real.
Therefore, the IR ratio is a good indicator for the quality
of peaking. In the case of 3-state, this ratio behaves in a
similar fashion but the maximum IR ratio (� 0.577) is still
not sufficiently large to yield an off-zero spectral peak.

Q matrix as approximation for stochastic resonance.—
The master equations with Q � �qij�n3n are actually a
good approximation for the FPE approach in SR when
n is large. Both by direct physical argument and by the
finite-difference scheme of a FPE lead to 2D��Dx�2 �
q1 1 q2 and F�Dx � q1 2 q2, where q6 are forward
and backward rate constants in a Q matrix. Thus

qj,j11 � n2D 1
n
2

F

µ
j
n

∂
,

qj11,j � n2D 2
n
2

F

µ
j 1 1

n

∂ (7)
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TABLE I. Nonzero eigenvalues and circular flux for various T .

T l1,2 l3,4 IR ratio Circulation

! 0 0, q34 ! 0 q34 ! 0 0.0 q12
2 ! 0

0.025 20.0039 6 0.0069i 20.0016 6 0.000 28i 0.176, 0.171 0.000 19
0.5 20.79 6 0.26i 20.30 6 0.41i 0.32, 1.37 0.087
10 228.9 6 2.27i 211.1 6 3.68i 0.079, 0.33 0.77
! ` 2

51
p

5
2 2

52
p

5
2

0.0 24.65
25
for a continuous FPE ≠tP�x, t� � D≠xxP�x, t� 2

≠x�F�x�P�x, t��, where x [ �0, 1� representing a point on
a circle. The correspondence immediately leads to

r 3

Q
qj,j11Q
qj11,j

� 1 1
1
D

Z 1

0
F�x� dx 1 o

µ
1
n

∂
. (8)

Therefore, r � 1 corresponds to the above integral (i.e.,
the drift) being zero.

In summary, we have obtained not only the main char-
acteristics of SRWOF in a cyclic chemical reaction, estab-
lished a concrete bridge between the SR and NESS, but
also provided an analytical means to determine the peak
frequency n0, which has not been possible in a conven-
tional approach to SR by a purely numerical simulation.

A cyclic model like (5) has been extensively studied in
connection with motor proteins [4]. While most previous
investigations have focused on the movement of a motor
protein along its linear track, the internal conformational
dynamics of the protein is cyclic. Hence a spectroscopic
study of conformational fluctuations could be a testing
case for the present theory. Such experiments have not
been carried out, but their outcome will greatly enhance
our understanding of NESS. The oscillatory behavior in
our model also provides the “power-stroke-” like motor
movement with a possible theoretical basis. In fact, it is
tempting to classify NESS near and far from equilibrium
according to the existence of complex eigenvalues. In our
view, there is no doubt the oscillation in a severely pumped
reaction is the start point of temporal organization in states
far from thermodynamic equilibria.
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